Message-passing for Maximum Weight Independent Set

Sujay Sanghavi Devavrat Shah Alan Willsky

Abstract—We investigate the use of message-passing algorithms for the problem of finding the max-weight independent set (MWIS) in a graph. First, we study the performance of the classical loopy max-product belief propagation. We show that each fixed point estimate of max-product can be mapped in a natural way to an extreme point of the LP polytope associated with the MWIS problem. However, this extreme point may not be the one that maximizes the value of node weights; the particular extreme point at final convergence depends on the initialization of max-product. We then show that if max-product is started from the natural initialization of uninformative messages, it always solves the correct LP – if it converges. This result is obtained via a direct analysis of the iterative algorithm, and cannot be obtained by looking only at fixed points.

The tightness of the LP relaxation is thus necessary for max-product optimality, but it is not sufficient. Motivated by this observation, we show that a simple modification of max-product becomes gradient descent on (a convexified version of) the dual of the LP, and converges to the dual optimum. We also develop a message-passing algorithm that recovers the primal MWIS solution from the output of the descent algorithm. We show that the MWIS estimate obtained using these two algorithms in conjunction is correct when the graph is bipartite and the MWIS is unique.

Finally, we show that any problem of MAP estimation for probability distributions over finite domains can be reduced to an MWIS problem. We believe this reduction will yield new insights and algorithms for MAP estimation.

I. INTRODUCTION

The max-weight independent set (MWIS) problem is the following: given a graph with positive weights on the nodes, find the heaviest set of mutually non-adjacent nodes. MWIS is a well studied combinatorial optimization problem that naturally arises in many applications. It is known to be NP-hard, and hard to approximate [5]. In this paper we investigate the use of message-passing algorithms, like loopy max-product belief propagation, as practical solutions for the MWIS problem. We now summarize our motivations for doing so, and then outline our contribution.

Our primary motivation comes from applications. The MWIS problem arises naturally in many scenarios involving resource allocation in the presence of interference. It is often the case that large instances of the weighted independent set problem need to be (at least approximately) solved in a distributed manner using lightweight data structures. In Section II-A we describe one such application: scheduling channel access and transmissions in wireless networks. Message passing algorithms provide a promising alternative to current scheduling algorithms.

Another, equally important, motivation is the potential for obtaining new insights into the performance of existing message-passing algorithms, especially on loopy graphs. Tantalizing connections have been established between such algorithms and more traditional approaches like linear programming (see [1], [2], [8] and references therein). We consider MWIS problem to understand this connection as it provides a rich (it is NP-hard), yet relatively (analytically) tractable, framework to investigate such connections.

A. Our contributions

In Section II we formally describe the MWIS problem, formulate it as an integer program, and present its natural LP relaxation. We also describe how the MWIS problem arises in wireless network scheduling.

In Section III, we first describe how we propose using max-product (as a heuristic) for solving the MWIS problem. Specifically, we construct a probability distribution whose MAP estimate is the MWIS of the given graph. Max-product, which is a heuristic for finding MAP estimates, emerges naturally from this construction.

Max-product is an iterative algorithm, and is typically executed until it converges to a fixed point. In Section IV we show that fixed points always exist, and characterize their structure. Specifically, we show that there is a one-to-one map between estimates of fixed points, and extreme points of the independent set LP polytope. This polytope is defined only by the graph, and each of its extrema corresponds to the LP optimum for a different node weight function. This implies that max-product fixed points attempt to solve (the LP relaxation of) an MWIS problem on the correct graph, but with different (possibly incorrect) node weights. This stands in contrast to its performance for the weighted matching problem [1], [2], [9], for which it is known to always solve the LP with correct weights.

Since max-product is a deterministic algorithm, the particular fixed point (if any) that is reached depends on the initialization. In Section V we pursue an alternative line of analysis, and directly investigate the performance of the iterative algorithm itself, started from the “natural” initialization of uninformative messages. For this case, we show that max-product estimates exactly correspond to the true LP, at all times – not just the fixed point.

Max-product bears a striking semantic similarity to dual coordinate descent on the LP. With the intention of modifying
max-product to make it as powerful as LP, in Section VI we develop two iterative message-passing algorithms. The first, obtained by a minor modification of max-product, approximately calculates the optimal solution to the dual of the LP relaxation of the MWIS problem. It does this via coordinate descent on a convexified version of the dual. The second algorithm uses this approximate optimal dual to produce an estimate of the MWIS. This estimate is correct when the original graph is bipartite. We believe that this algorithm should be of broader interest.

The above uses of max-product for MWIS involved posing the MWIS as a MAP estimation problem. In the final Section VII, we do the reverse: we show how should be of broader interest.

Algorithm uses this approximate optimal dual to produce an descent on a convexified version of the dual. The second problem on a suitably constructed auxiliary graph. This implies problem on finite domains can be converted into a MWIS perspectives.

Properties of the LP

We now briefly state some of the well-known properties of the MWIS LP, as these will be used/referred to in the paper. The polytope of the LP is the set of feasible points for the linear program. An extremal point of the polytope is one that cannot be expressed as a convex combination of other points in the polytope.

Lemma 2.1: ([12], Theorem 64.7) The LP polytope has the following properties

1) For any graph, the MWIS LP polytope is half-integral: any extreme point will have each \(x_i = 0, 1 \) or \(\frac{1}{2} \).

2) For bipartite graphs the LP polytope is integral: each extreme point will have \(x_i = 0 \) or 1.

Half-integrality is an intriguing property that holds for LP relaxations of a few combinatorial problems (e.g. vertex cover, matchings etc.). Half integrality implies that any extremum optimum of LP will have some nodes set to 1, and all their neighbors set to 0. The nodes set to \(\frac{1}{2} \) will appear in clusters: each such node will have at least one other neighbor also set to \(\frac{1}{2} \). We will see later that a similar structure arises in max-product fixed points.

Lemma 2.2: ([12], Corollary 64.9a) LP optima are partially correct: for any graph, any LP optimum \(x^* \) and any node \(i \), if the mass \(x^*_i \) is integral then there exists an MWIS for which that node’s membership is given by \(x^*_i \).

The next lemma states the standard complimentary slackness conditions of linear programming, specialized for the MWIS LP, and for the case when there is no integrality gap.

Lemma 2.3: When there is no integrality gap between \(\text{IP} \) and \(\text{LP} \), there exists a pair of optimal solutions \(x = (x_i), \lambda = (\lambda_{ij}) \) of \(\text{LP} \) and DUAL respectively, such that: (a) \(x \in \{0, 1\}^n \), (b) \(x_i (\sum_{j \in \mathcal{N}(i)} \lambda_{ij} - w_i) = 0 \) for all \(i \in V \), (c) \((x_i + x_j - 1) \lambda_{ij} = 0 \), for all \((i, j) \in E \).

