
Intractability Results in Predicate Detection
Sujatha Kashyap

Dept. of Electrical and Computer Engineering
University of Texas at Austin

Austin, TX 78712
Email: kashyap@ece.utexas.edu

Vijay K. Garg
Dept. of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712

Email: garg@ece.utexas.edu

Abstract

It has been shown that global predicate detection in a distributed computation is an NP-complete problem in general. However,
polynomial-time predicate detection algorithms exist for some classes of predicates, such as stable predicates, observer-independent
predicates, conjunctions of local predicates etc. We show here that, given a class of predicates for which polynomial-time detection
algorithms exist, it is in general NP-hard to determine whether a given boolean predicate is a member of that class.

We also explore the importance of theefficient advancement propertyfor linear predicates. In particular, we show that there is
no polynomial-time algorithm for the detection of linear predicates that do not satisfy the efficient advancement property, unless
NP=RP.

Keywords:distributed systems, distributed debugging, predicate detection, NP-completeness.

I. I NTRODUCTION

Global predicate detection is a fundamental problem in distributed computing, arising in contexts such as the design, testing
and debugging of distributed programs. The absence of shared memory and a shared clock in a distributed system makes it
difficult to observe global properties in such systems. Also, the set of events that make up a distributed computation can only
be partially ordered [1], and a distributed computation can have a large number of distinct, yet valid, executions that satisfy
this partial order. Examining all possible valid executions to determine whether a global property was satisfied results in a
combinatorial explosion.

The problem of predicate detection has been shown to be NP-complete in general [2]. However, polynomial-time algorithms
exist for detecting certain classes of predicates. Examples of such predicate classes are stable predicates [3], conjunctions of
local predicates [4] and observer-independent predicates [5]. Polynomial-time algorithms also exist for detection of linear [2]
and regular [6] predicates that satisfy theefficient advancement property.

Thus, we have a set of polynomial-time algorithms that can efficiently detect certain “tractable” classes of predicates in a
distributed computation. It is thus natural to ask, given a predicate and a distributed computation, whether the predicate belongs
to one of these classes. In this paper, we show that this problem is NP-hard in general.

We also explore the importance of the efficient advancement property for the detection of linear predicates and regular
predicates. We show that, unless NP=RP, there is no efficient algorithm for detecting linear or regular predicates that do not
satisfy the efficient advancement property.

II. M ODEL AND BACKGROUND

We model a distributed program as a set of processes{P1, ..., Pn} with no shared memory and no global clock. Each
processPi executes sequentially, and is modeled as a sequence of (local) statessi1, ..., sim. ProcessPi communicates with
processPj through asynchronous messages. Communication channels are not assumed to be FIFO. Each processPi has a set
of local variablesXi. The value of a local variable on a process changes only on transitions between states on that process.
Thus, in any statesij on processPi, the value of each variablex ∈ Xi is well-defined.

A distributed computation is viewed as a set of states (partially) ordered by ahappened-beforerelation that is analogous
to Lamport’s happened-before relation between events,→ [1]. Formally, this happened-before relation states that, given two
statess and t from the set of all statesS, s → t iff s occurs beforet on the same process, ors is the send of a message and
t is the corresponding receive of the message, or∃u ∈ S : (s → u) ∧ (u → t). We define a distributed program as a set of
states together with the happened-before relation, and denote it by(S,→).

Two statess and t are concurrent(s||t) if (s 6→ t) ∧ (t 6→ s). Given a set of processes{P1, ..., Pn} in a distributed
computation, acut G is a collection of local statesG ⊆ S, such thatG includes exactly one state from each processPi, i.e.,
|G| = n, wheren is the number of processes in the system. We denote the local state fromPi in G by G[i]. A cut is called
a consistent cutor a global stateiff ∀i, j ∈ {1..n}, i 6= j : G[i]||G[j]. Given two cutsG and H, we say thatG ≤ H iff
∀i ∈ {1..n} : (G[i] → H[i]) ∨ (G[i] = H[i]).

We denote the set of all consistent cuts of a distributed computation(S,→) by C(S). C(S) forms a distributive lattice
under the relation⊆ [7], [6]. An executionof a distributed computation(S,→) is a path through the latticeC(S), starting
from the global state which is theinf of C(S), and ending at the global state which is thesupof C(S).

A subcutof a distributed computation is a subsetG ⊆ S containing at most one state from each process, so that|G| ≤ n,
wheren is the total number of processes in the distributed system under consideration. A consistent subcut is a subcut in
which all states are pairwise concurrent. It has been shown [2] that any consistent subcut can be extended to a consistent cut.

A predicateB is possiblytrue in a computation (denoted bypossibly : B) [8] iff it holds true at one or more global states
in C(S). A predicateB is invariant (denoted byinvariant : B) iff the predicate is true at every global state inC(S).

