General Information

EE319K: Class Time
Meets Tue, Wed and Thu 10am-12noon

Lab Time
Tue, Wed(Checkout) and Thu 2-4pm

Classroom LH-2

Office TBA

Contact ramesh@mail.utexas.edu

Pre-requisites EE 306, BME 303

TA Sean Duffy (sean.duffy@utexas.edu)

Office Hrs
Instructor: Tue,Wed and Thu from 1-2pm or after class/by appointment
TA: Lab Time on Tue/Thu is TA office hours.

Website Canvas and http://users.ece.utexas.edu/~ryerraballi/sa2014/EE319K.html

Teaching Philosophy

This class will be taught using the methodology of a hybridized “flipped classroom”. This means, each class session will require you to have read_material/watched_videos on the concepts that will be the focus of the class period. The class period will be used to clarify and expound on the reading material and “apply” these concepts and solve actual problems. The class lecture will be a hybrid of traditional teaching and flipped classroom approach.

Catalog Description

EE319K: Introduction to Embedded systems; machine language execution; assembly language programming; local variables; input/output synchronization; analog to digital conversion, digital to analog conversion; debugging; and interrupts.

Overview

EE319K will use a bottom-up educational approach. The overall educational objective is to allow students to discover how the computer interacts with its environment. It will provide hands-on experiences of how an embedded system could be used to solve EE problems. The focus will be understanding and analysis rather than design. The analog to digital converter (ADC) and digital to analog converter (DAC) are the chosen mechanism to bridge the CE and EE worlds. EE concepts include Ohms Law, LED voltage/current, resistance measurement, and stepper motor control. CE concepts include I/O device drivers, debugging, stacks, FIFO queues, local variables and interrupts. The hardware construction is performed on a breadboard and debugged using a multimeter (students learn to measure voltage and resistance). Software is developed in ARM Cortex-M (Thumb) assembly and C; most labs will be first
simulated and then run on the real board (Ti LaunchPad). Software debugging occurs during the simulation stage. Verification occurs in both stages.

Detailed Course Objectives

1. Understanding how the computer stores and manipulates data (characters, integers, and fixed-point numbers), the basic arithmetic and logical operations performed by the computer,

2. The understanding of embedded systems (a system with the computer hidden inside) using modular design and abstraction,

3. Assembly language programming: considering both function and style,

4. Understanding how the computer executes instructions (fetch opcode, fetch operand, read data, operate, and write data)

5. The use of a microcontroller (strategic use of RAM ROM and I/O) Microcontrollers typically have a little RAM and a lot of ROM. Globals, locals and the heap go in RAM. Constants and programs go in ROM.

6. Debugging and verification using a simulator and on the microcontroller (embedded systems typically do not have a print function) debugging using breakpoints, scanpoints, profiles, monitors, voltmeters, oscilloscopes, logic analyzers

7. How input/output actually happens (the students wire up analog and digital signals to the ARM and measure them with a voltmeter), synchronization, including switches, LEDs, LCDs, DACs, ADCs, and serial ports,

8. The implementation of an I/O driver (a set of programs that perform I/O)

9. Understanding, from an architecture standpoint, how local variables and parameters work (e.g., a space on the stack is dynamically created, the local variable is accessed using stack-pointer relative addressing, then the space is deallocated.)

10. Analog to digital conversion (ADC) e.g., the students interface a slide potentiometer to the ADC, and write software that measures the position of the slide, creating a display like “1.23 cm”

11. Interrupt synchronization, real-time ADC sampling (periodic timer interrupts), introduction to multithreaded programming

12. Simple motors (e.g., open and closed-loop stepper motor control)

13. Digital to analog conversion (DAC), used to make simple sounds

14. Design and implementation of elementary data structures, such as linked lists, stacks and queues.

After the successful conclusion of EE319K students should be able to understand the basic components of a computer, write assembly language programs that perform I/O functions and implement simple data structures, manipulate numbers in multiple formats, and understand how software uses global memory to store permanent information and the stack to store temporary information.

