Distributed M aintenance of a Spanning Tree using
L abeled Tree Encoding

Vijay K. Garg and Anurag Agarwal

University of Texas at Austin
Austin, TX 78712-1084

Abstract. Maintaining spanning trees in a distributed fashion is central to many
networking applications. In this paper, we propose a self-stabilizing algorithm
for maintaining a spanning tree in a distributed fashion for a completely con-
nected topology. Our algorithm requires a node to process O(1) messages of size
O(logn) on average in one cycle as compared to previous algorithms which need
to process messages from every neighbor, resulting in O(n) work in a completely
connected topology. Our algorithm also stabilizes faster than the previous ap-
proaches.

1 Introduction

Fault tolerance is a major concern in distributed systems. The self-stabilization paradigm,
introduced by Dijkstra [8], is an elegant and a powerful mechanism for fault tolerance.
Self-stabilizing systems tolerate transient data faults that can corrupt the state of the
system. They ensure that a system starting from any state converges to a legal state
provided the faults cease to occur.

Self-stabilizing algorithms for spanning tree construction have been extensively
studied. Spanning trees have many uses in computer networks. Once a spanning tree
is established in a network, it may be used in broadcast of a message, convergecast,
[synchronizer, and many other algorithms. As a result, it is desirable to have an effi-
cient self-stabilizing algorithm for spanning trees. The first algorithm in this area was
given in [10, 11] which deals with building BFS tree for a graph. Other algorithms were
also proposed for self-stabilizing BFS trees which dealt with different system models
and assumptions [1, 4, 15, 2, 16]. Algorithms have also been proposed for other types of
trees — such as DFS tree [6] and minimum spanning tree [3]. A survey of the existing
self-stabilizing spanning trees can be found in [13].

In this paper, we use an extension of the well-known strategy of detection and re-
set [5,4]. In this strategy, the nodes periodically test if the system is in a legal state
and on detection of a fault, carry out the reset strategy. Many self-stabilizing algorithms
have local detection, i.e., detection by each node corresponds to evaluation of a boolean
predicate only on its variables and its neighbors’ variables. The reset procedure may be
complicated depending upon the application.

Our method is an extension of the above strategy. We view the set of global states
as the cross-product of the core states and the non-core states. The core states satisfy
the property: There exists a legal state for every core state. The non-core component of

a global state is maintained only for performance reason. Given the core component,
one could always recreate the non-core component. In our algorithm for maintaining
a spanning tree, we use Neville’s code [18] of the tree as the core component and the
parent structure as the non-core component. Given any Neville’s code, there exists a
unique labeled spanning tree in a completely connected graph. Now assume that our
program suffers from a data fault. The data fault could be in the core component or
the non-core component. However, every value of the core component results in a valid
code. Therefore, in either case, we assume that it is the non-core component that has
changed. Upon detecting that the non-core component does not correspond to the core
component, we simply reset the non-core component to a value corresponding to the
core component. The challenge lies in identifying suitable core and non-core compo-
nents and efficient detection and reset of the state when information is distributed across
the network.

We assume that our system is a completely connected graph on n nodes with ids
1...n. Suchasystem could be a network overlaid on a real network. Given proper rout-
ing, Internet could also be considered a fully connected topology. In such an overlaid
topology, spanning trees can be used for distributing load among participants involved
in the computation of a global function. For such applications, the nodes higher in the
tree have to perform more computation. As a result, it is important to change the span-
ning tree over time so that nodes can function at different levels in the tree and every
node shares the workload equally in the long run. This requirement rules out main-
taining a single tree which is hardcoded in the algorithm. Our algorithm allows the
application to maintain any arbitrary tree and facilitates systematically changing of the
tree.

Our algorithm is designed for asynchronous message-passing systems, and does
not require a central daemon [8] for scheduling decisions. Although some of our as-
sumptions are stronger than the previous work, our algorithm has some significant ad-
vantages. In the popular shared memory model [9] for communication used by self-
stabilizing spanning tree algorithms, it is assumed that a process can read/write all its
shared variables including communication registers. In a completely connected topol-
ogy, this means that a node can perform operations on O(n) variables in O(1) time
which is very unreasonable especially for a message passing system. On the other hand,
we assume that every communication step takes one unit of time and in this model, our
algorithm stabilizes in O(d) time, where d is an upper bound on the number of times a
node appears in the Neville’s code. It turns out that d is O((logn)/loglogn) with high
probability for a randomly chosen code. This leads to a small stabilization time and to
our knowledge, it is the best stabilization time achieved by any algorithm in our model.