A. Sample Application: Scheduling in Wireless Networks

We now briefly describe an important application that requires an efficient, distributed solution to the MWIS problem: transmission scheduling in wireless networks that lack a centralized infrastructure, and where nodes can only communicate with local neighbors (e.g. see [15]). Such networks are ubiquitous in the modern world: examples range from sensor networks that lack wired connections to the fusion center, and ad-hoc networks that can be quickly deployed in areas without coverage, to the 802.11 wi-fi networks that currently represent the most widely used method for wireless data access.

Fundamentally, any two wireless nodes that transmit at the same time and over the same frequencies will interfere with each other, if they are located close by. Interference means that the intended receivers will not be able to decode the transmissions. Typically in a network only certain pairs of nodes interfere. The scheduling problem is to decide which nodes should transmit at a given time over a given frequency,
so that (a) there is no interference, and (b) nodes which have a large amount of data to send are given priority. In particular, it is well known that if each node is given a weight equal to the data it has to transmit, optimal network operation demands scheduling the set of nodes with highest total weight. If a “conflict graph” is made, with an edge between every pair of interfering nodes, the scheduling problem is exactly the problem of finding the MWIS of the conflict graph. The lack of an infrastructure, the fact that nodes often have limited capabilities, and the local nature of communication, all necessitate a lightweight distributed algorithm for solving the MWIS problem.

III. MAX-PRODUCT FOR MWIS

The classical max-product algorithm is a heuristic that can be used to find the MAP assignment of a probability distribution. Now, given an MWIS problem on \(G = (V,E) \), associate a binary random variable \(X_i \) with each \(i \in V \) and consider the following joint distribution: for \(x \in \{0,1\}^n \),

\[
p(x) = \frac{1}{Z} \prod_{(i,j) \in E} 1_{x_i + x_j \leq 1} \prod_{i \in V} \exp(w_ix_i),
\]

where \(Z \) is the normalization constant. In the above, \(1 \) is the standard indicator function: \(1_{\text{true}} = 1 \) and \(1_{\text{false}} = 0 \). It is easy to see that \(p(x) = \frac{1}{Z} \exp(\sum_i w_ix_i) \) if \(x \) is an independent set, and \(p(x) = 0 \) otherwise. Thus, any MAP estimate \(\arg\max_x p(x) \) corresponds to a maximum weight independent set of \(G \).

The update equations for max-product can be derived in a standard and straightforward fashion from the probability distribution. We now describe the max-product algorithm as derived from \(p \). At every iteration \(t \) each node \(i \) sends a message \(\{m_{i-j}^t(0), m_{i-j}^t(1)\} \) to each neighbor \(j \in N(i) \). Each node also maintains a belief \(\{b_i^t(0), b_i^t(1)\} \) vector. The message and belief updates, as well as the final output, are computed as follows.

Max-product for MWIS

(i) The messages are updated as follows:

\[
m_{i-j}^{t+1}(0) = \max_{k \neq j, k \in N(i)} \left\{ \prod_{k \neq j, k \in N(i)} m_{k-i}^t(0), e^{w_i} \prod_{k \neq j, k \in N(i)} m_{k-i}^t(1) \right\},
\]

\[
m_{i-j}^{t+1}(1) = \prod_{k \neq j, k \in N(i)} m_{k-i}^t(0).
\]

(ii) Nodes \(i \in V \), compute their beliefs as follows:

\[
b_i^t(0) = \prod_{k \in N(i)} m_{k-i}^t(0),
\]

\[
b_i^t(1) = e^{w_i} \prod_{k \in N(i)} m_{k-i}^t(1).
\]

(iii) Estimate max. wt. independent set \(x(b^{t+1}) \) as follows:

\[
x_i(b_i^t) = \begin{cases} 1 & \text{if } b_i^t(1) > b_i^t(0) \\ 0 & \text{if } b_i^t(1) < b_i^t(0) \\ ? & \text{otherwise} \end{cases}
\]

(iv) Update \(t = t + 1 \); repeat from (i) till \(x(b^t) \) converges and output the converged estimate.

For the purpose of analysis, we find it convenient to transform the messages and their dynamics as follows. First, define

\[
\gamma_i^{t+1} = \left(w_i - \sum_{k \in N(i)-j} \gamma_k^{t+1} \right) +
\]

where we use the notation \((x)_+ = \max\{x,0\} \). The final estimation step (iii) of max-product takes the following form:

\[
x_i(\gamma^t) = \begin{cases} 1 & \text{if } w_i > \sum_{k \in N(i)} \gamma_k^t \\ 0 & \text{if } w_i < \sum_{k \in N(i)} \gamma_k^t \\ ? & \text{otherwise} \end{cases}
\]

This modification of max-product is often known as the “minimum” algorithm, and is just a reformulation of the max-product. In the rest of the paper we refer to this as simply the max-product algorithm.

IV. FIXED POINTS OF MAX-PRODUCT

When applied to general graphs, max-product may either (a) not converge, (b) converge, and yield the correct answer, or (c) converge but yield an incorrect answer. Characterizing when each of the three situations can occur is a challenging and important task. One approach to this task has been to look directly at the fixed points, if any, of the iterative procedure (see e.g. [7]). In this section we investigate properties of fixed points, by formally establishing a connection to the LP polytope.

Note that a set of messages \(\gamma^* \) is a fixed point of max-product if, for all \((i,j) \in E \),

\[
\gamma_i^* = \left(w_i - \sum_{k \in N(i)-j} \gamma_k^* \right)_ +
\]

The following lemma establishes that fixed points always exist.

Lemma 4.1: There exists at least one fixed point \(\gamma^* \) such that \(\gamma_i^* \in [0, w_i] \) for each \((i,j) \in E \).
Proof: Let \(w^* = \max_i w_i \), and suppose at time \(t \) each
\(\gamma^t_{i \rightarrow j} \in [0, w^*] \). From (2) it is clear that this will result in
the messages \(\gamma^{t+1}_{i \rightarrow j} \) at the next time also having each \(\gamma^{t+1}_{i \rightarrow j} \in [0, w^*] \). Thus, the max-product update rule (2) maps a message
vector \(\gamma^t \in [0, w^*[2|^E|] \) into another vector in \([0, w^*[2|^E|] \). Also, it is easy to see that (2) is a continuous function. Therefore, by Brouwer’s fixed point theorem there exists a fixed point
\(\gamma^* \in [0, w^*[2|^E|] \).

We now study properties of the fixed points in order to understand the correctness of the estimate output by max-product. The following theorem characterizes the structure of estimates at fixed-points. Recall that the estimate \(x_i(\gamma^*) \) for node \(i \) can be 0, 1 or ?.

Theorem 4.1: Let \(\gamma^* \) be a fixed point, and let \(x(\gamma^*) = (x_i(\gamma^*)) \) be the corresponding estimate. Then,
1. If \(x_i(\gamma^*) = 1 \) then every neighbor \(j \in N(i) \) has \(x_j(\gamma^*) = 0 \).
2. If \(x_i(\gamma^*) = 0 \) then at least one neighbor \(j \in N(i) \) has \(x_j(\gamma^*) = 1 \).
3. If \(x_i(\gamma^*) = ? \) then at least one neighbor \(j \in N(i) \) has \(x_j(\gamma^*) = ? \).