The modalitiespossiblyand invariant are duals of each other,i.e., possibly : B = ¬invariant : ¬B. Chase and Garg [2]
showed that detectingpossibly : B for a general boolean predicateB is an NP-complete problem. Thus, detectinginvariant : B
is co-NP-complete for a general boolean predicateB.

For the discussions in this paper, we assume that a predicate can be evaluated in polynomial time on a global state,i.e.,
it can be determined to be true or false at that global state in polynomial time. Under this assumption, efficient algorithms
have been proposed for detecting various classes of predicates,i.e., predicates that exhibit a certain structure or satisfy certain
properties. We focus here on classes of predicates that satisfy certain properties with respect to the lattice of all consistent
global states,C(S). Linear, post-linear [2], and regular [6] predicates are examples of such classes of predicates.

Definition 1: Let C(S) be the set of consistent cuts of a computation(S,→). A predicate B ismeet-closedwith respect to
the computation(S,→) iff

∀G, H ∈ C(S) : B(G) ∧B(H) ⇒ B(G ∩H)
Given a distributed computation(S,→), a predicateB, and a cutG ⊂ S, a stateG[i] is calledforbiddenif its inclusion in

any cutH, whereG ≤ H, implies thatB is false inH.
Definition 2: Given a boolean expressionB,

forbidden(G, i) def= ∀H : G ≤ H : (G[i] 6= H[i]) ∨ ¬B(H)
Definition 3: A boolean predicateB is linear with respect to the computation(S,→) iff

∀G ∈ C(S) : ¬B(G) ⇒ ∃i : forbidden(G, i)
A predicateB is linear iff it is meet-closed [2]. Local predicates, conjunctions of local predicates and most channel predicates

are linear. Apost-linearpredicate is the dual of a linear predicate.
Definition 4: Let C(S) be the set of consistent cuts of a computation(S,→). A predicate B ispost-linear iff

∀G, H ∈ C(S) : B(G) ∧B(H) ⇒ B(G ∪H)

Or, equivalently,
∀G ∈ C(S) : ¬B(G) ⇒ ∃i : ∀H ≤ G : (G[i] 6= H[i]) ∨ ¬B(H)

A predicate that is both linear and post-linear is called aregular predicate.
Definition 5: Let C(S) be the set of consistent cuts of a computation(S,→). A predicate B is regular with respect to

(S,→) iff
∀G, H ∈ C(S) : B(G) ∧B(H) ⇒ B(G ∩H) ∧B(G ∪H)

The set of all global states satisfying a regular predicate forms a sublattice ofC(S). Local predicates, conjunctions of local
predicates, and many channel predicates are regular.

Chase and Garg [2] proposed an efficient algorithm for detectingpossibly : B for a linear predicateB, under the assumption
that the forbidden state can be determined in polynomial time. This assumption is called theefficient advancement property.

III. R ECOGNIZING L INEAR AND REGULAR PREDICATES

As discussed earlier, efficient detection algorithms exist for various classes of predicates. Thus, given a boolean expression
B, one would like to determine if it belongs to a “tractable” predicate class, in which case detection of the predicate may be
performed efficiently. We first consider the classes of linear and regular predicates. In this section, we show that determining
whether a given boolean expression is linear with respect to a given distributed computation is a co-NP-complete problem. We
also show that this problem is co-NP-complete for regular predicates, as well as post-linear predicates.

We define the decision problems of predicate recognition for linear and regular predicates as follows.
LINEARITY: Given a boolean expressionb and a distributed computation(S,→), is b linear with respect to(S,→)?
REGULARITY: Given a boolean expressionb and a distributed computation(S,→), is b regular with respect to(S,→)?
Theorem 1: LINEARITYis co-NP-complete.

Proof: LINEARITY is in co-NP: If the given predicate is not linear, then there exist global statesG and H in which
the predicate is true, such that the predicate is false in the global stateG ∩H. The statesG and H form the certificate for
LINEARITY to be in co-NP, since it can be verified in polynomial-time that the predicate holds true inG andH, but is false
in G ∩H. Thus, LINEARITY is in co-NP.

LINEARITY is co-NP-hard: We transform an arbitrary instance of the well-known co-NP-complete problem of determining
whether a given boolean expression is a tautology, to an instance of LINEARITY.

2

0

1

0

1 1

0

true

false

true true

false false

P1 P2

1

0

false

true

Pn+1 Pn+2

0

1 true

false

Pn

x1 x2

G

G1

G2
xn xn+1 xn+2

Fig. 1. Transformation for Theorems 1 and 2.