2 System Model

We assume that the network is a completely connected graph with n processes with ids
from 1 to n. The processes in the system are referred to as P; ... Py. Each process main-
tains some local variables. The processes are connected to each other through point to
point channels and communicate by passing messages to each other. The channels are
assumed to be reliable and asynchronous. The configuration c of the system is described

X[l] = least node with degree 1 J = least node with degree 1
forifomlton—-1 fori from 1ton—1
y[i] = parent of Xi] ') parent|j] = code]i]
delete edge between X[i] and y[i] degree]j] — —
if (degreefy[i]] = 1AYI[i] # n) degree/codeli]] — —
X[i+1] =yli] if (degree]codeli]] = 1) then
ehe _ = codefi]
X[i + 1] = least node with degree 1 else
Output y as the Neville's code j = least degree node with degree 1
Fig. 1. Algorithm to compute Neville’s Fig.2. Algorithm to compute labeled
code (y) of a labeled tree tree from Neville’s code

by the values of the local variables for the processes and the messages present in the
channels. A computation step consists of internal computation and a single communi-
cation operation: a send or receive. From now on, we use the term step to refer to a
computation step. A step a is said to be applicable to a configuration c iff there exists
a configuration ¢’ such that ¢’ can be reached from c by a single step a. An execution
E = (c1,a1,C2,az,...) is an alternating sequence of configurations and steps such that
c;i is obtained from c;_1 by the execution of the step a;_1.

Our algorithm does not require any assumptions on the message transit time for
correctness but for measuring the time complexity of our algorithm, we assume that
a message can be received at the destination in the step next to the one in which it
was sent. A process executes one step in one unit of time. The stabilization time of the
algorithm is then given in terms of the number of time units required by the algorithm
to stabilize. The reason for choosing such a model is explained later.

3 NevilleésThird Encoding

To maintain a spanning tree, it is sufficient for each process to maintain a pointer to the
parent but this method is not self-stabilizing as a fault in one of the parent pointers may
result in an invalid structure. In this section, we present a core data structure which can
be used to maintain the spanning tree in a self-stabilizing way.

For simplicity we assume that all spanning trees rooted at P, constitute the set of
legal structures. Later we explain how this assumption can be relaxed to allow any node
to become the root. We represent a tree through an encoding for labeled trees called the
Neville’s third encoding [18, 7]. In this paper, we refer to Neville’s third code simply
as Neville’s code. Each labeled spanning tree has a one-to-one correspondence with a
Neville’s code. This code is a sequence of n—2 numbers fromthe set {1...n}. For com-
pleteness sake, derivation of Neville’s code from a labeled spanning tree is discussed.
Given a labeled spanning tree with n nodes, the Neville’s code can be obtained by
deleting n — 1 edges in the tree as shown in Figure 1. The sequence {y]i]|]1 <i<n-2}
generated at the end of the procedure is called Neville’s code.

As an example, consider the labeled tree given in Figure 3. To compute the Neville’s
code for the tree, we start by deleting the least leaf node, 1. Since the parent of 1 is 5,
at this point the code is (5). Now 5 is still not a leaf, so we again choose the least leaf

OIN O N -~
N W[
ol [Nl w
[=lIESEaIEAIES
galo|gNo
ol
DN OO

o ER O

Fig.4. Structures

Fi_?r-]& ﬁ splalm’ning trge parent, code, f and z Fig.5. Tree for parent

wi eville’s code e R
satisfying (R1)-(R5

(527557 fying (R1)-(R5) structure given in Figure 4

node in the remaining tree, 3. We proceed by deleting 3 and adding its parent 2 to the
code. Continuing in a similar fashion, after n — 1 = 6 iterations of the algorithm, the
code (5,2,7,5,5,7) is obtained.

Given Neville’s code, the labeled spanning tree can also be computed easily. We
first calculate the degree of each node v as one more than the number of times v appears
in the code. For the root node n, this gives a value which is one higher than the actual
degree of the root but this is intentional. Once the degree of each node is known, the
procedure given in Figure 2 can be used to compute the code.