Before proving Theorem 4.1 we discuss its implications. Recall from Lemma 2.1 that every extreme point of the LP polytope consists of each node having a value of 0.1 or \(\frac{1}{2} \). If all weights are positive, the optimum of LP will have the following characteristics: every node with value 1 will be surrounded by nodes with value 0, every node with value 0 will have at least one neighbor with value 1, and every node with value \(\frac{1}{2} \) will have one neighbor with value \(\frac{1}{2} \). These properties bear a remarkable similarity to those in Theorem 4.1. Indeed, given a fixed point \(\gamma^* \) and its estimates \(x(\gamma^*) \), make a vector \(y \) by setting
\[
\begin{align*}
y_i = \frac{1}{2} & \quad \text{if estimate for } i \text{ is } x_i(\gamma^*) = ? \\ y_i = 1 & \quad \text{if estimate for } i \text{ is } x_i(\gamma^*) = 1 \\ y_i = 0 & \quad \text{if estimate for } i \text{ is } x_i(\gamma^*) = 0
\end{align*}
\]

Then, Theorem 4.1 implies that \(y \) will be an extreme point of the LP polytope, and also one that maximizes some weight function consisting of positive node weights. Note however that this may not be the true weights \(w_i \). In other words, given any MWIS problem with graph \(G \) and weights \(w \), each max-product fixed point represents the optimum of the LP relaxation of some MWIS problem on the same graph \(G \), but possibly with different weights \(\tilde{w} \).

The fact that max-product estimates optimize a different weight function means that both eventualities are possible: LP giving the correct answer but max-product failing, and vice versa. We now provide simple examples for each one of these situations.

The Figures IV and IV present graphs and the corresponding fixed points of max-product. In each graph, numbers represent node weights, and an arrow from \(i \) to \(j \) represents a message value of \(\gamma^*_{i \rightarrow j} = 2 \). All other messages, which do not have arrows, have value zero. The boxed nodes indicate the ones for which the estimate \(x_i(\gamma^*) = 1 \). It is easy to verify that both examples represent max-product fixed points.

For the graph in Figure IV, the max-product fixed point results in an incorrect estimate. However, the graph is bipartite, and hence LP will provide the correct answer. For the graph in Figure IV, there is an integrality gap between LP and IP: setting each \(x_i = \frac{1}{2} \) yields an optimal value of 7.5 for LP, while the optimal solution to IP has value 6. Note that the estimate at the fixed point of max-product is the correct MWIS. It is also worth noticing that both of these examples, the fixed points lie in the strict interiors of a non-trivial region of attraction: starting the iterative procedure from within these regions will result in convergence to the corresponding fixed point. These examples indicate that it may not be possible to resolve the question of relative strength of the two procedures based solely on an analysis of the fixed points of max-product.

The particular fixed point, if any, that max-product converges to depends on the initialization of the messages; each fixed point will have its own region of convergence. In Section V we directly analyze the iterative algorithm when started from the “natural” initialization of unbiased messages. As a byproduct of this analysis, we prove that if max-product from this initialization converges, then the resulting fixed-point estimate is the optimum of LP; thus, in this case the max-product fixed point solves the “correct” LP.

Proof of Theorem 4.1: The proof of Theorem 4.1 follows from manipulations of the fixed point equations (6).

The above equations cover every case except for edges between two nodes with 0 estimates. This is covered by the following
\[
\text{If } x_i(\gamma) = 0 \text{ and } x_j(\gamma) = 0 \quad \Rightarrow \quad \gamma_{i \rightarrow j} = \gamma_{j \rightarrow i} = 0
\]
(6) of the fixed point,
\[\gamma_{i \rightarrow j} \geq w_i - \sum_{k \in \mathcal{N}(i) \setminus j} \gamma_{k \rightarrow i} \]

However, by (3), the fact that \(x_i(\gamma) = 1 \) implies that
\[w_i - \sum_{k \in \mathcal{N}(i) \setminus j} \gamma_{k \rightarrow i} > \gamma_{j \rightarrow i} \]

Putting the above two equations together proves (7). The proof of (8) is along similar lines. Suppose now \(i \) is such that \(x_i(\gamma) = 0 \). By (5) this implies that \(w_i = \sum_{k \in \mathcal{N}(i)} \gamma_{k \rightarrow i} \), and so from (6) we have that
\[\gamma_{i \rightarrow j} = w_i - \sum_{k \in \mathcal{N}(i) \setminus j} \gamma_{k \rightarrow i} \]

Also, the fact that \(x_i(\gamma) = 0 \) means that
\[w_i - \sum_{k \in \mathcal{N}(i) \setminus j} \gamma_{k \rightarrow i} = \gamma_{j \rightarrow i} \]

Putting the above two equations together proves (8). We now prove the three parts of Theorem 4.1.

Proof of Part 1): Let \(i \) have estimate \(x_i(\gamma) = 1 \), and suppose there exists a neighbor \(j \in \mathcal{N}(i) \) such that \(x_j(\gamma) = 0 \). Then, from (7) it follows that \(\gamma_{i \rightarrow j} > \gamma_{j \rightarrow i} \), and from (8) it further follows that \(\gamma_{i \rightarrow j} \leq \gamma_{j \rightarrow i} \). However, this is a contradiction, and thus every neighbor of \(i \) has to have estimate 0.

Proof of Part 2): Let \(i \) have estimate \(x_i(\gamma) = 0 \). Since \(w_i \geq 0 \), (4) implies that there exists at least one neighbor \(j \in \mathcal{N}(i) \) such that \(x_j(\gamma) = 1 \). Then, from (9), this means that the estimate \(x_j(\gamma) \) cannot be 0. Suppose now that \(x_j(\gamma) = 0 \). From (7) it follows that \(\gamma_{i \rightarrow j} = \gamma_{j \rightarrow i} > 0 \), and so
\[\gamma_{i \rightarrow j} = w_i - \sum_{k \in \mathcal{N}(i) \setminus j} \gamma_{k \rightarrow i} \]

However, since \(\gamma_{i \rightarrow j} = \gamma_{j \rightarrow i} \), this means that
\[\gamma_{j \rightarrow i} = w_i - \sum_{k \in \mathcal{N}(i) \setminus j} \gamma_{k \rightarrow i} \]

which violates (4), and thus the assumption that \(x_i(\gamma) = 0 \). Thus it has to be that \(x_i(\gamma) = 1 \).

