Intractability Results in Predicate Detection

Sujatha Kashyap Vijay K. Garg
Dept. of Electrical and Computer Engineering Dept. of Electrical and Computer Engineering
University of Texas at Austin University of Texas at Austin
Austin, TX 78712 Austin, TX 78712
Email: kashyap@ece.utexas.edu Email: garg@ece.utexas.edu
Abstract

It has been shown that global predicate detection in a distributed computation is an NP-complete problem in general. However,
polynomial-time predicate detection algorithms exist for some classes of predicates, such as stable predicates, observer-independent
predicates, conjunctions of local predicates etc. We show here that, given a class of predicates for which polynomial-time detection
algorithms exist, it is in general NP-hard to determine whether a given boolean predicate is a member of that class.

We also explore the importance of thficient advancement propetfiyr linear predicates. In particular, we show that there is
no polynomial-time algorithm for the detection of linear predicates that do not satisfy the efficient advancement property, unless
NP=RP.

Keywords:distributed systems, distributed debugging, predicate detection, NP-completeness.

I. INTRODUCTION

Global predicate detection is a fundamental problem in distributed computing, arising in contexts such as the design, testing
and debugging of distributed programs. The absence of shared memory and a shared clock in a distributed system makes i
difficult to observe global properties in such systems. Also, the set of events that make up a distributed computation can only
be partially ordered [1], and a distributed computation can have a large number of distinct, yet valid, executions that satisfy
this partial order. Examining all possible valid executions to determine whether a global property was satisfied results in a
combinatorial explosion.

The problem of predicate detection has been shown to be NP-complete in general [2]. However, polynomial-time algorithms
exist for detecting certain classes of predicates. Examples of such predicate classes are stable predicates [3], conjunctions o
local predicates [4] and observer-independent predicates [5]. Polynomial-time algorithms also exist for detection of linear [2]
and regular [6] predicates that satisfy thificient advancement property

Thus, we have a set of polynomial-time algorithms that can efficiently detect certain “tractable” classes of predicates in a
distributed computation. It is thus natural to ask, given a predicate and a distributed computation, whether the predicate belongs
to one of these classes. In this paper, we show that this problem is NP-hard in general.

We also explore the importance of the efficient advancement property for the detection of linear predicates and regular
predicates. We show that, unless NP=RP, there is no efficient algorithm for detecting linear or regular predicates that do not
satisfy the efficient advancement property.

Il. MODEL AND BACKGROUND

We model a distributed program as a set of proced$8s ..., P,,} with no shared memory and no global clock. Each
processP; executes sequentially, and is modeled as a sequence of (local) states s;,,,. ProcessP; communicates with
processP; through asynchronous messages. Communication channels are not assumed to be FIFO. EacR, frasesset
of local variablesX;. The value of a local variable on a process changes only on transitions between states on that process.
Thus, in any state;; on processP;, the value of each variable € X; is well-defined.

A distributed computation is viewed as a set of states (partially) ordered Happened-beforeelation that is analogous
to Lamport’s happened-before relation between eventdl]. Formally, this happened-before relation states that, given two
statess andt¢ from the set of all state§, s — t iff s occurs before on the same process, e1is the send of a message and
t is the corresponding receive of the messageshwe S : (s — u) A (u — t). We define a distributed program as a set of
states together with the happened-before relation, and denote(&, by).

Two statess and ¢ are concurrent(s||t) if (s /4 t) A (t /~ s). Given a set of processds",, ..., P,} in a distributed
computation, acut G is a collection of local state§ C S, such thatG includes exactly one state from each procfssi.e.,
|G| = n, wheren is the number of processes in the system. We denote the local statePfroam by G[i]. A cut is called
a consistent cubr a global stateiff Vi,j € {1..n},i # j : G[i]||G[j]. Given two cutsG and H, we say thatG < H iff
Vi€ {1..n} : (G[i] — H[i]) V (G[i] = H[i]).

We denote the set of all consistent cuts of a distributed computéfion) by C(S). C(S) forms a distributive lattice
under the relatiorC [7], [6]. An executionof a distributed computatioS, —) is a path through the lattic€'(S), starting
from the global state which is thaf of C'(S), and ending at the global state which is thepof C(S).

A subcutof a distributed computation is a subggtC S containing at most one state from each process, so|at n,
wheren is the total number of processes in the distributed system under consideration. A consistent subcut is a subcut in
which all states are pairwise concurrent. It has been shown [2] that any consistent subcut can be extended to a consistent cut

A predicateB is possiblytrue in a computation (denoted hwssibly : B) [8] iff it holds true at one or more global states
in C(S). A predicateB is invariant (denoted byinvariant : B) iff the predicate is true at every global stateGtS).