Let Neville’s code of the tree be denoted by code[i] for i € {1...n—2}. We re-
quire P; to maintain code[i] as the core data structure and parent]i] as the non-core data
structure. If efficiency were not an issue, this would be sufficient for a self-stabilizing
algorithm. Periodically, all nodes send their code to Py, P, calculates parent[i] for each
node P; and sends it back. Then P; resets parent[i] to the value received from Py. If
parent[i] was corrupted, it gets reset to agree with the spanning tree given by Neville’s
code. Even if the variable code][i] gets changed, it still results in a valid spanning tree.
The parent pointers are then reset to agree with the new code.

4 Non-Core Data Structuresfor Spanning Trees

Our strategy is to introduce new data structures in the system so that by imposing a set
of constraints on these data structures, we can efficiently detect and correct data faults.
For this purpose, the following data structures are used:

— parent: The variable parent[i] gives the parent of node P; in the spanning tree.

— f: The variable f[i] gives us the iteration in which the node P; is deleted in the
Neville’s code generation algorithm. Therefore, code] f[i]] gives us parent[i]. Since
Py is not deleted in first n — 1 iterations, we assume that f[n] = n.

— z: The variable z[i] gives the largest value of j such that code[j] = i. If there is no
such j, then z[i] = 0.

Based on the properties of Neville’s code, it can be verified that the variables —
code, parent, f and z — satisfy the following constraints:
(R1) Vi: code[f[i]] = parent]i]
Follows from the property of function f relating it to the parent.

(R2) (Vi:1<i<n-2=1<codefi] <n)A(code[n—1]=n)A (code[n] =0)
Definition of code extended to all the nodes.
(R3) (HVi:l<i<n=1<flij<n-1
Restricts the f values for nodes other than the root node.
(2) f isapermutationon [1...n]
In each iteration exactly one node is deleted and hence f values are distinct
and range from1...n.
(R4) Vi : z[i] = max{{j|code[j] =i} U{0}}
Definition of z.
(R5) Vi:z[i] #0= (f[i] =z[i]+1)
If node i was not a leaf node at the starting of the algorithm, then it is deleted
immediately after all its children have been deleted.

Theorems 1 and 2 show that constraints are strong enough to characterize a span-
ning tree, i.e., given a set of data structures code, parent, f and z which satisfy these
constraints, the parent structure results in a valid spanning tree regardless of the defini-
tions of these data structures. From now on, when we consider the data structures code,
parent, f and z, we just think of them as obeying a certain set of constraints and not
necessarily corresponding to the original definitions that were given for them.

We deal with two sets of constraints — ® = {R1,R2,R3(1),R4,R5} and ¢ =
{R1,R2,R3,R4,R5}. It is evident that any algorithm which satisfies the constraint set
¢ also satisfies the constraint set & . The trees resulting from obeying these constraint
sets possess different guarantees and are characterized by the following theorems.

Theorem 1. Ifcode, parent, f and z satisfy constraint set ® then parent data structure
forms a valid spanning tree rooted at Py.

Proof. Let the directed graph formed by the parent relation satisfying constraints 8 be
Tparent. The edges of Tparent are directed from the child to the parent. We first show that
Tparent is acyclic.

Let i = parent[j] in Tparent for some nodes i and j. Then,

code[f[j]] =i (Using (R1))
= (z[i] #0) A (f[j] < z[i]) (Using (R4))
= f[j] < f]i] (Using (R5) for i)

Applying this argument repeatedly shows that the ancestor of a node has a higher f
value than the f value for the node itself. This implies that no node is an ancestor of
itself and hence Tparent is acyclic.

Every node in Tparent has outdegree either 0 or 1 depending upon the validity of the
parent variable. We now show that every node except Py, has a valid parent and Py, forms
the root of the tree. For a node P;,i # n,

i] #n (Using (R3)(1))
= 1 < parent[i] = code[f[i]] < n (Using (R2),(R1))

Since the graph Tparent is acyclic and every node except P, has a valid parent, Py is
root of the tree.

The above theorem just ensures that the parent pointers form a spanning tree. It
does not enforce any relationship between the structure of the tree formed by the parent

pointers and the tree corresponding to code. The next theorem establishes this relation-
ship. The proof for the theorem can be found in the technical report [14].