Proof of Part 3): Let \(i \) have estimate \(x_i(\gamma) = 0 \). Since \(w_i \geq 0 \), (5) implies that there exists at least one neighbor \(j \in \mathcal{N}(i) \) such that the message \(\gamma_{j \rightarrow i} > 0 \). From (8) it follows that
\[\gamma_{i \rightarrow j} = \gamma_{j \rightarrow i} = w_j - \sum_{l \neq i} \gamma_{l \rightarrow j} \]

Thus \(w_j = \sum_{l \neq i} \gamma_{l \rightarrow j} \), which by (5) means that \(x_j(\gamma) = 0 \). Thus \(i \) has at least one neighbor \(j \) with estimate \(x_j(\gamma) = 0 \). \(\square \)

V. DIRECT ANALYSIS OF THE ITERATIVE ALGORITHM

In the last section, we saw that fixed points of Max-product may correspond to optima “wrong” linear programs: ones that operate on the same feasible set as LP, but optimize a different linear function. However, there will also be fixed points that correspond to optimizing the correct function. Max-product is a deterministic algorithm, and so which of these fixed points (if any) are reached is determined by the initialization. In this section we directly analyze the iterative algorithm itself, as started from the “natural” initialization \(\gamma = 0 \), which corresponds to uninformative messages.

We show that the resulting estimates are characterized by optima of the true LP, at every time instant (not just at fixed points). This implies that, if a fixed point is reached, it will exactly reflect an optimum of LP. Our main theorem in this section is stated below.

Theorem 5.1: Given any MWIS problem on weighted graph \(G \), suppose max-product is started from the initial condition \(\gamma = 0 \). Then, for any node \(i \in G \),

1) If there exists any optimum \(x^* \) of LP, for which the mass assigned to \(i \) satisfies \(x^*_i < 1 \), then the max-product estimate \(x_i(\gamma^t) \) is 0 or ? for all even times \(t \).

2) If there exists any optimum \(x^* \) of LP, for which the mass assigned to edge \(i \) satisfies \(x^*_i > 0 \), then the max-product estimate \(x_i(\gamma^t) \) is 1 or ? for all odd times \(t \).

From the above theorem, it is easy to see what will happen if LP has non-integral optima. Suppose node \(i \) is assigned non-integral mass at some LP optimum \(x^* \). This implies that \(i \) and \(x^* \) will satisfy both parts of the above theorem. The estimate at node \(i \) will thus either keep varying every alternate time slot, or will converge to ?. Either way, max-product will fail to provide a useful estimate for node \(i \).

Theorem 5.1 also reveals further insights into the max-product estimates. Suppose for example the estimates converge to informative answers for a subset of the nodes. Theorem 5.1 implies that every LP optimum assigns the same integral mass to any fixed node in this subset, and that the converged estimate is the same as this mass.

The proof of this theorem relies on the computation tree interpretation of max-product estimates. We now specify this interpretation for our problem, and then prove Theorem 5.1.

Computation Tree for MWIS

The proof of Theorem 5.1 relies on the computation tree interpretation [19], [22] of the loopy max-product estimates. In this section we briefly outline this interpretation. For any node \(i \), the computation tree at time \(t \), denoted by \(T_i(t) \), is defined recursively as follows: \(T_i(1) \) is just the node \(i \). This is the root of the tree, and in this case is also its only leaf. The tree \(T_i(t) \) at time \(t \) is generated from \(T_i(t - 1) \) by adding to each leaf of \(T_1(t - 1) \) a copy of each of its neighbors in \(G \), except for the one neighbor that is already present in \(T_i(t - 1) \). Each node in \(T_i \) is a copy of a node in \(G \), and the weights of the nodes in \(T_i \) are the same as the corresponding nodes in \(G \). The computation tree interpretation is stated in the following lemma.

Lemma 5.1: For any node \(i \) at time \(t \),

- \(x_i(\gamma^t) = 1 \) if and only if the root of \(T_i(t) \) is a member of every MWIS on \(T_i(t) \).
- \(x_i(\gamma^t) = 0 \) if and only if the root of \(T_i(t) \) is not a member of any MWIS on \(T_i(t) \).
- \(x_i(\gamma^t) = ? \) else.

Thus the max-product estimates correspond to max-weight independent sets on the computation trees \(T_i(t) \), as opposed to on the original graph \(G \).
Example: Consider figure V. On the left is the original loopy graph G. On the right is $T_{a}(4)$, the computation tree for node a at time 4.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figureV.png}
\caption{Computation tree $T_{a}(4)$ for node a at time 4.}
\end{figure}

Proof of Theorem 5.1

We now prove Theorem 5.1. For brevity, in this proof we will use the notation $\tilde{b}_i = x_i(\gamma'_i)$ for the estimates. Suppose now that part 1 of the theorem is not true, i.e. there exists node i, an optimum x^*_{LP} with $x^*_{i} > 0$, and an odd time t at which the estimate is $\tilde{b}_i = 0$. Let $T_{i}(t)$ be the corresponding computation tree. Using Lemma 5.1 this means that the root i is not a member of any MWIS of $T_{i}(t)$. Let I be some MWIS on $T_{i}(t)$. We now define the following set of nodes $I^* = \{j \in T_{i}(t) : j \notin I, \text{ and copy of } j \in G \text{ has } x^*_j > 0\}$

In words, I^* is the set of nodes in $T_{i}(t)$ which are not in I, and whose copies in G are assigned strictly positive mass by the LP optimum x^*.

Note that by assumption the root $i \in I^*$ and $i \notin I$. Now, from the root, recursively build a maximal alternating subtree S as follows: first add root i, which is in $I^* - I$. Then add all neighbors of i that are in $I^* - I$. Then add all their neighbors in $I^* - I$, and so on. The building of S stops either when it hits the bottom level of the tree, or when no more nodes can be added while still maintaining the alternating structure. Note the following properties of S:

- S is the disjoint union of $(S \cap I)$ and $(S \cap I^*)$.
- For every $j \in S \cap I$, all its neighbors in I^* are included in $S \cap I^*$. Similarly for every $j \in S \cap I^*$, all its neighbors in I are included in $S \cap I$.
- Any edge (j, k) in $T_{i}(t)$ has at most one endpoint in $(S \cap I)$, and at most one in $(S \cap I^*)$.

We now state a lemma, which we will prove later. The proof uses the fact that t is odd.

Lemma 5.2: The weights satisfy $w(S \cap I) \leq w(S \cap I^*)$.

We now use this lemma to prove the theorem. Consider the set I' which changes I by flipping S:

$I' = I - (S \cap I) + (S \cap I^*)$

We first show that I' is also an independent set on $T_{i}(t)$. This means that we need to show that every edge (j, k) in $T_{i}(t)$ touches at most one node in I'. There are thus three possible scenarios for edge (j, k):

- $j, k \notin S$. In this case, membership of j, k in I' is the same as in I, which is an independent set. So (j, k) has at most one node touching I'.
- One node $j \in S \cap I$. In this case, $j \notin I'$, and hence again at most one of j, k belongs to I'.
- One node $k \in S \cap I^*$ but other node $j \notin S \cap I$. This means that $j \notin I$, because every neighbor of k in I should be included in $S \cap I$. This means that $j \notin I'$, and hence only node $k \in I'$ for edge (j, k).