Text and Reference Materials

Jonathan W. Valvano, *Embedded Systems: Introduction to ARM® Cortex™-M Micro-

Zyante, Programming in C, UT-EE319K edition. Available online:

Supplementary material:
- Reading assignments will be given from Patt’s Introduction to Computing Systems (textbook for EE306)
- Manuals for the board, processor and tools used in class are linked from Prof. Valvano’s EE319K site.
- Data sheets for most of the devices used in this class are also available as PDF files on Dr. Valvano’s site.

Things you should recall from EE306/BME303 or previous courses
1. Bits; Numbers; Unsigned and Signed Integer representation in 2’s Complement; True/False - Logical Operations; Characters - ASCII representation.
2. Gates: AND, NAND, OR, NOR, NOT, XOR; DeMorgan’s Laws.
3. Computer Components: Central Processing Unit - Arithmetic Logic Unit, Control Unit, Registers; Memory – ROM and RAM, Address Space and Addressability; I/O
4. LC3 Assembly Language: Instruction Set (ISA), Pseudo-ops, Op-codes and Operands, Memory operations, Arithmetic and Logic operations, Control operations - Branches/Jumps; Addressing Modes
5. Programming: Algorithms, Flow-Charts, Data Types, Arrays, Interrupts

Equipment

Board: Every group of two students will be given a Texas Instrument LaunchPad kit.

Tools: Every student should own their own voltmeter and their own wire strippers. You will also need Multimeter, see for example:

Jameco: http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_220812_-1

Harbor Freight, has 3 locations around Austin, usually sells voltmeters for less than $10: http://www.harborfreight.com/7-function-digital-multimeter-90899.html

All EE319K students will need their own voltmeter and wire strippers.

Kit contents (1 per student):
- 1 Breadboard
- 1 Nokia 5110 LCD
- 1 7406, six open-collector drivers used for the LED interfaces
- 6 LEDs (20 mA, 2 red, 2 yellow, 2 green)
- 6 220 ohm 5%, 0.25 watt resistors
- 4 push-button switches
- Resistors: 1KΩ (1), 1.5KΩ (3), 12KΩ (3), 10KΩ (4)
- Wires
- 1 0.1 uF ceramic bypass cap, place across power and ground of the 7406
- 1 Stereo headphone jack 3pin 3.5mm
- 1 10KΩ slide pot, 15mm

Computer: We expect every EE319K student to have a personal laptop. In addition to being required to complete Exam 2, a personal laptop on which you develop your software and
write your reports.

You will need to install Keil uVision for the ARM on your laptop. For drawing electrical circuit diagrams some students use PCBArtist. Both of these applications run on a PC computer running Windows XP, Vista or Windows 7. The software development systems will run on any PC with a USB port. However, the more money you invest, the happier you'll be. All software will also run on a Macintosh with an Intel processor; see http://users.ece.utexas.edu/~valvano/On_a_Mac.htm.

Software

Keil uVision: Instructions on how to download and install the (free) tool chain for our board can be found at http://users.ece.utexas.edu/~valvano/Volume1/uvision/.

PCBArtist: You will be drawing a 5 or 6 circuit diagrams as part of your lab assignments. You are free to draw these diagrams in any manner you wish as long as the information is presented in a complete and professional manner. One option for drawing circuits is PCBArtist, which is available at http://www.4pcb.com/free-pcb-layout-software. The use of PCBArtist is optional for EE319K students.

Legal Stuff

Scholastic dishonesty: “Faculty in the ECE Department are committed to detecting and responding to all instances of scholastic dishonesty and will pursue cases of scholastic dishonesty in accordance with university policy. Scholastic dishonesty, in all its forms, is a blight on our entire academic community. All parties in our community -- faculty, staff, and students -- are responsible for creating an environment that educates outstanding engineers, and this goal entails excellence in technical skills, self-giving citizenry, an ethical integrity. Industry wants engineers who are competent and fully trustworthy, and both qualities must be developed day by day throughout an entire lifetime. Scholastic dishonesty includes, but is not limited to, cheating, plagiarism, collusion, falsifying academic records, or any act designed to give an unfair academic advantage to the student. The fact that you are in this class as an engineering student is testament to your abilities. Penalties for scholastic dishonesty are severe and can include, but are not limited to, a written reprimand, a zero on the assignment/exam, re-taking the exam in question, an F in the course, or expulsion from the University. Don't jeopardize your career by an act of scholastic dishonesty. Details about academic integrity and what constitutes scholastic dishonesty can be found at the website for the UT Dean of Students Office and the General Information Catalog, Section 11-802.”