Theorem 2. Ifcode, parent, f and z satisfy constraint set ¢, then parent forms a rooted
spanning tree isomorphic to the tree generated by code.

The above theorem suggests that there is a possibility that the tree formed by parent
is not same as the tree generated by code. For example, consider the value of the vari-
ables given in Table 4. It can be easily verified that these values satisfy the constraint
set ¢. The tree corresponding to code is the one we considered earlier in Figure 3. The
tree generated by parent is shown in Figure 5. The two trees are not the same but they
are isomorphic.

5 Maintaining Constraints

Each node i maintains parent]i], code[i], f[i] and z[i] and cooperates to ensure that the
required constraints are satisfied, resulting in a valid rooted spanning tree. We present
a strategy for efficient detection and correction of faults for each of the constraints. We
will first discuss (R3) as it turns out to be most difficult to detect and correct.

5.1 Constraint (R3)

Constraint (R3)(1) is a local constraint which can be checked easily. Violation of this
constraint can be fixed by simply setting f to a random number between 1 and n — 1.
Constraint (R3)(2) requires f to be a permutation on 1...n. This can, in turn, be mod-
eled in terms of the following constraints:

CHVI: 1< f[ij<n (C2)vi, j: f[i] # f[]]

The violation of (C1) is easy to detect. Every node i checks the value f[i] periodi-
cally. If it is not between 1 and n, then a fault has occurred. The constraint (C2) is more
interesting. At first glance it seems counter-intuitive that we can detect violation of (C2)
in O(1) messages. However, by adding auxiliary variables, the above task can indeed
be accomplished. We maintain g[i] at each process P; such that, in a legal global state
fli] = j =9g[j] =I. Thus, g represents the inverse of the array f. Note that the inverse of
a function exists iff it is one-one and onto which is true in this case. If each process P;
maintains f[i] and g[i], then it is sufficient for a node to check periodically the following

constraints:
(DL Vi:1<f[ij<n (D2)Vi:1<g[i|<n (D3) g[f[i]] =i

It is easy to show that (C2) is implied by (D1)-(D3). If for some distinct i and j,
fi] is equal to f[j], then g[f[i]] and g[f[]]] are also equal. This means that (g[f[i]] = i)
and (g[f[j]] = J) cannot be true simultaneously. (D3) can be checked by P; by sending
a message to Py periodically, prompting Py ;) to check whether g[fi]] = i is true. Note
that by introducing additional variables we have also introduced additional sources of
data faults. It may happen that requirements (C1)-(C2) are met, but due to faults in g,
constraints (D1)-(D3) are not met. We believe that the advantage of local detection of a
fault outweighs this disadvantage.

The above scheme has an additional attractive property: If we assume that there is
a single fault in f or g, then it can also be automatically corrected. The details for this
scheme are given in the technical report [14].

5.2 Other constraints

Constraints (R1), (R2) and (R5) Constraint (R1) is trivial to check locally. Each node
i inquires node j = f[i] for code[j]. If this value does not match parent]i], then the
constraint (R1) is violated. On violation, (R1) can be ensured by setting parent[i] to
code|j]. Constraint (R2) is also trivial to check and correct locally. Similarly, violation
of (R5) can be detected easily and on a fault, f[i] can be set to z[i] + 1.

Constraint (R4) : This constraint can be modeled in terms of the following constraints:
(E1) Vi : (z[i] #£0) = (code[z[i]] =) (E2) Vi, j : (code[j] = i) = (z[i] > j)

For checking (E1), node i prompts the node z[i] to verify that code|z[i]] = i. If the
check fails, then z[i] can be set to 0, which may not be the correct value for z[i]. If z[i]
is set incorrectly to 0, then constraint (E2) is also violated. As a result, while checking
for (E2), z[i] is set appropriately. For checking (E2), every node j sends a message to
node code[]] to verify that z[code[]]] > j. If (E2) is found to be violated upon receiving
a message from node j, then z[code[j]] is set to j.

5.3 Complete Algorithm

Depending upon the set of constraints (% or ¢) that a process obeys, we have two
versions of the algorithm. They differ in the guarantees about the resulting tree and
their time complexities.