Thus I' is an independent set on $T_{i}(t)$. Also, by Lemma 5.2, we have that $w(I') \geq w(I)$

However, I is an MWIS, and hence it follows that I' is also an MWIS of $T_{i}(t)$. However, by construction, root $i \in I'$, which violates the fact that $\bar{x}_i(t) = 0$. The contradiction is thus established, and Part 1 of the theorem is proved. Part 2 is proved in a similar fashion.

Proof of Lemma 5.2:

The proof of this lemma involves a perturbation argument on the LP. For each node $j \in G$, let m_j denote the number of times j appears in $S \cap I$ and n_j the number of times it appears in $S \cap I^*$. Define

$$x = x^* + \epsilon(m - n)$$

We now show state a lemma that is proved immediately following this one.

Lemma 5.3: x is a feasible point for LP, for small enough ϵ.

We now use this lemma to finish the proof of Lemma 5.2. Since x^* is an optimum of LP, it follows that $w'x \leq w'x^*$, and so $w'm \leq w'n$. However, by definition, $w'm = w(S \cap I)$ and $w'n = w(S \cap I^*)$. This finishes the proof.

Proof of Lemma 5.3:

We now show that this x as defined in (10) is a feasible point for LP, for small enough ϵ. To do so we have to check node constraints $x_j \geq 0$ and edge constraints $x_j + x_k \leq 1$ for every edge $(j, k) \in G$. Consider first the node constraints. Clearly we only need to check them for any j which has a copy $j^* \in I^* \cap S$. If this is so, then by the definition (V) of I^*, $x_j^* > 0$. Thus, for any m_j and n_j, making ϵ small enough can ensure that $x_j^* + \epsilon(m_j - n_j) \geq 0$.

Before we proceed to checking the edge constraints, we make two observations. Note that for any node j in the tree, $j \in S \cap I$ then

- $x_j^* < 1$, i.e. the mass x_j^* put on j by the LP optimum x^* is strictly less than 1. This is because of the alternating way in which the tree is constructed: a node j in the tree is included in $S \cap I$ only if the parent p of j is in $S \cap I^*$ (note that the root $i \in S \cap I^*$ by assumption). However, from the definition of I^*, this means that $x_p^* > 0$, i.e. the parent has positive mass at the LP optimum x^*. This means that $x_j^* < 1$, as having $x_i^* = 1$ would mean that the edge constraint $x_j^* + x_k^* \leq 1$ is violated.
- j is not a leaf of the tree. This is because S alternates between I and I^*, and starts with I^* at the root in level 1 (which is odd). Hence $S \cap I$ will occupy even levels of the tree, but the tree has odd depth (by assumption t is odd).

Now consider the edge constraints. For any edge (j, k), if the LP optimum x^* is such that the constraint is loose — i.e. if $x_j^* + x_k^* < 1$ — then making ϵ small enough will ensure that
\[x_j + x_k \leq 1 \]. So we only need to check the edge constraints which are tight at \(x^* \).

For edges with \(x_j^* + x_k^* = 1 \), every time any copy of one of the nodes \(j \) or \(k \) is included in \(S \cap I \), the other node is included in \(S \cap I^* \). This is because of the following: if \(j \) is included in \(S \cap I \) and \(k \) is its parent, we are done since this means \(k \in S \cap I^* \). So suppose \(k \) is not the parent of \(j \). From the above it follows that \(j \) is not a leaf of the tree, and hence \(k \) will be one of its children. Also, from above, the mass on \(j \) satisfies \(x_j^* < 1 \). However, by assumption \(x_j^* + x_k^* = 1 \), and hence the mass on \(k \) is \(x_k^* > 0 \). This means that the child \(k \) has to be included in \(S \cap I^* \).

It is now easy to see that the edge constraints are satisfied: for every edge constraint which is tight at \(x^* \), every time the mass on one of the endpoints is increased by \(\epsilon \) (because of that node appearing in \(S \cap I \)), the mass on the other endpoint is decreased by \(\epsilon \) (because it appears \(S \cap I^* \)).

\[\lambda_{ij}^{t+1} = \max \left\{ 0, \left(w_i - \sum_{k \in N(i), \ k \neq j} \lambda_{ik}^t \right), \left(w_j - \sum_{k \in N(j) \setminus \{i\}} \lambda_{jk}^t \right) \right\} \quad (11) \]

The \(\lambda \) on all the other edges remain unchanged from \(t \) to \(t+1 \). Notice the similarity (at least syntactic) between standard dual coordinate descent (11) and max-product (2). In essence, the dual coordinate descent can be thought of as a sequential bidirectional version of the max-product algorithm.

Since, the dual coordinate descent algorithm is designed so that at each iteration, the cost of the DUAL is non-increasing, it always converges in terms of the cost. However, the converged solution may not be optimum because DUAL contains the “non-box” constraints \(\sum_{j \in N(i)} \lambda_{ij} \geq w_i \). Therefore, a direct usage of dual coordinate descent is not sufficient. In order to make the algorithm convergent with minimal modification while retaining its iterative message-passing nature, we use barrier (penalty) function based approach. With an appropriate choice of barrier and using result of Luo and Tseng [3], we will find the new algorithm to be convergent.

To this end, consider the following convex optimization problem obtained from DUAL by adding a logarithmic barrier for constraint violations with \(\varepsilon \geq 0 \) controlling penalty due to violation. Define

\[g(\varepsilon, \lambda) = \left(\sum_{(i,j) \in E} \lambda_{ij} \right) - \varepsilon \left(\sum_{i \in V} \log \left(\sum_{j \in N(i)} \lambda_{ij} - w_i \right) \right) . \]

Then, the modified DUAL optimization problem becomes

\[\text{CP}(\varepsilon) : \quad \min g(\varepsilon, \lambda) \quad \text{subject to} \quad \lambda_{ij} \geq 0, \text{ for all } (i,j) \in E. \]

The algorithm DESCENT\((\varepsilon, \delta)\) is coordinate descent on CP\((\varepsilon)\), to within tolerance \(\delta \), implemented via passing messages between nodes. We describe it in detail as follows.

