
1

Why (Meta-)Theories of Automated Software Design
Are Essential: A Personal Perspective

Don Batory
Department of Computer Science

University of Texas at Austin
Austin, Texas, USA

batory@cs.utexas.edu

Abstract—Program generators are tools that automatically construct customized programs in a particular domain. Generators
mechanize implicit ”theories” of how a domain expert would go about writing an efficient program. Abstracting the core activities of
a domain expert and automating them is analogous to creating and evaluating theories in physics and other natural sciences. Theories
have a revered place in natural sciences; eventually theories will assume a comparable place in automated software design. The reason
is simple economics: generators will remove the burden of difficult or mundane tasks from an engineer to a machine.

Index Terms—automated software design, relational query optimization, semantic modularity, features, generators.

F

1 THEORY AND SOFTWARE ENGINEERING

Consider the first two definitions of ”science” from
dictionary.com:

1) a branch of knowledge or study dealing with a body of
facts or truths systematically arranged and showing the
operation of general laws: the mathematical sciences.

2) systematic knowledge of the physical or material world
gained through observation and experimentation.

The dominant paradigm today in Software Engineering (SE)
is for referees to insist on a rigorous hypothesis evaluation
of a proposed technique. A set of tests (observations) must
be conducted by an author and a careful analysis of one
or more hypotheses must be presented. This is the scientific
method. It closely matches Definition 2 and the intended use
of experimental methods in SE. To me, these are ”pre-theory”
activities.

To put this into perspective, a colleague once told me:
“Empirical studies helped design spacecraft, but it was the
theory of gravity that took us to the moon”. Theories are the big
ideas in science, not empirical studies. Empirical studies help
shape and determine the validity of laws. There are examples
of Definition 1 in SE, although most software engineers would
never likely recognize them as such.

2 THEORIES OF SOFTWARE DESIGN

A colleague once asked me: ”What could be more interesting
and more fun than writing a program?” His answer: ”Writing
a program that writes other programs”. The depth of this
challenge belies its simple description. Such a program G must
be able to produce many programs that vary in predetermined
ways. G must have an input language—however primitive—
for users to specify what program to output. Ideally, the
specification is declarative, much like the way people select
their dinners from restaurant menus or select features to
identify a product to buy. G must be able to reason about
a specification and understand how to map it to an efficient
implementation. In the late 1970s, this challenge was given a
name: automatic programming. The initial attempts to solve it
provided a sobering glimpse of its difficulty [1].

It is common in physics for there to be different and poorly-
related phenomena. A theoretical physicist would select a
set of phenomena and seek a theory that unifies them as
manifestations of the same underlying concepts. The broader
the initial set, the fewer the concepts, the more general and
significant the theory might be. An initial test of a theory is to
check that it does precisely what it claims—not only reproduce
or explain the phenomena of the initial set, but also explain and
predict other phenomena as well. The phenomena of interest
to SE are programs with certain properties, and G is a program
generator that is a concrete mechanization of an “implicit” SE
theory for constructing domain-specific programs.

3 META-THEORIES OF SOFTWARE DESIGN

History and experience has shown that such SE theories must
be domain-specific to have any chance of success. Domain-
specific design knowledge is often rich and deep, with few
specifics transferable to other domains. It is somewhat ironic
then that domain-specific theories are uninteresting to the
general SE community. Meta-theories are more valued as their
instances are domain-specific theories from which domain-
specific generators can be developed. A meta-theory identifies
domain-independent concepts or a framework to instantiate to
create proper theories; these are the concepts that should be
taught to our students; they will instantiate meta-theories to
produce domain-specific generators of their own.

Meta-theories have been a part of SE education for years,
although existing examples are informal and not very “auto-
matic”. Consider object-oriented (OO) frameworks [2], which are
common in today’s software libraries. Framework designers
understand that a set (a.k.a. domain) of similar programs will
be built frequently. They create an OO framework to code the
common objects and activities of a domain to minimize what
others have to write. The concepts behind frameworks are fun-
damental (this is the meta-theory part), we teach these (meta-
theory) concepts, and our students instantiate the concepts to
create frameworks of their own.

UML is another example [3]. It asserts that an OO design
can be documented in the languages of class diagrams, state



2

machines, etc. (this is the meta-theory part). We teach UML
(meta-theory) concepts to our students; they in turn, instantiate
these concepts to design OO programs of their own. Meta-
theories do indeed exist in today’s SE curriculum. But meta-
theories that focus on automatic programming (G programs) are
hard to find.

