Synthetic Aperture Radar Imaging Using a Small Consumer Drone

Chenchen J. Li and Hao Ling
The University of Texas at Austin
Outline

I. Motivation and Objective
II. Drone SAR System
III. Validation on Corner Reflectors
IV. Preliminary Data on Other Targets
V. Conclusion
Motivation

- Small drones have become popular for aerial photography.
Motivation

• What happens when you mount a radar on the drone?
Motivation

- Small drones have become popular for aerial photography.
- Radar imaging could provide complementary information and extended operating conditions.
- Applications in scientific, agricultural, and environmental monitoring.
- UAV-SAR systems exist but are typically too heavy and need to be supported by large UAVs [1-3].

Objective

Develop and demonstrate a low-cost SAR system that is mounted on a small consumer drone (DJI Phantom 2).

Scientific Question: Can a low-cost, high-resolution SAR system be realized on a small consumer drone (whose maximum payload is typically less than 1 lb)?
PulsON 410 UWB Radar

- PulsON 410 (P410) radar by Time Domain Corporation.
- Board is 7.6 cm x 8 cm x 1.6 cm, weighs 58 grams, and can be battery powered.
- Emits short pulses at a pulse repetition frequency of 10 MHz.
- Equivalent frequency bandwidth from 3.1 to 5.3 GHz centered at 4.3 GHz.
- USB interface to control radar and transfer range profiles.
Drone SAR System

SAR system consists of P410 radar, Raspberry Pi + Wi-Fi Dongle, helix antennas mounted on aluminum ground planes. Entire system (including cables and batteries) weighs less than 300 g.
Drone SAR Prototype Photos

Helix Antennas

Raspberry Pi

Radar
Helix Antennas

- Broadband 5-turn helix antenna centered at 4 GHz.
- Supported by 3-D printed mold.
- Aluminum ground planes.
- 1 right-hand CP for Tx, 1 left-hand CP for Rx.
- Gain: ~ 10 dB; Two-way 3 dB beamwidth: $\sim 15^\circ$
Measurement Range Profiles

- Measured range profiles are real valued but finely sampled in time.
- Use FFT to get the complex frequency response and only keep data from 3.1-5.3 GHz.
Validation on Corner Reflectors

- 4 small aluminum trihedrals as point-scatterer targets.
- Range profiles collected (at 20 Hz) by flying drone in a straight line across measurement scene.
- Prominent persistent scatterers facilitate range alignment for image formation.
Motion Compensation

- Range profiles show significant range migration.
- Align to closest scatterer.
- Good agreement with point-scatterer simulation.
Image Formation

• Frequency/angle data are placed in k-space.

$$Image(r, cr) = \int \int E^s(f, \phi) e^{ik_xr} e^{ik_yr} dk_x dk_y$$

where

$$\begin{cases}
 k_x = \frac{4\pi f}{c} \cos \phi \\
 k_y = \frac{4\pi f}{c} \sin \phi
\end{cases}$$

\[\phi = \cos^{-1}\left(\frac{R_{\text{min}}}{R}\right) \]

• Polar reformat to uniform k_x-k_y space and take 2-D inverse fast Fourier transform to obtain image.
• 3 focused scatterers. Cross-range smearing of farthest scatterer due to near-field effects.
• Good agreement between simulation and rail-SAR.
• More blurred result in drone-SAR.
Application to Other Targets

- Trihedral is left in the scene for reference.
- Stationary vehicle and human targets.
- Able to generate SAR images of other targets.
Application to Other Targets

- Trihedral is left in the scene for reference.
- Stationary vehicle and human targets.
- Able to generate SAR images of other targets.
• Trihedral is left in the scene for reference.
• Stationary vehicle and human targets.
• Able to generate SAR images of other targets.
Recap

• Devised a portable, lightweight SAR system that can be mounted on a small drone.
• Verified its imaging capability on trihedrals and then collected preliminary data of other targets.

• Current work.
 – Near-field correction
 – Downward-looking SAR
Near-Field Effect Correction

• Previous: used far-field FFT-based imaging scheme on near-field data.
• Solution: apply near-field backprojection imaging scheme.

Diagram:

- Near-Field Data
- Far-Field FFT-Based Imaging
- Near-Field Backprojection
- Final Image
Near-Field Backprojection

- Matched filter algorithm that projects the scattered field data into the phase function.

\[
SAR(r, cr) = \frac{1}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} E_s(x_n, f_m) \times e^{j\frac{4\pi f_m}{c} \sqrt{(cr-x_n)^2+(r+y_o)^2+z_o^2}}
\]
Near-field effects have been removed.
Good agreement between rail-SAR and simulation.
More blurred result in drone-SAR.
Point antennas at the ground in order to change imaging plane.
Preliminary Investigation

• Currently mounted on a vehicle for preliminary investigation.
• Attached drone-SAR system on extension pole and pointed downward.
• Drive across parking lot and collect range profiles.
• Strong ground bounce and minor residual platform returns.
• Height information is captured.
• Multiple scattering is visible.
• Strong ground bounce and minor residual platform returns.
• Height information is captured.
• Multiple scattering is visible.
• Strong ground bounce and minor residual platform returns.
• Height information is captured.
• Multiple scattering is visible.
• Devised and demonstrated a portable, lightweight SAR system that can be mounted on a small drone.

• Pros:
 + Low-cost and portability opens up many new possibilities for in-situ measurements that were prohibitive in the past.

• Cons:
 – Needs prominent scatterer (absence of navigation data).
 – Drone flight instability.
Future Work

• Continue downward-looking SAR for frontal view imaging of targets.
• Examine radar signatures under co-polarized and cross-polarized scenarios.
• SAR imagery of targets through optical obstructions (smoke, foliage).
• Blind motion compensation / obtain navigation data.
Thanks to Sam Grayson, Tiffany Dang, Li Wang, Reid Li, and Kevin Chaloupka for their assistance.