Sharp GP2Y0A21YK

- Infrared distance sensor
 - You will need 5V to power IR sensor
 - Needs 10 mF or larger +5V to Gnd cap for each sensor (supply stabilization)
 - Needs analog LPF
 - Reduces noise
 - Analog input protection
 - Needs digital median filter
 - Needs calibration

See Lecture 7
Ping Distance Sensor

- Ultrasound transducers to measure distance
 - Ping)))
 - One SIG pin for both input & output
 - HCSR04
 - Two signals: Trig output and Echo input
- Need 5V to power
 - Use 5V tolerant input (not all are)

Ping))) Sensor

- Sample 10 times a second
 1) Disable interrupts
 2) Make the SIG pin an output
 3) Issue a 5μs output pulse (causing a sound pulse)
 4) Switch the SIG pin back to an input
 5) Enable interrupts
 6) Measure time until the echo is received
 - Busy-wait if foreground, interrupt if background
HCSR04 Sensor

- Sample 10 times a second
 1) Disable interrupts
 2) Issue a 10μs output pulse (causing a sound pulse)
 3) Enable interrupts
 4) Measure time until the echo is received
 - Busy-wait if foreground, interrupt if background

Input Capture

- General purpose timers
 - TM4C123: 6 GP timers (Timer 0…Timer 5)
 - CCPx pins used for input capture
 - CCP0=PD4

- Input edge time (input capture) mode
 - Detect rising/falling input edges
 - Make time measurements on input signals

See book Section 8.1
Input Capture Mode

- Generate edge based interrupts
- Count events
- Measure period
- Measure pulse width

Figure 8.2. Rising or falling edge of CCP0 causes the counter to be latched into TAR, setting CAERIS.
Event Counting

- Count wheel turns (tachometer)

```
+3.3V
100Ω
R1

5kΩ
R2

+3.3V

V1

Microcontroller
Input capture

TLC2274 or OPA2350

V2

V1
2V

3.3V

light

V2
0V

Figure 8.4. Measured V1 and V2
```

Period Measurement

- **Init**
 - Select clock period, \(\Delta t \) (measurement resolution)
 - TIMERO_TAILR_R = 0xFFFF (reload=wraparound)
 - Choose edge (rise or fall)
 - Arm interrupt on capture

- **ISR**
 - Poll to see which channel (if needed)
 - Now = captured time (TIMERO_TAR_R)
 - Period = Last – Now
 - Last = Now
 - Acknowledge interrupt
 - Save/process period
Resolution, Precision, Range

- How to choose the resolution?
 - Determine minimum & maximum robot speed
 - Convert speed to tachometer period

<table>
<thead>
<tr>
<th>Period</th>
<th>7100</th>
<th>holes/rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>10</td>
<td>µsec</td>
</tr>
<tr>
<td>Speed</td>
<td>3.521127</td>
<td>rps</td>
</tr>
<tr>
<td>Speed</td>
<td>211.2676</td>
<td>RPM</td>
</tr>
</tbody>
</table>

- How to detect speed too slow (period too large)?
 - Clear a counter on each tachometer edge
 - AddPeriodicThread
 - Increment the counter on each rollover 0000 to FFFF
 - If counter >= 2, then wheel is stopped

Ping Distance Measurement

- Input pulse width
 - Time t_{IN} for sound to travel back and forth
 - $t_{IN} = 2 \frac{d}{c}$ (c: speed of sound)

- Measure using input capture
 - Rising edge: record TAR
 - Falling edge: calculate distance $d = c \times \frac{t_{IN}}{2}$
Motor Interfacing

- Motor physics
- Transistor-level interface

Ya Brain, who plugged this typewriter into our TV?

Pinky, are you pondering what I'm pondering?