It is unclear if automatic programming (meta-)theories were
ever really part of core SE research. Key papers originally
appeared in distant conferences (knowledge engineering, soft-
ware reuse, artificial intelligence, programming languages, etc.)
rather than flagship SE conferences. And for good reason: not
everyone is interested in domain theories and meta-theories.
Meta-theories tend to deal with concepts that are foreign to
main-stream software engineers. Further, G programs—and
what it takes to build them—are not the focus of popular SE
texts and today’s SE curriculum. Broadly speaking, a good SE
text provides a well-organized recitation of proven SE tech-
niques and analyses, and rarely (if at all) theories of automated
software design.

Case-in-point: The most significant advance in automatic
programming is relational query optimization (RQO), ironically
accomplished in the late 1970s when most others were giving
up on automatic programming in droves [4]. A user writes
a data retrieval specification as a declarative SQL query; an
SQL parser maps a query to an inefficient relational algebra
expression. An optimizer uses algebraic identities to rewrite
the expression, never changing the semantics of the original, to
find a more efficient way to execute it. A code generator trans-
lates an optimized expression to executable code. This is an el-
egant solution to automatic programming. RQO revolutionized
databases, bringing it out of the stone-age 1960s to the omni-
present and sophisticated technology we know today. Yet, find
one contemporary SE text that explains RQO, its paradigm, or
its connection to automated software development. I have not
found a single text. Not one. It is as if the result or topic did
not exist.

It seems evident that automating the development of well-
understood software should be a prime goal of SE—capturing
and mechanizing the knowledge of domain experts so others
can benefit. But we do not teach design (meta-)theories for
automation. So why should we be surprised that such (meta-
)theories have had little impact or are hard to find?

Another point: theories are not small results—they are
not new algorithms or new engineering techniques that one
can ”evaluate” easily. Theories are most effective for well-
understood domains. Even so, theories often take a long time
to develop; their generators can take months or years to build.
They embody new ways of thinking about old problems.
It takes time and effort to understand their strengths and
limitations. To evaluate a theory properly can take years or
decades—it cannot be done in a single paper (unless to show
where the theory is wrong). Pre-theory and theory activities
seem substantively different; it is not clear that they should be
evaluated in the same way. I suspect that they are.

Offhand, what is an indicator of a good theory or meta-
theory? I have found that if you can explain complex designs
in a simple way, you’re on the right track. Further, external
indicators of success are comments like:1

1) Ok, but so what? What’s the difficulty?
2) That’s nice. But I can’t see how it generalizes to anything

of interest to me.

1. Often these comments are part and parcel of negative reviews.

3) My software is too complicated for this to work.

Comment 3) is reminiscent of a point Tony Hoare made in his
1980 Turing Award Lecture [5]:

There are two ways of constructing a software design: one
way is to make it so simple that there are obviously no
deficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies.
The first method is far more difficult.

Yet another irony: creating a G program is a good (if not great)
engineering achievement. Simplicity counts. Elegance matters.
Two words that one does not hear enough about SE results.

In summary, our current education system is producing
exactly what SE expects: software engineers. I ask the question:
are we producing the scientists of tomorrow that we need?
Are we producing engineers and future leaders who have an
appreciation of theories? If your answer is ”no” to either of
these questions, then the theories I have described will be
under-appreciated for years to come.

4 WHAT MIGHT A META-THEORY LOOK LIKE?

Developing meta-theories for automated software develop-
ment has been the focus of my career. I believe a small
number of core concepts underpin powerful and practical
meta-theories. My guide is the firm belief that programmers
(including me) are geniuses at making the simplest things com-
plicated; finding their underlying simplicity is the challenge.

The key question is how to express a meta-theory or theory?
I use algebra. I was not educated as a mathematician; my
educational background in the 1970s was software systems
engineering (where mathematics played a non-existent role).
I adopted mathematics as it was the only sensible way to
explain my discoveries and ideas. I have since recognized a
deeper reason: programs are sophisticated structures. Tools of a
software engineer manipulate these structures: compilers map
source code to byte code; refactoring tools restructure source
code; Model Driven Engineering (MDE) is all about transforming
models of one type to models of another. SE is replete with such
examples. Mathematics is the science of structure and structure
manipulation. Given this, it is not a big intellectual leap to
believe there must be a fundamental connection. Frankly, the
use of mathematics should come as no surprise to any scientist
or engineer outside of SE; within the sub-discipline of software
design there is a very limited embrace of this connection.

My work has centered on semantic modularity—the modular-
ization of semantic changes (typically increments) in program
functionality. Semantic modularity is not code modularity: if
you add new functionality to a program, you have to update
a program consistently in lots of different places. And if
you remove this functionality, all of these updates must be
removed simultaneously, much like a database transaction.
Modularizing such changes as an atomic unit is the goal.

Semantic modularity—commonly called features—has been
known for over 20 years [6]. Different communities have pur-
sued their own agendas, terminologies, and distinctive takes
on these ideas. With few exceptions, most do not express their
meta-concepts algebraically.