DESCRIPT: algorithm

Here, we describe the DESCENT algorithm. It is influenced by the max-product and dual coordinate descent algorithm for DUAL. First, consider the standard coordinate descent algorithm for DUAL. It operates with variables \(\{\lambda_{ij}, (i,j) \in E\} \) (with notation \(\lambda_{ij} = \lambda_{ji} \)). It is an iterative procedure; in each iteration \(t \) one edge \((i,j) \in E \) is picked\(^1\) and updated

\[\lambda_{ij}^{t+1} = \max \left\{ 0, \left(w_i - \sum_{k \in N(i), \ k \neq j} \lambda_{ik}^t \right), \left(w_j - \sum_{k \in N(j) \setminus \{i\}} \lambda_{jk}^t \right) \right\} \quad (11) \]

\(^1\)Edges can be picked either in round-robin fashion, or uniformly at random.
where for some

\[\lambda_{ij}^{t+1} = \left(w_j - \sum_{k' \in \mathcal{N}(j) \setminus j} \lambda_{k'j}^t \right) + \beta \varepsilon, \]

\[\gamma_{ij}^{t+1} = \left(w_j - \sum_{k' \in \mathcal{N}(j) \setminus j} \lambda_{k'j}^t \right) + \frac{a + b + 2\varepsilon + \sqrt{(a-b)^2 + 4\varepsilon^2}}{2}. \]

\[\lambda_{ij}^{t+1} = \left(\frac{a + b + 2\varepsilon + \sqrt{(a-b)^2 + 4\varepsilon^2}}{2} \right) + \frac{a + b + |a-b| + 4\varepsilon}{2} = \max(a,b) + 2\varepsilon. \]

Therefore, we conclude that (12) can be re-written as

\[\lambda_{ij}^{t+1} = \beta \varepsilon + \max \left\{ -\beta \varepsilon, \left(\sum_{k' \in \mathcal{N}(j) \setminus j} \lambda_{k'j}^t \right), \left(w_j - \sum_{k \in \mathcal{N}(j) \setminus j} \lambda_{kj}^t \right) \right\}, \]

where for some \(\beta \in (1,2] \) with its precise value dependent on \(\gamma_{i,j-1}, \gamma_{j,i-1} \). This small perturbation takes \(\lambda \) close to the true dual optimum. In practice, we believe that instead of calculating exact value of \(\beta \), use of some arbitrary \(\beta \in (1,2] \) should be sufficient.

\section{B. DESCENT: properties}

The DESCENT algorithm finds a good approximation to an optimum of DUAL, for small enough \(\varepsilon, \delta \). Furthermore, it always converges, and does so quickly. The following lemma specifies the convergence and correctness guarantees of DESCENT.

Lemma 6.1: For given \(\varepsilon, \delta > 0 \), let \(\lambda^t \) be the parameter value at the end of iteration \(t \geq 1 \) under \textsc{Descent}(\(\varepsilon, \delta \)). Then, there exists a unique limit point \(\lambda^{\varepsilon,\delta} \) such that

\[||\lambda^t - \lambda^{\varepsilon,\delta}|| \leq A \exp(-Bt), \]

for some positive constant \(A, B \) (which may depend on problem parameter, \(\varepsilon \) and \(\delta \)). Let \(\lambda^\varepsilon \) be the solution of CP(\(\varepsilon \)). Then,

\[\lim_{\delta \to 0} \lambda^{\varepsilon,\delta} = \lambda^\varepsilon. \]

Further, by taking \(\varepsilon \to 0 \), \(\lambda^\varepsilon \) goes to \(\lambda^* \), an optimal solution to the DUAL.

We first discuss the proofs of two facts in Lemma 6.1: (a) \(\lim_{\delta \to 0} \lambda^{\varepsilon,\delta} = \lambda^\varepsilon \) is a direct consequence of the fact that if we ran DESCENT algorithm with \(\delta = 0 \), it converges; (b) the fact that as \(\varepsilon \to 0 \), \(\lambda^\varepsilon \) goes to a dual optimal solution \(\lambda^* \) follows from [13, Prop. 4.1.1]. Now, it remains to establish the convergence of the DESCENT(\(\varepsilon, \delta \)) algorithm. This will follow as a corollary of result by Luo and Tseng [3]. In order to state the result in [3], some notation needs to be introduced as follows.

Consider a real valued function \(\phi : \mathbb{R}^n \to \mathbb{R} \) defined as

\[\phi(z) = \psi(Ez) + \sum_{i=1}^n w_i x_i, \]

where \(E \in \mathbb{R}^{m \times n} \) is an \(m \times n \) matrix with no zero column (i.e., all coordinates of \(z \) are useful), \(w = (w_i) \in \mathbb{R}^n \) is a given fixed vector, and \(\psi : \mathbb{R}^m \to \mathbb{R} \) is a strongly convex function on its domain

\[D_\psi = \{ y \in \mathbb{R}^m : \psi(y) \in (-\infty, \infty) \}. \]

We have \(D_\psi \) being open and let \(\partial D_\psi \) denote its boundary. We also have that, along any sequence \(y_k \) such that \(y_k \to \partial D_\psi \) (i.e., approaches boundary of \(D_\psi \)), \(\psi(y_k) \to \infty \). The goal is to solve the optimization problem

\[\begin{array}{ll}
\text{minimize} & \phi(z) \\
\text{over} & z \in \mathcal{X}.
\end{array} \tag{14} \]

In the above, we assume that \(\mathcal{X} \) is box-type, i.e.,

\[\mathcal{X} = \prod_{i=1}^n [\ell_i, u_i], \quad \ell_i, u_i \in \mathbb{R}. \]

Let \(\mathcal{X}^* \) be the set of all optimal solutions of the problem (14). The “round-robin” or “cyclic” coordinate descent algorithm (the one used in DESCENT) for this problem has the following convergence property, as proved in Theorem 6.2 [3].

Lemma 6.2: There exist constants \(\alpha' \) and \(\beta' \) which may depend on the problem parameters in terms of \(g, E, w \) such that starting from the initial value \(z^0 \), we have in iteration \(t \) of the algorithm

\[d(z^t, \mathcal{X}^*) \leq \alpha' \exp(-\beta't) d(z^0, \mathcal{X}^*). \]

Here, \(d(\cdot, \mathcal{X}^*) \) denotes distance to the optimal set \(\mathcal{X}^* \).

Proof of Lemma 6.1: It suffices to check that the conditions assumed in the statement of Lemma 6.2 apply in our set up of Lemma 6.1 in order to complete the proof.

Note first that the constraints \(\lambda_{ij} \geq 0 \) in CP(\(\varepsilon \)) are of “box-type”, as required by Lemma 6.2. Now, we need to show that \(g(\cdot) \) satisfies the conditions that \(\phi(\cdot) \) satisfied in (14).
By observation, we see that the linear part in \(g(\cdot) \) is \(\sum_{ij} \lambda_{ij} \) corresponds to the linear part in \(\phi \). Now, the other part in \(g(\cdot) \), which corresponds to \(h(\varepsilon, \lambda) \) where define

\[
h(\varepsilon, \lambda) = -\varepsilon \sum_i \log \left(\sum_{j \in N(i)} \lambda_{ij} - w_i \right).
\]

By definition, the \(h(\cdot) \) is strictly convex on its domain which is an open set as for any \(i \), if

\[
\sum_{j \in N(i)} \lambda_{ij} \downarrow w_i,
\]

then \(h(\cdot) \uparrow \infty \). Note that for \(h(\cdot) \to \infty \) towards boundary corresponding to \(||\lambda|| \to \infty \) can be adjusted by redefining \(h(\cdot) \) to include some parts of the linear term in \(g(\cdot) \). Finally, the condition corresponding to \(E \) not having any zero column in (14) follows for any connected graph, which is of our interest here. Thus, we have verified conditions of Lemma 6.2, and hence established the proof of (13). This completes the proof of Lemma 6.1.