Let b be a boolean expression involving variablesx1, x2, ..., xn. ∀i ∈ {1..n}, we place eachxi on a separate process,Pi.
Each of thesen processes has two local states, atrue state and afalse state, which corresponds to the value taken by the
variablexi in that local state. We also define two new variables,xn+1 andxn+2, and place them on processesPn+1 andPn+2

respectively. ProcessPn+1 has two local states: an initialfalse state and a finaltrue state, and processPn+2 has two local
states: an initialtrue state and a finalfalsestate. Figure 1 shows this transformation. It is evident that this transformation can
be achieved in polynomial time.

We define
B = b ∨ xn+1xn+2 ∨ xn+1xn+2

We claim thatB is linear iff b is a tautology. Ifb is a tautology, thenB is trivially linear, becauseB will be true for all
global states. Conversely, ifb is not a tautology, then there exists a subcut involving processesP1, ..., Pn in which b evaluates
to false. Let us call this subcutG. We can now extend the subcutG to form two cuts,G1 andG2, in which the predicateB
is true, as shown in Figure 1.

G1 = (G, 0, 1)

and
G2 = (G, 1, 0)

However,
G1 ∩G2 = (G, 0, 0)

in which the predicateB is false. Thus,B is not linear.
Theorem 2: REGULARITYis co-NP-complete.

Proof: REGULARITY is in co-NP: If the given predicate is not regular, then there exist global statesG andH in which
the predicate is true, such that the predicate is false either inG ∩H or in G ∪H. The global statesG andH thus form the
certificate for REGULARITY to be in co-NP.

REGULARITY is co-NP-hard: The transformation in Theorem 1 holds for REGULARITY as well. That is,b is a tautology
iff B = b ∨ xn+1xn+2 ∨ xn+1xn+2 is regular. Ifb is a tautology, thenB is trivially regular, becauseB is true for all global
states. Conversely, ifb is not a tautology, thenB is not regular because both the intersection and union ofG1 andG2 result
in a global state in whichB is false. Thus, REGULARITY is co-NP-hard.

Note that the above transformation can also be used to show that the problem of deciding whether a given boolean predicate
is post-linear is co-NP-complete.

IV. PREDICATE RECOGNITION

In the previous section, we showed that the problems of recognizing linear, regular and post-linear predicates are co-NP-
complete. We now turn to the question: what other classes of predicates cannot be recognized in polynomial-time?

Let us denote the set of all non-satisfiable boolean expressions byCfalse. Observe that any predicateBfalse ∈ Cfalse

is stable, observer-independent, linear, post-linear and regular with respect toany distributed computation, because it would
evaluate tofalse in every global state.

Theorem 3:Given a predicate classC and a distributed computation(S,→), such that:

• Cfalse ⊆ C, and
• ∀B′ ∈ C : possibly : B′ can be detected efficiently for the computation(S,→).

3

It is NP-hard to determine whether a given boolean predicateB is a member of the classC, i.e., B ∈ C, with respect to the
computation(S,→).

Proof: We show that if a polynomial-time algorithm exists for determining membership in a predicate classC as defined
above, then the satisfiability problem (SAT) can also be solved in polynomial time. LetB be a boolean expression involving
variablesx1, x2, ..., xn, for which we wish to solve SAT. We create a distributed computation as follows:∀i ∈ {1..n}, we
place eachxi on a separate process,Pi. Each of thesen processes has two local states, afalse state and atrue state, which
corresponds to the value taken by the variablexi in that local state, as shown in Figure 2.

Assume that there exists a polynomial-time algorithmmember(C, B, S), which can determine whetherB ∈ C, with respect
to the computation(S,→). If member(C, B, S) returnsfalse, then B is satisfiable, sinceCfalse ⊆ C. If it returns true,
then sincepossibly : B can be detected efficiently for allB ∈ C, we can determine satisfiability forB (B is satisfiable iff
possibly : B is true).

0

1

0

1 1

0

true

false

true true

false false

P1 P2 Pn

0

1 true

false

P3

x1 x2 x3 xn

……………

Fig. 2. Distributed computation used in the proofs of Theorems 3 and 4.

Now, let us denote the set of all tautological boolean expressions byCtrue. Note that any predicateBtrue ∈ Ctrue is stable,
observer-independent, linear, post-linear and regular with respect to any distributed computation, because it would evaluate to
true in every global state.

Theorem 4:Given a predicate classC and a distributed computation(S,→), such that:

• Ctrue ⊆ C, and
• ∀B′ ∈ C : invariant : B′ can be detected efficiently for the computation(S,→).

It is co-NP-hard to determine whether a given boolean predicateB is a member of the classC, i.e., B ∈ C, with respect to
the computation(S,→).