To give a sense of what I’m talking about, I briefly illustrate
two core ideas that are elegantly expressed algebraically, and
of an algebraic theory that has had a modicum of success in
Software Product Lines (SPLs).



3

4.1 An Example of An Algebraic Meta-Theory
4.1.1 Basics of SPLs
A set or domain D of programs can be constructed from a
feature set ~D = {F1 . . .Fn}. Each program in D is identified
with a unique combination of features. Features are composed
by an abstract operation +. So each program P ∈ D is
compactly written as the sum of a unique set of features (a.k.a.
functionalities) from ~D, e.g. P = F4 + F3 + F1, called a feature
expression [7].

4.1.2 Implementations and Homomorphisms
Programs have many concrete representations: source code σ,
documentation δ, makefile µ, etc. We want to construct each
by module composition.

Suppose P = F4 + F3 + F1. The source code of P, namely
σ(P), is constructed by code-composing (⊕) the code modules
for each of P’s features:2

σ(P) = σ(F4 + F3 + F1) = σ(F4)⊕ σ(F3)⊕ σ(F1)

That is, we translate a feature expression into a source-code
module expression to synthesize P’s code. Mapping an ex-
pression in one algebra to an expression in another is a
homomorphism [8]. Homomorphisms are at the core of recent
SPL results, reviewed next.

4.1.3 Recent Instances of the Meta-Theory
• Apel et al [9] showed how different program representa-

tions can be encoded as syntax-trees and feature composi-
tion maps to syntax-tree composition. Given the grammar
of a language λ and rules for composing λ syntax-trees,
FeatureHouse generates a tool that implements the follow-
ing homomorphism:

λ(A+ B) = λ(A) +λ λ(B)

That is, the generated tool parses the λ modules for A and
B and composes them with the syntax-tree composition
operation +λ.

• Siegmund et al. [10] showed how to compute a perfor-
mance estimate π for a given workload for any P ∈ D. Pro-
cedures were given to estimate the delta in performance
that each feature contributes to a program. Assuming per-
formance estimates of features are arithmetically added,
their work relied on the identity:

π(A+ B) = π(A) + π(B)

Surprisingly accurate predictions were reported using this
simple approach.

• The most sophisticated use to date of homomorphisms is
by Delaware et al. [11], who showed how proofs of correct-
ness of a program could be synthesized from its feature
expression. The target domain, FJ , contains dialects of
Featherweight Java. An integral part of any type system
are the meta-theoretic proofs that show type soundness—
the guarantee that the type system statically enforces the
desired run-time behavior of a language, typically preser-
vation and progress.3 Four different representations of

2. Or more generally: σ(A+ B) = σ(A) σ(+) σ(B).
3. Preservation says if expression e of type T evaluates to a value v

then v also has type T. Progress says expression evaluation does not
get ”stuck”, i.e. there are no expressions that cannot be evaluated.

each feature—syntax, typing rules for preservation, eval-
uation rules for progress, and the proofs—were encoded
as separate modules in the Coq proof assistant [12]. The
δ homomorphism (1) composes syntax, typing rule, and
evaluation rule modules and the ψ homomorphism (2)
composes proof modules, each operation implemented by
a Coq library [13]:

δ(A+ B) = δ(A) +δ δ(B) (1)

ψ(A+ B) = ψ(A) +ψ ψ(B) (2)

Each distinct module for feature syntax, feature typing
rules, etc. is certified once by Coq (this is the expensive
part) and reused as-is. Coq mechanically verifies the cor-
rectness of a composite proof by a simple interface check.

4.1.4 And More
There is over two decades of evidence that features can be
used to specify programs in diverse domains. There is consid-
erable evidence that the meta-theory described above has wide
applicability.

There are many extensions to this meta-theory: the inclusion
of feature interactions [14], feature models that define legal
feature expressions (as not all features are compatible) and
their relation to propositional formulas [15], and hierarchically
recursive applications of algebras (that these same concepts
apply at all levels of abstraction) [16]. As limitations are
discovered, generalizations of this meta-theory are proposed,
just like theories in physics and other natural sciences.

4.2 More General Meta-Theories
As in physics where theories are special cases of more general
theories, the same holds here. Semantic modules can also
be understood as program transformations—mappings of one
program (representation) to another (representation). More
general meta-theories are elegantly grounded in category theory
(CT) [8]. It has been shown that SPLs and MDE are different
manifestations of the axioms of CT, but at different levels of
abstraction [17].

Having said the above, I know what most people who read
this must be thinking. A few years ago a colleague said to me:
“Using category theory is the kiss of death”, meaning anything
connected to CT is the perfect way to kill a line of research.
This is understandable: existing texts on CT are impenetrable
because they give impractical examples for software engineers
to appreciate and understand. It takes effort and the right set
of examples to bridge this gap.