Maintaining ® As we proved in Theorem 1, the set of constraints ® is sufficient
to maintain a spanning tree. The complete algorithm for process i to maintain the con-
straint set ®_is given in the Figure 6. We refer to this algorithm as SSR. In the algorithm,
instead of denoting variables like code[i], we have used P;.code to emphasize that the
variables are local to the processes and are not shared. The algorithm checks the con-
straints one by one and on the violation of a constraint, it takes corrective action. For
checking constraints which involve obtaining the value of another process’s variable,
we have used a primitive get. This involves the sender sending a request for the re-
quired variable and the receiver then replying with the appropriate value. A separate
thread would be used by a process to respond to the get requests from other processes.
Another point to notice in the algorithm is the asynchronous receive of the “Check
7” messages. These messages would be received by a third thread which is woken up
whenever a message arrives. Our system model takes this into account by assuming
that a process alternates between the three threads of execution. The formal proof of
correctness of the algorithm is given in the technical report [14].

At this point, we also give our reasons for choosing a different model for evaluation
of our strategy. In the previous works, the asynchronous rounds [12, 9] model was used.

if (z£ 0)

R get code from node P,
var if P,.code # i
code, parent, f,z integer; z=0
if (code # 0)
Periodically do send (“Check z’, i) to node code
/I Check (R2) /I Check (R5)
if (i =n—1) A (code # n) if (z#0)A(f #z+1))
code=n f=z+1
if (i = n) A (code # 0) if (z=0)A(f <2))
e=0 f = random number between 1 and n— 1
if (i # n) A ((code < 0) v (code > n))
e = random number between 1 and n /I Check (R1)
get code from node P
/I Check (R3)(1) if (Pf.code # parent)
if i#n)A((f<0)Vv(f>n)) parent = Ps.code
f = random number between 1 and n—1
/I First check for (R4) /I Second check for (R4)
if (z< 0)V(z>n)) Upon receiving (“Check 2,)
z=0 ifz<j

zZ=j

Fig. 6. Algorithm SSR for maintaining the constraint set &

The first asynchronous round in an execution E is the shortest prefix E’ of E such that
each process executes at least one step in E’. Let E” be the suffix of E that follows E’.
The second round of E is the first round of E”, and so on. The stabilization time of an
algorithm is the maximum number of rounds it executes before the system reaches a
legal state. In this model, a process waiting for a message receives the message in one
round whereas if the message receive is asynchronous, it fails to provide any guarantees.
In practice, running time of both the algorithms depends upon the message delivery time
in a similar way and hence their time complexities should be comparable. We try to
achieve this by putting a bound on the message delivery time. Our algorithm, like most
other self-stabilizing algorithms, is structured as a loop that is executed periodically.
We refer to this loop as a cycle.

The following theorems give the time and message complexity of this algorithm
averaged over all the nodes.

Theorem 3. The algorithm SSR requires O(1) time per node and O(1) messages per
node on average in one asynchronous cycle with each message of size O(logn).

Proof. In the algorithm SSR, every process sends a constant number of get requests and
one “Check z” request. This results in a total of O(n) messages. Corresponding to the
get requests, there would be a total of O(n) replies. The number of “Check z” messages
received by a process i depends upon the number of times i appears in code. Assuming
a random code, every node processes O(1) messages on average. Since each node takes
constant number of steps in an asynchronous cycle, every process requires O(1) time
on average to complete one asynchronous cycle. Moreover, since each message sends
an id between 1 and n, each message is of size at most O(logn).

The following theorem gives the stabilization time of the algorithm in terms of our
model. The proof for the theorem is given in the full version of the paper [14].

Theorem 4. [14] The algorithm SSR stabilizes in O(d) time, where d is the upper
bound on the number of times a node appears in code.

The problem of choosing the first n — 2 numbers of code at random can be consid-
ered as the problem of randomly assigning n — 2 balls to n bins. The following theorem
is a standard result in probability theory [17][Theorem 3.1]:

Theorem 5. If n balls are thrown randomly in n bins, then with the probability at least

1 - elogn
1— =, no bin has more than Toglogn balls.

For a randomly chosen code, this theorem provides an upper bound for d and hence an
upper bound on the stabilization time with very high probability.

These results show that the set ® of constraints can be maintained efficiently. The
algorithm for maintaining the constraint set ¢, called SSC, is given in the technical
report [14]. The SSC algorithm can take upto O(n) time for stabilization.