Proof: We show that if a polynomial-time algorithm exists for determining membership in a predicate classC as defined
above, then the co-NP-complete problem of determining whether a given boolean expression is a tautology (TAUTOLOGY)
can also be solved in polynomial time. Let the boolean expressionB, involving variablesx1, x2, ..., xn, be an arbitrary instance
of TAUTOLOGY. We create a distributed computation identical to that used in the proof of Theorem 3.

Assume that there exists a polynomial-time algorithmmember(C, B, S), which can determine whetherB ∈ C with respect
to the computation(S,→). If member(C, B, S) returnsfalse, thenB is not a tautology, sinceCtrue ⊆ C. If it returns true,
then sinceinvariant : B can be detected efficiently for allB ∈ C, we can determine ifB is a tautology (B is a tautology iff
invariant : B is true).

V. EFFICIENT ADVANCEMENT PROPERTY

We stated earlier that efficient detection of linear predicates relies on the assumption that the given predicate satisfies the
efficient advancement property, that is, the forbidden state can be identified in polynomial time. The question that arises is, do
all linear predicates satisfy the efficient advancement property? If not, then is it possible to efficiently detect linear predicates
that do not satisfy this property? We show here that, unless NP=RP, there exist linear predicates that cannot be detected in
polynomial-time.

We use a result by Valiant and Vazirani [9], which states that satisfiability is NP-hard under randomized reductions even for
instances that have at most one satisfying assignment (USAT). Valiant and Vazirani’s proof uses a randomized polynomial-time
algorithm that reduces a given instance of SAT to an instance of USAT.

Theorem 5:(Valiant-Vazirani) If there exists a randomized polynomial-time algorithm for solving instances of SAT having
at most one satisfying assignment, then NP=RP.

4

We know that a predicate having at most one satisfying assignment in a given distributed computation is linear with respect
to that computation. Given any instanceB of USAT, involving variablesx1, x2, ..., xn, one can create a distributed computation
as depicted in Figure 2, whereB would be a linear predicate. Detectingpossibly : B for the computation in Figure 2 is thus
equivalent to solving USAT forB. Since we know that linear predicates that satisfy efficient advancement can be detected
in polynomial-time, this indicates that linear predicates that do not exhibit efficient advancement may not be detectable in
polynomial-time, even by a randomized algorithm. Furthermore, since every instance of USAT is also a regular predicate for
the computation in Figure 2, detection of regular predicates is also NP-hard under randomized reductions.

VI. CONCLUSION

In this paper, we have shown several intractability results in the area of predicate detection in distributed computations. We
have shown the co-NP-hardness of deciding whether a given boolean expression is linear, post-linear or regular with respect
to a given distributed computation. Further, we showed the NP-hardness of determining membership in classes of predicates
that have efficient algorithms forpossibly detection, and the co-NP-hardness of determining membership in classes on which
invariant can be detected efficiently. We also showed that polynomial-time detection may not be possible for linear and
regular predicates, unless the efficient advancement property is satisfied.

REFERENCES

[1] L. Lamport, “Time, clock and the ordering of events in a distributed system,”Communications of the ACM (CACM), vol. 21, no. 7, pp. 558–565, July
1978.

[2] C. Chase and V. K. Garg, “On techniques and their limitations for the global predicate detection problem,” inProceedings of the Workshop on Distributed
Algorithms, Le Mont-Saint-Michel, France, Sept. 1995, pp. 303–307.

[3] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of distributed systems,”ACM Transactions on Computer Systems, vol. 3,
no. 1, pp. 63–75, Feb. 1985.

[4] V. K. Garg and B. Waldecker, “Detection of weak unstable predicates in distributed programs,”IEEE Transactions on Parallel and Distributed Systems,
vol. 5, no. 3, pp. 299–307, Mar. 1994.

[5] B. Charron-Bostet al., “Local and temporal predicates in distributed systems,”ACM Transactions on Programming Languages and Systems, vol. 17,
no. 1, pp. 157–179, Jan. 1995.

[6] V. K. Garg and N. Mittal, “On slicing a distributed computation,” in21st International Conference on Distributed Computing Systems (ICDCS 01),
Washington-Brussels-Tokyo, Apr. 2001, pp. 322–329.

[7] F. Mattern, “Virtual time and global states of distributed systems,” inParallel and Distributed Algorithms: proceedings of the International Workshop on
Parallel & Distributed Algorithms, M. Cosnardet al., Eds. Elsevier Science Publishers B. V., 1989, pp. 215–226.

[8] R. Cooper and K. Marzullo, “Consistent detection of global predicates,” inProceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,
Santa Cruz, California, 1991, pp. 163–173.

[9] L. G. Valiant and V. V. Vazirani, “NP is as easy as detecting unique solutions,”Theoretical Computer Science, vol. 47, no. 1, pp. 85–93, 1986.

5