Let me also remind critics that the relational data model was
based on set theory—roughly the first couple pages of a set the-
ory text. This was of great disappointment to mathematicians,
but it was exactly the right language and exactly the right level
of simplicity that database researchers grew to appreciate.

My prediction is that elementary CT will play a comparable
role in automated software development, just as elementary set
theory played a foundational role in relational databases. You
don’t have to be a mathematician to appreciate the impact of set
theory on databases; the same will hold for CT and automated
design. So to critics who say CT is irrelevant to software design:
it is time to leave the dark ages.



4

5 WHY (META-)THEORIES ARE ESSENTIAL TO SE
An essential activity of SE is program design. Program design
involves abstraction: it is a process of distinguishing essen-
tial ideas from non-essential. A generator scales abstraction
to a family of domain-specific programs. Meta-theories scale
abstraction further to diverse domains, thereby laying the
groundwork for a more economical production of programs.

Just as programs should not be hacked, generators should
not be hacked. Both require thought and effort. The reasons
why a generator works in one domain is likely the same
reasons why other generators have worked in others. Meta-
theories can be deep intellectual excavations to understand the
reasons for why programs work the way they do, and that they
do not work by accident.

A meta-theory will tell you how your tools should work.
It will tell you that certain fundamental identities (e.g., homo-
morphisms) must hold otherwise your tools, designs, or ideas
are wrong [18]. In mature technical communities, there is an
accepted way to think about problems and how to formulate
solutions (e.g. type systems for programming languages, re-
lational algebra and sets for databases). Meta-theories bring
organization to what would otherwise be intellectual chaos.

6 CLOSING THOUGHTS

The big ideas in science are theories, not empirical studies. Still,
algebraic meta-theories will be resisted for many reasons. The
primary reason is that people will need to learn something new
and to appreciate the value in doing so. But isn’t this the sub-
stance of scientific advances? SE today largely practices “pre-
theory” science. The more important half of science remains to
take its place in SE education, history, and discourse.

Acknowledgments. I am grateful for conversations with B.
Delaware, P. Höfner, W. Lawvere, C. Lengauer, B. Marker, M.
Myers, and B. Möller in shaping my view of algebra and the
contents of this paper. I also gratefully acknowledge support
for this work by NSF projects OCI-1148125 and CCF-1212683.

Any opinions, findings and conclusions or recommendations ex-
pressed in this paper are those of the author and do not necessarily
reflect the views of the NSF.

REFERENCES

[1] R. Balzer, “A 15 year perspective on automatic programming,”
IEEE Transactions on Software Engineering, 1985.

[2] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal
of Object-Oriented Programming, 1998.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison-Wesley, 2010.

[4] P. G. Selinger, M. M. Astrahan, D. D. Chamberlain, R. A. Lorie,
and T. G. Price, “Access Path Selection in a Relational Database
Management System,” in ACM SIGMOD, 1979.

[5] C. A. R. Hoare, “The emperor’s old clothes,” CACM, 1991.
[6] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,

“Feature-oriented domain analysis (foda) feasibility study,” 1990,
cMU/SEI-90-TR-021.

[7] D. Batory and S. O’Malley, “The Design and Implementation of
Hierarchical Software Systems with Reusable Components,” ACM
TOSEM, 1992.

[8] B. Pierce, Basic Category Theory for Computer Scientists. MIT Press,
1991.

[9] S. Apel, C. Kästner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in ICSE, 2009.

[10] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov, “Scalable prediction of non-functional prop-
erties in software product lines,” in SPLC, 2011.

[11] B. Delaware, W. Cook, and D. Batory, “Theorem proving for
product lines,” in OOPSLA/SPLASH, 2011.

[12] Y. Bertot and P. Castéran, Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Constructions.
Springer Verlag, 2004.

[13] B. Delaware, B. C. d. S. Oliveira, and T. Schrijvers, “Meta-theory
à la carte,” in POPL, 2013.

[14] D. Batory, P. Höfner, and J. Kim, “Feature Interactions, Products,
and Composition,” in GPCE, 2011.

[15] D. Batory, “Feature Models, Grammars, and Propositional Formu-
las,” in SPLC, 2005.

[16] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-Wise
Refinement,” IEEE TSE, Jun. 2004.

[17] D. Batory, M. Azanza, and J. Saraiva, “The Objects and Arrows
of Computational Design,” in MODELS, 2008.

[18] G. Freeman, D. Batory, R. G. Lavender, and J. N. Sarvela, “Lifting
transformational models of product lines: a case study,” Software
and System Modeling, 2010.