Motor Physics

Electromagnet

Electrical Model

Wire

Magnetic Field, B
Electrical Current, I

Lecture 9
J. Valvano, A. Gerstlauer
EE445M/EE380L.6
Digital Interfacing

\[V_{OL} \] is defined as the voltage at maximum \(I_{OL} \)

<table>
<thead>
<tr>
<th>Family</th>
<th>Example</th>
<th>(I_{OH})</th>
<th>(I_{OL})</th>
<th>(I_{IH})</th>
<th>(I_{IL})</th>
<th>fan out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard TTL</td>
<td>7404</td>
<td>0.4 mA</td>
<td>16 mA</td>
<td>40 (\mu)A</td>
<td>1.6 mA</td>
<td>10</td>
</tr>
<tr>
<td>Schottky TTL</td>
<td>74S04</td>
<td>1 mA</td>
<td>20 mA</td>
<td>50 (\mu)A</td>
<td>2 mA</td>
<td>10</td>
</tr>
<tr>
<td>Low Power Schottky</td>
<td>74LS04</td>
<td>0.4 mA</td>
<td>4 mA</td>
<td>20 (\mu)A</td>
<td>0.4 mA</td>
<td>10</td>
</tr>
<tr>
<td>High speed CMOS</td>
<td>74HC04</td>
<td>4 mA</td>
<td>4 mA</td>
<td>1 (\mu)A</td>
<td>1 (\mu)A</td>
<td></td>
</tr>
<tr>
<td>LM3S/LM4F 2mA-drive</td>
<td>LM3S811</td>
<td>2 mA</td>
<td>2 mA</td>
<td>2 (\mu)A</td>
<td>2 (\mu)A</td>
<td></td>
</tr>
<tr>
<td>LM3S/LM4F 4mA-drive</td>
<td>LM3S811</td>
<td>4 mA</td>
<td>4 mA</td>
<td>2 (\mu)A</td>
<td>2 (\mu)A</td>
<td></td>
</tr>
<tr>
<td>LM3S/LM4F 8mA-drive</td>
<td>LM3S811</td>
<td>8 mA</td>
<td>8 mA</td>
<td>2 (\mu)A</td>
<td>2 (\mu)A</td>
<td></td>
</tr>
</tbody>
</table>

Electrical specifications
- See Chapter 24 of TM4C123
- 5V tolerant?
- \(P_{D0}, P_{D1} \rightarrow PB7, PB6 \)

Motor Interface

- Darlington transistor
 - TIP120 (NPN)
 - \(h_{fe} = 1000 \)
 - \(I_{ce} = 3A \)

\[I_b = \frac{I_{col}}{h_{fe}} = \frac{1A}{1000} = 1mA \]
\[R_b \leq \frac{(V_{OH}-V_{be})}{I_b} = \frac{(3-2.5)}{1mA} = 0.5 \Omega \]
\[V_{CE} \text{ depends on current} \]

Pulse Width Modulation (PWM)
MOSFET Interface

- V_{GS} turns on
- V_{DS} small
- I_{DS} large

![MOSFET Interface Diagram]

H-bridge Interface

- Both directions (forward & backward)
- $V_{OH} = +V - 1.4$, $V_{OL} = 1.2$
H-bridge Interface (V1)

- PWM controls power
- Out controls direction

H-bridge Interface (V2)

- One Port is PWM controlling power
- Other port controls direction
Pulse Width Modulation (PWM)

- Generate output waveform
 - Period = High + Low
 - Duty cycle = High / Period

- PWM generators
 - TM4C123: 2 modules
 - 4 generators per module
 - 2 PWM signals per generator

PWM Module

![PWM Module Diagram]
TM4C123 Alternate Function

<table>
<thead>
<tr>
<th>ID</th>
<th>Am</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA0</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>CANRx</td>
<td></td>
</tr>
<tr>
<td>PA1</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>CANRx</td>
<td></td>
</tr>
<tr>
<td>PA2</td>
<td>Port</td>
<td>SSI0Rx</td>
<td>SSI0Rx</td>
<td></td>
</tr>
<tr>
<td>PA3</td>
<td>Port</td>
<td>SSI0Rx</td>
<td>SSI0Rx</td>
<td></td>
</tr>
<tr>
<td>PA4</td>
<td>Port</td>
<td>SSI0Rx</td>
<td>SSI0Rx</td>
<td></td>
</tr>
<tr>
<td>PA5</td>
<td>Port</td>
<td>SSI0Rx</td>
<td>SSI0Rx</td>
<td></td>
</tr>
<tr>
<td>PA6</td>
<td>Port</td>
<td>SSI0Rx</td>
<td>SSI0Rx</td>
<td></td>
</tr>
<tr>
<td>PB0</td>
<td>USB0RX</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB1</td>
<td>USB0RX</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB2</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB3</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB4</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB5</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB6</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB7</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC0</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC1</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC2</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC3</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC4</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC5</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE0</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE1</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE2</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE3</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE4</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE5</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE6</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE7</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE8</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE9</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE10</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE11</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE12</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE13</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE14</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE15</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE16</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE17</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE18</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE19</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE20</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE21</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE22</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE23</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE24</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE25</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE26</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE27</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE28</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE29</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE30</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE31</td>
<td>Port</td>
<td>UIRx</td>
<td>UIRx</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td>T2CCP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LaunchPad Board