You are encouraged to study together and to discuss information and concepts with other students. You can give "consulting" help to or receive "consulting" help from such students in oral form. However, this permissible cooperation should never involve one student having possession of a copy of all or part of work done by someone else, in the form of an email, an email attachment file, a portable storage device, or a hard copy. Copying of any part of a program is cheating without explicit reference to its source. We do enter lab assignments turned in by EE319K students through a plagiarism checker, comparing them to assignments of this and previous semesters. If we find two programs that are copied, there will be a substantial penalty to both students, e.g., failure in the course. Students who cheat on tests or in lab will fail. Prosecution of cases is very traumatic to both the student and instructor. It is appropriate to use software out of the book, class website as long as all copy-pasted software is explicitly referenced. Copy-pasting software from current or past EE319K students is scholastic dishonesty. Policies concerning the use of other people's software in this class:

- I strongly encourage you to study existing software.
- All applications and libraries must be legally obtained. E.g.,
 - You may use libraries that came when you bought a compiler.
 - You may use software obtained from the web.
 - You may copy and paste from the existing source code.
- You may use any existing source code that is clearly referenced and categorized:
 - original: completely written by you,
o derived: fundamental approach is copied but it is your implementation,
o modified: source code significantly edited to serve your purpose,
o copied: source code includes minor modifications.

The University Honor Code is “The core values of the University of Texas at Austin are learning, discovery, freedom, leadership, individual opportunity, and responsibility. Each member of the University is expected to uphold these values through integrity, honesty, trust, fairness, and respect toward peers and community.”

http://registrar.utexas.edu/catalogs/gi09-10/ch01/

Grading Criteria

<table>
<thead>
<tr>
<th>Task</th>
<th>Date</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Assignments (10)</td>
<td>Homewors are due online on Friday each week;</td>
<td>10%</td>
</tr>
<tr>
<td>1st Test – Written</td>
<td>Thu: 7/10</td>
<td>15%</td>
</tr>
<tr>
<td>2nd Test – Programming</td>
<td>Thu: 7/24</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam – Written</td>
<td>Thu: 8/14</td>
<td>25%</td>
</tr>
<tr>
<td>Programming Lab Assignments (9)</td>
<td>Due at respective lab times</td>
<td>30%</td>
</tr>
</tbody>
</table>

When programming labs are performed as a team (of two) only one solution must be turned in. All exams are closed book. Cutoff scores for the corresponding letter grades will not be determined until after the final exam.

Partial Lecture/Reading Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Book</th>
<th>Lecture Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Ch1,2,3</td>
<td>Introduction Course administration; Embedded systems, development cycle; Flow charts, data flow and call graph</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Architecture – Arm Cortex-M3 architecture and execution; Simple addressing modes; Memory allocation; uVision - simulator; Numbers, Hexadecimal</td>
</tr>
<tr>
<td>Week 2</td>
<td>Ch 4</td>
<td>C Programming (C Primer) - Introduction to C; Structure of a C program I/O, Execution, stack, subroutines - Parallel ports, direction registers; Logical and shift operations; Boolean Expressions. Debugging - Debugging Keil uVision</td>
</tr>
<tr>
<td>Week 3</td>
<td>Ch 5</td>
<td>Arithmetic - Arithmetic operations; Condition code bits; C Programming – Functions Board- Demo of the board (bring board to class); Switch input and LED output Modular programming - If-then, loops; Subroutines parameters and the stack; Debugging dump; C Programming – Loops Pointers - Indexed addressing; Arrays; Strings Timers – Timers; Functional debugging. C Programming – Arrays, Indexing, Pointers. C Programming – Scope of variables in C (Local/Global); Parameter Passing; Call-by-value and Call-by-reference.</td>
</tr>
<tr>
<td>Week 4</td>
<td>Ch 6</td>
<td>FSMs - Finite state machines (FSMs) - Structures and data types; FSMs in C (Thursday) Exam1: Syllabus TBA</td>
</tr>
</tbody>
</table>
| Week 5| Ch 9 | Interrupts - interrupts and interrupt processing; SysTick interrupts DAC conversion - Digital to analog conversion (DAC); Sound genera-
Lab Schedule

All Labs except lab 2 are in C. Labs are due on Wednesday of the week during afternoon lab time.