5.4 Changing the Root Node

The algorithms SSR and SSC can be easily modified to allow the root node to change
dynamically i.e. any node (not necessarily n) can become the root of the tree and the
root can be changed during the operation of the algorithm. This can be achieved by
changing the constraints (R2) and (R3)(1) in the following way:

(R2) (Vi:1<i<n-1=1<code[i] <n)A/ (code[n]=0)
(R)(A)Vi:i£codeln—1]= 1< f[ij<n

The modified constraints are also easy to check and maintain. In the next section we
present an application which utilizes this feature.

5.5 Systematically changing the tree

The SSR algorithm ensures that if the code is changed, then the spanning tree stabilizes
to reflect that change. This property of the algorithm could be used by an application to
purposefully change the spanning tree. If we are maintaining the set of constraints % ,
then changing the code value at a node may not always result in a change in the tree.
To get around this problem, whenever a node i wishes to change the tree, it changes
the value of code[f[i]] by requesting node f][i]. This changes parent[i] = code|[f[i]] and
hence the spanning tree changes. Additionally, this may result in some more changes
in the spanning tree as the parent of some other nodes may also get modified. This
technique could be useful for load balancing purposes.

6 Conclusion and Future Work

In this paper we presented a new technique for maintaining spanning trees using labeled
tree encoding. Our method requires O(1) messages per node on average in one cycle
and provides fast stabilization. It also offers a method for changing the root of the tree
dynamically and systematically changing the tree for load balancing purposes. This

work also demonstrates the use of the concept of core and non-core states for designing
self-stabilizing algorithms.

It would be interesting to extend this work for general topology. Another research

direction would be to modify the algorithm so that it does not require the nodes to have
labels from 1 to n.

References

1.

11.

12.

13.

14.

15.

16.

17.
18.

Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols for general net-
works. In Proc. of the 4th Int’| Werkshop on Distributed Algorithms, pages 15-28. Springer-
Verlag, 1991.

S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algorithm. In Proc.
of the 13th Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 400-410, 1993.

G. Antonoiu and P. Srimani. Distributed self-stabilizing algorithm for minimum spanning
tree construction. In European Conference on Parallel Processing, pages 480-487, 1997.
A. Arora and M. Gouda. Distributed reset. |EEE Transactions on Computers, 43(9):1026—
1038, 1994.

B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and
correction (extended abstract). In IEEE Symposium on Foundations of Computer Science,
pages 268-277, 1991.

Z. Collin and S. Dolev. Self-stabilizing depth-first search. Information Processing Letters,
49(6):297-301, 1994,

N. Deo and P. Micikevicius. Prufer-like codes for labeled trees. Congressus Numerantium,
151:65-73, 2001.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of
the ACM, 17:643-644, 1974.

S. Dolev. Sdlf-Sabilization. MIT Press, Cambridge, MA, 2000.

S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems. In MCC Workshop
on Self-Sabilizing Systems, 1989.

S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only
read/write atomicity. In Proc. of the ninth annual ACM symposium on Principles of Dis-
tributed Computing, pages 103-117. ACM Press, 1990.

S. Dolev, A. Israeli, and S. Moran. Uniform self-stabilizing leader election. In Proc. of the
5th Workshop on Distributed Algorithms, pages 167-180, 1991.

F. C. Gaertner. A survey of self-stabilizing spanning-tree construction algorithms. Technical
report, EPFL, Oct 2003.

V. K. Garg and A. Agarwal. Self-stabilizing spanning tree algorithm with a new design
methodology. Technical report, University of Texas at Austin, 2004. Available as "htt p:
/' mapl e. ece. ut exas. edu/ TechReport s/ 2004/ TR- PDS- 2004- 001. ps".

S. Huang and N. Chen. A self stabilizing algorithm for constructing breadth first trees.
Information Processing Letters, 41:109-117, 1992.

C. Johnen. Memory efficient, self-stabilizing algorithm to construct bfs spanning trees. In
Proc. of the sixteenth annual ACM symposium on Principles of Distributed Computing, page
288. ACM Press, 1997.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
E. H. Neville. The codifying of tree-structure. Proceedings of Cambridge Philosophical
Society, 49:381-385, 1953.