The modalitiespossiblyand invariant are duals of each otheite., possibly : B = —invariant : —~B. Chase and Garg [2]
showed that detectingpssibly : B for a general boolean predicaleis an NP-complete problem. Thus, detectingariant : B
is co-NP-complete for a general boolean predidate

For the discussions in this paper, we assume that a predicate can be evaluated in polynomial time on a glaba) state,
it can be determined to be true or false at that global state in polynomial time. Under this assumption, efficient algorithms
have been proposed for detecting various classes of predicatepredicates that exhibit a certain structure or satisfy certain
properties. We focus here on classes of predicates that satisfy certain properties with respect to the lattice of all consistent
global states('(.S). Linear, post-linear [2], and regular [6] predicates are examples of such classes of predicates.

Definition 1: Let C(S) be the set of consistent cuts of a computatiSh—). A predicate B isneet-closedvith respect to
the computatior(S, —) iff

VG, H € C(S): B(G)ANB(H) = B(GNH)

Given a distributed computatioft, —), a predicateB, and a culG C S, a stateG|[i] is calledforbiddenif its inclusion in
any cutH, whereG < H, implies thatB is false inH.

Definition 2: Given a boolean expressids,

Fforbidden(G, i) < VH : G < H : (Gi] # HI[i]) V ~B(H)

Definition 3: A boolean predicateB is linear with respect to the computatiaib, —) iff

VG € C(S) : =B(G) = Ji: forbidden(G,1)
A predicateB is linear iff it is meet-closed [2]. Local predicates, conjunctions of local predicates and most channel predicates
are linear. Apost-linearpredicate is the dual of a linear predicate.
Definition 4: Let C'(S) be the set of consistent cuts of a computatiéh—). A predicate B ispost-lineariff

VG, H € C(S) : B(G) A B(H) = B(G U H)

Or, equivalently,
VG € C(S): ~B(G) = 3i:VH < G : (G[i] # H[i]) V -B(H)

A predicate that is both linear and post-linear is calleggular predicate.

Definition 5: Let C(S) be the set of consistent cuts of a computati®h—). A predicate B is regular with respect to
(S, —) iff

VG, H € C(S): B(G)ANB(H) = B(GNH)ANB(GUH)

The set of all global states satisfying a regular predicate forms a sublatt©é)f Local predicates, conjunctions of local
predicates, and many channel predicates are regular.

Chase and Garg [2] proposed an efficient algorithm for deteglingibly : B for a linear predicaté3, under the assumption
that the forbidden state can be determined in polynomial time. This assumption is calleffidiest advancement property

I1l. RECOGNIZING LINEAR AND REGULAR PREDICATES

As discussed earlier, efficient detection algorithms exist for various classes of predicates. Thus, given a boolean expression
B, one would like to determine if it belongs to a “tractable” predicate class, in which case detection of the predicate may be
performed efficiently. We first consider the classes of linear and regular predicates. In this section, we show that determining
whether a given boolean expression is linear with respect to a given distributed computation is a co-NP-complete problem. We
also show that this problem is co-NP-complete for regular predicates, as well as post-linear predicates.

We define the decision problems of predicate recognition for linear and regular predicates as follows.

LINEARITY Given a boolean expressidnand a distributed computatiofb, —), is b linear with respect td.S, —)?

REGULARITY Given a boolean expressidnand a distributed computatiarb, —), is b regular with respect t¢S, —)?

Theorem 1: LINEARITYs co-NP-complete.

Proof: LINEARITY is in co-NPIf the given predicate is not linear, then there exist global sta&tesnd H in which
the predicate is true, such that the predicate is false in the globalGtaté/. The statesz and H form the certificate for
LINEARITY to be in co-NP, since it can be verified in polynomial-time that the predicate holds trGeand H, but is false
in GN H. Thus, LINEARITY is in co-NP.

LINEARITY is co-NP-hardWe transform an arbitrary instance of the well-known co-NP-complete problem of determining
whether a given boolean expression is a tautology, to an instance of LINEARITY.

G2

142’

X X2 Xn X | % ;
false@ false@ false@"”fa-lse@ true O
P P, P,

P Puio

Fig. 1. Transformation for Theorems 1 and 2.