<table>
<thead>
<tr>
<th>Date/Weight</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1/3%</td>
<td>Lab1: Alarm: I/O, parallel port, direction register and logical function.</td>
</tr>
<tr>
<td>Week 2/3%</td>
<td>Lab2: LED and Switch interfacing (simulated and board) (Assembly)</td>
</tr>
<tr>
<td>Week 3/3%</td>
<td>Lab3: Debugging techniques, one switch, one LED</td>
</tr>
<tr>
<td>Week 4/4%</td>
<td>Lab4: Traffic Light Controller using the real 9S12</td>
</tr>
<tr>
<td>Week 5/4%</td>
<td>Lab5: Digital Piano using 4-bit DAC</td>
</tr>
<tr>
<td>Week 6/3%</td>
<td>Lab6: LCD device driver, decimal fixed-point output, local variables</td>
</tr>
<tr>
<td>Week 7/3%</td>
<td>Lab7: Real-time Position Monitor, ADC, Interrupts, LCD</td>
</tr>
<tr>
<td>Week 8/3%</td>
<td>Lab8: Distributed DAS, Serial Port Interrupts, FIFO queue</td>
</tr>
<tr>
<td>Week 9/4%</td>
<td>Lab9: Design competition</td>
</tr>
</tbody>
</table>

(Thursday) Exam 2: Syllabus TBA

LCD interface - LCD programming; Number conversions

(Thursday) Final Exam: Syllabus – Comprehensive

Homework Schedule

Homeworks are due on Tuesdays start of lab.

<table>
<thead>
<tr>
<th>Due Date</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Homework 1: Write Lab1 code in Assembly</td>
</tr>
<tr>
<td>Week 3</td>
<td>Homework 2: Write Lab2 code in C</td>
</tr>
<tr>
<td>Week 4</td>
<td>Homework 3: Practice Exam 1</td>
</tr>
<tr>
<td>Week 5</td>
<td>Homework 4: Pointers and functions, call by value, call by reference</td>
</tr>
</tbody>
</table>

Ch 7: (Thursday) Exam 2: Syllabus TBA

LCD interface - LCD programming; Number conversions

Ch 10: ADC conversion - Analog to digital conversion (ADC) Lab 8 design methods

Ch 8: Serial I/O - universal asynchronous receiver transmitter (UART); UART programming and interrupts; Lab 9 introduction

Ch 11: Thread communication - Producer-consumer problems; FIFO queue; C Programming – FIFO

Ch 7: (Thursday) Final Exam: Syllabus – Comprehensive

Homeworks are due on Tuesdays start of lab.

<table>
<thead>
<tr>
<th>Due Date</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Homework 1: Write Lab1 code in Assembly</td>
</tr>
<tr>
<td>Week 3</td>
<td>Homework 2: Write Lab2 code in C</td>
</tr>
<tr>
<td>Week 4</td>
<td>Homework 3: Practice Exam 1</td>
</tr>
<tr>
<td>Week 5</td>
<td>Homework 4: Pointers and functions, call by value, call by reference</td>
</tr>
<tr>
<td>Due Date</td>
<td>Task</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Week 6</td>
<td>Homework 5: Arrays, indexing, pointers</td>
</tr>
<tr>
<td>Week 7</td>
<td>Homework 6 and 7: Practice Exam 2 (Easy)</td>
</tr>
<tr>
<td>Week 8</td>
<td>Homework 8: Pointers and testing</td>
</tr>
<tr>
<td>Week 9</td>
<td>Homework 9: Recursion Problem</td>
</tr>
</tbody>
</table>

Laboratory policies: See the Lab manual

Lab Partners: See the Lab manual