Notice R9 and R10
PWM Channels

- Use PWM channel
 - Choose PWM outputs
 - Runs at 16-bit precision
 - Fix the period (10 times faster than time constant)
 - Prescaled clock determines resolution
 - high+low sets the precision
 - Choose as large as possible (prescale as low as possible)

- Example
 - 2 ms period, bus clock = 80 MHz
 - Prescale divide by 2, so clocks at 40 MHz, i.e. 25ns
 - high+low = 50000
 - Precision is 50000 alternatives or 16 bits
 - Duty cycle range is 0 to 100%
 - Duty cycle resolution is 100%/50000 = 0.002%

16-Bit PWM Output

```c
// period is 16-bit number of PWM clock cycles in one period (3<=period)
// duty is number of PWM clock cycles output is high (2<=duty<=period-1)
// PWM clock rate = processor clock rate/SYSCTL_RCC_PWMDIV
// = BusClock/2 (in this example)
void PWM0_Init(uint16_t period, uint16_t duty){
    volatile uint32_t delay;
    SYSCTL_RCC_PWMDIV_R |= 0x0001;  // 1) activate PWM
    SYSCTL_RCC_GPIO_R |= 0x0020;  // 2) activate port F
    delay = SYSCTL_RCC_GPIO_R;  // allow time to finish activating
    GPIO_PORTF_AFSEL_R |= 0x01;  // enable alt func on PF0
    SYSCTL_RCC_R |= SYSCTL_RCC_USEPWMDIV;  // 3) use PWM divider
    SYSCTL_RCC_R &= ~SYSCTL_RCC_PWMDIV_M;  // clear PWM divider field
    SYSCTL_RCC_R += SYSCTL_RCC_PWMDIV_2;  // configure for /2 divider
    PWM_0_CTL_R = 0;  // 4) re-loading mode
    PWM_0_GENA_R = (PWM_X_GENA_ACTCMPAD_ONE|PWM_X_GENA_ACTLOAD_ZERO);
    PWM_0_LOAD_R = period - 1;  // 5) cycles needed to count down to 0
    PWM_0_CMPA_R = duty - 1;  // 6) count value when output rises
    PWM_0_CTL_R |= PWM_X_CTL_ENABLE;  // 7) start PWM
    PWM_ENABLE_R |= PWM_ENABLE_PWM0EN;  // enable PWM0
}
void PWM0_Duty(uint16_t duty){
    PWM_0_CMPA_R = duty - 1;  // 6) count value when output rises
}
```

Lecture 9 J. Valvano, A. Gerstlauer EE445M/EE380L.6 25

PWM_4C123.zip
PWMDual_4C123.zip
Servo Motor

- Simple digital interface (built in controller)
- Duty cycle controls angle

Servo Interface

- Needs its own +5V regulator
- Duty cycle controls angle

[Diagram of servo motor and servo interface]
Servo Software

• Duty cycle controls angle

<table>
<thead>
<tr>
<th>Position</th>
<th>Pulse Width</th>
<th>Example Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.5ms</td>
<td>0.5mS</td>
</tr>
<tr>
<td>Center</td>
<td>1.5ms</td>
<td>1.5mS</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.5ms</td>
<td>2.5mS</td>
</tr>
</tbody>
</table>

Robot Interfacing (Lab 6)

• Power design kit
 – Protoboard
 – Connector for battery
 – 7805 regulator
 – Socket for L293
 – Eight diodes
 – Two motor connectors (0.156in header)
 – Two 4.7uF electrolytic capacitors

My project’s ready for grading, Dr. Big Nose... Hey! ... I’m talking to you, squid brain!
Summary

- Be careful of the currents
- Sensors are noisy
- Time lag makes it unstable
- Component testing
- Visualization and control