Let b be a boolean expression involving variables x, ..., z,,. Vi € {1..n}, we place each:;; on a separate process;.
Each of these: processes has two local statesir@e state and dalse state, which corresponds to the value taken by the
variablez; in that local state. We also define two new variables,; andz,, .-, and place them on processes,; and P,
respectively. ProcesB,,, 1 has two local states: an initifidlse state and a finalrue state, and procesB,, > has two local
states: an initiatrue state and a finalalse state. Figure 1 shows this transformation. It is evident that this transformation can
be achieved in polynomial time.

We define

B=bv Tn+1Tn+42 \ Tp4+1Tn+2

We claim thatB is linear iff b is a tautology. Ifb is a tautology, therB is trivially linear, because3 will be true for all
global states. Conversely, ifis not a tautology, then there exists a subcut involving proceBses., P, in which b evaluates
to false. Let us call this subc. We can now extend the subatitto form two cuts,G1 and G2, in which the predicaté3
is true, as shown in Figure 1.

Gl = (G,0,1)
and
G2 = (G,1,0)
However,
G1NG2 = (G,0,0)
in which the predicateB is false. Thus,B is not linear.]

Theorem 2: REGULARITY¥ co-NP-complete.
Proof: REGULARITY is in co-NRf the given predicate is not regular, then there exist global st@tesd H in which

the predicate is true, such that the predicate is false eithérini or in G U H. The global state§’ and H thus form the
certificate for REGULARITY to be in co-NP.

REGULARITY is co-NP-hardrhe transformation in Theorem 1 holds for REGULARITY as well. Thabig a tautology
iff B=0>bV x,t1Znt2V Tri1Tn42 IS regular. Ifb is a tautology, themB is trivially regular, becausé is true for all global
states. Conversely, i is not a tautology, themB is not regular because both the intersection and unio@lond G2 result
in a global state in whiclB is false. Thus, REGULARITY is co-NP-hard.]

Note that the above transformation can also be used to show that the problem of deciding whether a given boolean predicate
is post-linear is co-NP-complete.

IV. PREDICATE RECOGNITION

In the previous section, we showed that the problems of recognizing linear, regular and post-linear predicates are co-NP-
complete. We now turn to the question: what other classes of predicates cannot be recognized in polynomial-time?

Let us denote the set of all non-satisfiable boolean expressiorsshy.. Observe that any predicatBsqisc € Craise
is stable, observer-independent, linear, post-linear and regular with respay thstributed computation, because it would
evaluate tofalse in every global state.

Theorem 3:Given a predicate class and a distributed computatiaff, —), such that:

° Ofalse - C, and

« VB’ € C : possibly : B’ can be detected efficiently for the computaticf —).

It is NP-hard to determine whether a given boolean prediéais a member of the class, i.e, B € C, with respect to the
computation(S, —).

Proof: We show that if a polynomial-time algorithm exists for determining membership in a predicate cdasdefined
above, then the satisfiability problem (SAT) can also be solved in polynomial time3 et a boolean expression involving
variablesx, xo, ..., z,, for which we wish to solve SAT. We create a distributed computation as follows: {1..n}, we
place eachr; on a separate procesB;. Each of these: processes has two local statedabse state and drue state, which
corresponds to the value taken by the variablen that local state, as shown in Figure 2.

Assume that there exists a polynomial-time algorithramber(C, B, S), which can determine whethét € C, with respect
to the computationS, —). If member(C, B, S) returns false, then B is satisfiable, sinc&';,;,c C C. If it returns true,
then sincepossibly : B can be detected efficiently for alB € C, we can determine satisfiability faB (B is satisfiable iff
possibly : B is true).

]

A A A

X1 X2 X3 Xn
false@ false(o) false(o fa]se@
Py

P, P P,

Fig. 2. Distributed computation used in the proofs of Theorems 3 and 4.

Now, let us denote the set of all tautological boolean expressions,hy. Note that any predicatB;,,. € Cirye iS Stable,
observer-independent, linear, post-linear and regular with respect to any distributed computation, because it would evaluate to
true in every global state.

Theorem 4:Given a predicate clags and a distributed computatigff, —), such that:

® Ctrue - C, and

« VB’ € C :invariant : B’ can be detected efficiently for the computatic#) —).

It is co-NP-hard to determine whether a given boolean prediBate a member of the class, i.e, B € C, with respect to
the computatior(S, —).
Proof: We show that if a polynomial-time algorithm exists for determining membership in a predicate cdasdefined
above, then the co-NP-complete problem of determining whether a given boolean expression is a tautology (TAUTOLOGY)
can also be solved in polynomial time. Let the boolean express3jdnvolving variablesty, x», ..., z,,, be an arbitrary instance
of TAUTOLOGY. We create a distributed computation identical to that used in the proof of Theorem 3.