C. EST: algorithm

The algorithm DESCENT yields a good approximation of the optimal solution to DUAL, for small values of \(\varepsilon \) and \(\delta \). However, our interest is in the (integral) optimum of LP, when it exists. There is no general procedure to recover an optimum of a linear program from an optimum of its dual. However, we show that such a recovery is possible through our algorithm, called EST and presented below, for the MWIS problem when \(G \) is bipartite with a unique MWIS. This procedure is likely to extend for general \(G \) when LP relaxation is tight and LP has a unique solution. In the following condition \(\delta_1 \) is chosen to be an appropriately small number, and \(\lambda \) is expected to be (close to) a dual optimum.

\[\text{EST}(\lambda, \delta_1).\]

(o) The algorithm iteratively estimates \(x = (x_i) \) given \(\lambda \) (expected to be a dual optimum).

(i) Initially, color a node \(i \) gray and set \(x_i = 0 \) if \(\sum_{j \in N(i)} \lambda_{ij} > w_i + \delta_1 \). Color all other nodes with green and leave their values unspecified.

(ii) Repeat the following steps (in any order) until no more changes can happen:

\(\circ \) if \(i \) is green and there exists a gray node \(j \in N(i) \) with \(\lambda_{ij} > \delta_1 \), then set \(x_i = 1 \) and color it orange.

\(\circ \) if \(i \) is green and some orange node \(j \in N(i) \), then set \(x_i = 0 \) and color it gray.

(iii) If any node is green, say \(i \), set \(x_i = 1 \) and color it red.

(iv) Produce the output \(x \) as an estimation.

D. EST: properties

Lemma 6.3: Let \(x^* \) be an optimal solution of DUAL. If \(G \) is a bipartite graph with unique MWIS, then the output produced by \(\text{EST}(\lambda^*, 0) \) is the maximum weight independent set of \(G \).

Proof:

Let \(x \) be output of \(\text{EST}(\lambda^*, 0) \) and \(x^* \) the unique optimal MWIS. To establish \(x = x^* \), it is sufficient to establish that \(x \) and \(\lambda^* \) together satisfy the complimentary slackness conditions stated in Lemma 2.3, namely

(1) \(x_i (\sum_{j \in N(i)} \lambda_{ij} - w_i) = 0 \) for all \(i \in V \),

(2) \((x_i + x_j - 1) \lambda_{ij} = 0 \) for all \((i, j) \in E \), and

(3) \(x \) is a feasible solution for the IP.

From the way the color gray is assigned initially, it follows that either \(x_i = 0 \) or \(\sum_j \lambda_{ij} - w_i = 0 \) for all nodes \(i \). Thus (1) is satisfied.

Before proceeding we note that all nodes initially colored gray are correct, i.e. \(x_i = x_i^* = 0 \); this is because the optimal \(x^* \) satisfies (1). Now consider any node \(j \) that is colored orange due to there being a neighbor \(i \) that is one of the initial grays, and \(\lambda_{ij} > 0 \). For this node we have that \(x_j = x_j^* = 1 \), because \(x^* \) satisfies (2). Proceeding in this fashion, it is easy to establish that all nodes colored gray or orange are assigned values consistent with the actual MWIS \(x^* \).

Now to prove (x2); consider a particular edge \((i, j)\). For this, if \(\lambda_{ij} > 0 \) then the (x2) is satisfied. So suppose \(\lambda_{ij} > 0 \), but \(x_i + x_j \neq 1 \). This will happen if both \(x_i = x_j = 0 \), or both are equal to 1. Now, both are equal to 0 only if they are both colored gray, in which case we know that the actual optima \(x_i^* = x_j^* = 1 \) as well. But this means that (x2) is violated by the true optimum \(x^* \), which is a contradiction. Thus it has to be that \(x_i = x_j = 1 \) for violation to occur. However, this is also a violation of (x3), namely the feasibility of \(x \) for the IP. Thus all that remains to be done is to establish (x3).

Assume now that (x3) is violated, i.e. there exists a subset \(E' \) of the edges whose both endpoints are set to 1. Let \(S_1 \subset V_1, S_2 \subset V_2 \) be these endpoints. Note that, by assumption, \(S_1 \neq 0, S_2 \neq 0 \). We now use \(S_1 \) and \(S_2 \) to construct two distinct optima of IP, which will be a violation of our assumption of uniqueness of the MWIS. The two optima, denoted \(\hat{x} \) and \(\tilde{x} \), are obtained as follows: in \(x \), modify \(x_i = 0 \) for all \(i \in S_1 \) to obtain \(\hat{x} \); in \(x \) modify \(x_i = 0 \) for all \(i \in S_2 \) to obtain \(\tilde{x} \). We now show that both \(\hat{x} \) and \(\tilde{x} \) satisfy all three conditions (x1), (x2) and (x3).

Recall that the nodes in \(S_1 \) and \(S_2 \) must have been colored red by the algorithm EST. Now, we establish optimality of \(\hat{x} \) and \(\tilde{x} \). By construction, both \(\hat{x} \) and \(\tilde{x} \) satisfy (x1) since we have only changed assignment of red nodes which were not binding for constraint (x1).

Now, we turn our attention towards (x2) and (x3) for \(\hat{x} \) and \(\tilde{x} \). Again, both solutions satisfy (x2) and (x3) along edges \((i, j) \in E \) such that \(i \in S_1, j \in S_2 \) or else they would not have been colored red. By construction, they satisfy (x3) along all other edges as well. Now we show that \(\hat{x} \) and \(\tilde{x} \) satisfy (x2) along edges \((i, j) \in E \), such that \(i \in S_1, j \notin S_2 \) or \(i \notin S_1, j \in S_2 \). For this, we claim that all such edges must have \(\lambda_{ij} \geq 0 \); if not, that is \(\lambda_{ij} < 0 \), then either \(i \) or \(j \) must have been colored orange and an orange node cannot be part of \(S_1 \) or \(S_2 \). Thus, we have established that both \(\hat{x} \) and \(\tilde{x} \) along with \(\lambda^* \) satisfy (x1), (x2) and (x3). The contradiction is thus established.

Thus, we have established that \(x \) along with \(\lambda^* \) satisfies (x1), (x2) and (x3). Therefore, \(x \) is the optimal solution of IP, and hence of the IP. This completes the proof.
we perform $O(n)$ operations. Now, we state a simple bound on running time of EST.

Lemma 6.4: The algorithm EST stops after at most $O(n)$ iterations.

Proof: The algorithm stops after the iteration in which no more node's status is updated. Since each node can be updated at most once, with the above stopping condition an algorithm can run for at most $O(n)$ iterations. This completes the proof of Lemma 6.4.

E. Overall algorithm: convergence and correctness

Before stating convergence, correctness and bound on convergence time of the $\text{ALGO}(\varepsilon, \delta, \delta_1)$ algorithm, a few remarks are in order. We first note that both DESCENT and EST are iterative message-passing procedures. Second, when the MWIS is unique, DESCENT need not produce an exact dual optimum for EST to obtain the correct answer. Finally, it is important to note that the above algorithm always converges quickly, but may not produce good estimate when LP relaxation is not tight. Next, we state the precise statement of this result.

