EE382V: System-on-a-Chip (SoC) Design

Lecture 1 – Project Overview

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 1: Outline

• Marketing Requirements Document (MRD)
 • Market focus
 • Product description
 • Cost metrics
 • Product features
 • References

• Project description
 • Overview
 • Hardware and software development tasks
Market Focus

- **Cellphones that receive digital radio transmissions**
 - Estimated market size is billion of units per year
 - Receive FM and DRM/DAB/HD Radio transmissions

➤ **What problem are we trying to solve?**
 - There is a need to receive digital radio and data using various standards
 - Flexible receiver that can be adapted to different markets, changing environments, etc.
 - Support for other wireless communications (WiFi) in one chip?
 ➤ Software-defined radio (SDR)

Competition

- **Texas Instruments TMS320DRM300/350**
Lecture 1: Outline

• Marketing Requirements Document (MRD)
 ✓ Market focus
 • Product description
 • Cost metrics
 • Product features
 • References

• Project description
 • Overview
 • Hardware and software development tasks
 • TLL5000 Prototyping board

Product Description

• SDR SoC to integrate into cell phone
 • The hardware intellectual property will be delivered in a SystemC environment. This will include synthesizable RTL for all components which are not available in the standard library, such as accelerators, special I/O devices, etc.

• DRM benefits
 • Ability to receive digital music and data
 – Using existing long-, medium- and short-wave transmission systems
 – Providing near-FM quality sound and available to markets worldwide.
 • Small bandwidth of less than 20 kHz
 – Easy to handle with current generation of embedded computing devices.
 • Excellent audio quality
 – Significant improvement upon analog AM
 – Range of audio content, including multi-lingual speech and music
 • Capacity to integrate data and text
 – Additional content can be displayed to enhance the listening experience.
 • Use existing AM broadcast frequency bands
 – Designed to fit in with the existing AM broadcast band plan
 – Signals of 9 kHz or 10kHz bandwidth
 – Modes requiring as little as 4.5kHz or 5kHz bandwidth, plus modes that can take advantage of wider bandwidths, such as 18 or 20kHz.
Cost Metrics

- **Performance**
 - Utilize no more than 25% of a dual-core ARM Cortex A9 running at 667Mhz

- **Additional die size cost**
 - Accelerators < 0.5 mm²
 - On board memory – TBD

- **Advanced system and power management**
 - Additional system power for accelerators < 8 mW

Product Features

- **Flexible and scalable platform based architecture**
 - **Standard architecture** for a wide range of devices supporting a wide range of services
 - **Flexibility** to dynamically re-program different digital radio standards tailored to particular scenarios
 - **Portability** to host third party designs on multiple independent platforms
 - Potential for significant life-cycle cost reduction
 - Over the air downloads of patches, new features & services
 - Significant improvement in flexibility, portability and interoperability between different users
Product Features (cont’d)

• DRM technical features
 • Frequency coverage: 0-32 MHz
 • Mode reception: USB, LSB, CW, AM, synchronous AM, NFM, DATA
 • Advanced IP3 greater than +35 dBm
 • Very high dynamic range
 – >100 dB in AM mode with 7 kHz filter
 – >105 dB in SSB mode with 2.2 kHz filter
 – >110 dB in CW mode with 500 Hz filter
 • Passband tuning: +/-5 kHz
 • Audio pitch tune in CW & DATA

DRM References

• DRM consortium
 • http://drm.org

• Commercial DRM software radio (Frauenhofer)
 • http://drmrx.org

• Receiver hardware
 • http://winradio.com

➢ Open-source DRM software (DREAM)
 • http://drm.sourceforge.net
Lecture 1: Outline

- Marketing Requirements Document (MRD)
 - Market focus
 - Product description
 - Cost metrics
 - Product features
 - References

- Project description
 - Overview
 - Hardware and software development tasks

Project Description

- HW/SW co-design of an embedded SoC
 - Low-power DRM implementation
 - ARM-based target platform
 - ARM A9 processor, memory components, I/O devices
 - Custom hardware accelerators
 - Interconnected via standard system bus
 - Virtual and physical prototyping
 - SystemC TLM-based virtual platform model (QEMU ARM simulator)
 - ARM- and Xilinx FPGA-based prototyping board (Zynq-7000)

 ➢ Lab and project teams
Project Objectives and Activities

- **Project objective:**
 - Implement the DRM C++ code on a ARM based SoC while meeting the performance, area and power metrics.

- **Project activities:**
 - Profile the DRM C++ software implementation to determine performance bottlenecks
 - Optimize the DRM C++ software (fixed point operation)
 - Partition the software into components which will run on the ARM processor and on hardware accelerators
 - Synthesize accelerators into Verilog for gate level implementation
 - Co-simulate and prototype the HW/SW implementation
 - Estimate timing, area and power metrics and validate against product requirements

PC-Based DRM System Architecture

- DRM reference code is designed to run on a desktop computer
DRAM Software Overview

- Sound card interface
- Frequency acquisition
- Sample rate correction
- Rob. mode detection
timing acquisition
 useful part extraction
- Frequency correction
 OFDM demodulation
- Resample, freq.
 offset tracking
 frame sync.
- Channel estimation
timing tracking
- Source decoders,
 channel decoders,
 OFDM demux

DRM Software Architecture

- Sound card interface
detection
- Resampling
equation
- Frequency sync. acquisition
 Frequency offset correction
 Channel estimation
- Time sync acquisition
 Source channel removal
 Timing estimation
- OFDM demodulation
- Sync string addition
 Source channel removal
 Timing estimation
- Channel estimation:
 Time sync tracking
 Resampling
- OFDM set demapping
 (IEEE1011 demapping)
Development Tasks

- **Hardware development on FPGA**
 - Hardware accelerators (using synthesized code)
 - Interface to ARM board and on-chip bus
 - Interrupt logic
 - Clocking & reset
 - Optional memory controller (for external DRAM)
 - Diagnostics

- **ARM software development**
 - Compile and profile DRM on ARM simulator
 - Convert floating-point to fixed-point code and check SNR
 - Compile and profile fixed-point DRM on ARM board
 - Parallelize software on dual-core platform
 - Develop hardware abstraction layer (HAL) and I/O handler
 - Develop interrupt handler & hardware drivers