Assume that there exists a polynomial-time algorithramber(C, B, S), which can determine whethé? € C with respect
to the computatior(S, —). If member(C, B, S) returns false, then B is not a tautology, sinc€,.,. C C. If it returns true,
then sinceinvariant : B can be detected efficiently for alt € C, we can determine iB is a tautology B is a tautology iff
invariant : B is true).]

V. EFFICIENT ADVANCEMENT PROPERTY

We stated earlier that efficient detection of linear predicates relies on the assumption that the given predicate satisfies the
efficient advancement property, that is, the forbidden state can be identified in polynomial time. The question that arises is, do
all linear predicates satisfy the efficient advancement property? If not, then is it possible to efficiently detect linear predicates
that do not satisfy this property? We show here that, unless NP=RP, there exist linear predicates that cannot be detected in
polynomial-time.

We use a result by Valiant and Vazirani [9], which states that satisfiability is NP-hard under randomized reductions even for
instances that have at most one satisfying assignment (USAT). Valiant and Vazirani's proof uses a randomized polynomial-time
algorithm that reduces a given instance of SAT to an instance of USAT.

Theorem 5:(Valiant-Vazirani) If there exists a randomized polynomial-time algorithm for solving instances of SAT having
at most one satisfying assignment, then NP=RP.

We know that a predicate having at most one satisfying assignment in a given distributed computation is linear with respect
to that computation. Given any instanBeof USAT, involving variablesty, -, ..., z,,, One can create a distributed computation
as depicted in Figure 2, whei® would be a linear predicate. Detectipgssibly : B for the computation in Figure 2 is thus
equivalent to solving USAT forB. Since we know that linear predicates that satisfy efficient advancement can be detected
in polynomial-time, this indicates that linear predicates that do not exhibit efficient advancement may not be detectable in
polynomial-time, even by a randomized algorithm. Furthermore, since every instance of USAT is also a regular predicate for
the computation in Figure 2, detection of regular predicates is also NP-hard under randomized reductions.

VI. CONCLUSION

In this paper, we have shown several intractability results in the area of predicate detection in distributed computations. We
have shown the co-NP-hardness of deciding whether a given boolean expression is linear, post-linear or regular with respect
to a given distributed computation. Further, we showed the NP-hardness of determining membership in classes of predicates
that have efficient algorithms fgrossibly detection, and the co-NP-hardness of determining membership in classes on which
invariant can be detected efficiently. We also showed that polynomial-time detection may not be possible for linear and
regular predicates, unless the efficient advancement property is satisfied.

REFERENCES

[1] L. Lamport, “Time, clock and the ordering of events in a distributed syst&@ofhmunications of the ACM (CACMjol. 21, no. 7, pp. 558-565, July
1978.

[2] C. Chase and V. K. Garg, “On techniques and their limitations for the global predicate detection problBnegeéedings of the Workshop on Distributed
Algorithms Le Mont-Saint-Michel, France, Sept. 1995, pp. 303-307.

[3] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of distributed sysi&iv Transactions on Computer Systend. 3,
no. 1, pp. 63-75, Feb. 1985.

[4] V. K. Garg and B. Waldecker, “Detection of weak unstable predicates in distributed progi&fg Transactions on Parallel and Distributed Systems
vol. 5, no. 3, pp. 299-307, Mar. 1994.

[5] B. Charron-Bostet al., “Local and temporal predicates in distributed systerdCM Transactions on Programming Languages and Systenis 17,
no. 1, pp. 157-179, Jan. 1995.

[6] V. K. Garg and N. Mittal, “On slicing a distributed computation,” #ist International Conference on Distributed Computing Systems (ICDCS 01)
Washington-Brussels-Tokyo, Apr. 2001, pp. 322-329.

[7] F. Mattern, “Virtual time and global states of distributed systemsPamallel and Distributed Algorithms: proceedings of the International Workshop on
Parallel & Distributed Algorithms M. Cosnardet al, Eds. Elsevier Science Publishers B. V., 1989, pp. 215-226.

[8] R. Cooper and K. Marzullo, “Consistent detection of global predicatefRrateedings of the ACM/ONR Workshop on Parallel and Distributed Debugging
Santa Cruz, California, 1991, pp. 163-173.

[9] L. G. Valiant and V. V. Vazirani, “NP is as easy as detecting unique solutidrfggoretical Computer Scienceol. 47, no. 1, pp. 85-93, 1986.