Theorem 6.1 (Convergence & Correctness): The algorithm $\text{ALGO}(\varepsilon, \delta, \delta_1)$ converges for any choice of $\varepsilon, \delta > 0$ and for any G. The solution obtained by it is correct if $\varepsilon, \delta > 0$ and δ_1 are small enough.

Proof: The claim that algorithm $\text{ALGO}(\varepsilon, \delta, \delta_1)$ converges for all values of $\varepsilon, \delta, \delta_1$ and for any G follows immediately from Lemmas 6.1, 6.3 and 6.4. Next, we worry about the correctness property.

The Lemma 6.1 implies that for $\delta \to 0$, the output of $\text{DESCENT}(\varepsilon, \delta)$, $\lambda^\varepsilon, \delta \to \lambda^\varepsilon$, where λ^ε is the solution of $\text{CP}(\varepsilon)$. Again, as noted in Lemma 6.1, $\lambda^\varepsilon \to \lambda^*$ as $\varepsilon \to 0$, where λ^* is an optimal solution of the DUAL. Therefore, given $\delta > 0$, for small enough $\varepsilon > 0$ we have

$$|\lambda^*_{ij} - \lambda^\varepsilon_{ij}| \leq \frac{\delta}{3n} \quad \text{for all } (i,j) \in E.$$

We will suppose that the ε is chosen such. As noted in the earlier the algorithm converges for all choices of ε. Therefore, by Lemma 6.1 there exists large enough T such that for $t \geq T$, we have

$$|\lambda^*_{ij} - \lambda^t_{ij}| \leq \frac{\delta}{3n} \quad \text{for all } (i,j) \in E.$$

Thus, for $t \geq T$ we have

$$|\lambda^*_{ij} - \lambda^t_{ij}| \leq \frac{2\delta}{3n} \quad \text{for all } (i,j) \in E. \quad (15)$$

Now, recall Lemma 6.3. It established that the EST($\lambda^*, 0$) produces the correct max. weight independent set as its output under hypothesis of Theorem 6.1. Also recall that the algorithm EST($\lambda^*, 0$) checks two conditions: (a) whether $\lambda^*_{ij} > 0$ for $(i,j) \in E$; and (b) whether $\sum_{j \in \Delta(i)} \lambda^*_{ij} > w_i$. Given that the number of nodes and edges are finite, there exists a δ such that (a) and (b) are robust to noise of δ/n. Therefore, by selection of small δ_1 for such choice of δ, we find that the output of EST(λ^t, δ_1) algorithm will be the same as that of EST($\lambda^*, 0$). This completes the proof.

VII. MAP Estimation As An MWIS Problem

In this section we show that any MAP estimation problem is equivalent to an MWIS problem on a suitably constructed graph with node weights. This construction is related to the “overcomplete basis” representation [6]. Consider the following canonical MAP estimation problem: suppose we are given a distribution $q(y)$ over vectors $y = (y_1, \ldots, y_M)$ of variables y_m, each of which can take a finite value. Suppose also that q factors into a product of strictly positive functions, which we find convenient to denote in exponential form:

$$q(y) = \frac{1}{Z} \prod_{\alpha \in A} \exp(\phi_\alpha(y_\alpha)) = \frac{1}{Z} \exp \left(\sum_{\alpha \in A} \phi_\alpha(y_\alpha) \right)$$

Here α specifies the domain of the function ϕ_α, and y_α is the vector of those variables that are in the domain of ϕ_α. The α’s also serve as an index for the functions. A is the set of functions. The MAP estimation problem is to find a maximizing assignment $y^* \in \arg\max_y q(y)$.

We now build an auxiliary graph \tilde{G}, and assign weights to its nodes, such that the MAP estimation problem above is equivalent to finding the MWIS of \tilde{G}. There is one node in \tilde{G} for each pair (α, y_α), where y_α is an assignment (i.e. a set of values for the variables) of domain α. We will denote this node of \tilde{G} by $\delta(\alpha, y_\alpha)$.

There is an edge in \tilde{G} between any two nodes $\delta(\alpha_1, y^1_{\alpha_1})$ and $\delta(\alpha_2, y^2_{\alpha_2})$ if and only if there exists a variable index m such that

1. m is in both domains, i.e. $m \in \alpha_1$ and $m \in \alpha_2$.
2. the corresponding variable assignments are different, i.e. $y^1_m \neq y^2_m$.

In other words, we put an edge between all pairs of nodes that correspond to inconsistent assignments. Given this graph \tilde{G}, we now assign weights to the nodes. Let $c > 0$ be any number such that $c + \phi_\alpha(y_\alpha) > 0$ for all α and y_α. The existence of such a c follows from the fact that the set of assignments and domains is finite. Assign to each node $\delta(\alpha, y_\alpha)$ a weight of $c + \phi_\alpha(y_\alpha)$.

Lemma 7.1: Suppose q and \tilde{G} are as above. (a) If y^* is a MAP estimate of q, let $\delta^* = \{\delta(\alpha, y^*_\alpha) | \alpha \in A\}$ be the set of nodes in \tilde{G} that correspond to each domain being consistent with y^*. Then, δ^* is an MWIS of \tilde{G}. (b) Conversely, suppose δ^* is an MWIS of \tilde{G}. Then, for every domain α, there is exactly one node $\delta(\alpha, y^*_\alpha)$ included in δ^*. Further, the corresponding domain assignments $\{y^*_\alpha | \alpha \in A\}$ are consistent, and the resulting overall vector y^* is a MAP estimate of q.

Proof: A maximal independent set is one in which every node is either in the set, or is adjacent to another node that is in the set. Since weights are positive, any MWIS has to be maximal. For \tilde{G} and q as constructed, it is clear that

1. If y is an assignment of variables, consider the corresponding set of nodes $\{\delta(\alpha, y_\alpha) | \alpha \in A\}$. Each domain α has exactly one node in this set. Also, this set is an
independent set in \tilde{G}, because the partial assignments y_α for all the nodes are consistent with y, and hence with each other. This means that there will not be an edge in \tilde{G} between any two nodes in the set.

2) Conversely, if Δ is a maximal independent set in \tilde{G}, then all the sets of partial assignments corresponding to each node in Δ are all consistent with each other, and with a global assignment y.

There is thus a one-to-one correspondence between maximal independent sets in \tilde{G} and assignments y. The lemma follows from this observation.

Example 7.1: Let y_1 and y_2 be binary variables with joint distribution

$$q(y_1, y_2) = \frac{1}{Z} \exp(\theta_1 y_1 + \theta_2 y_2 + \theta_{12} y_1 y_2)$$

where the θ are any real numbers. The corresponding \tilde{G} is shown in the Figure VII. Let c be any number such that $c + \theta_1$, $c + \theta_2$ and $c + \theta_{12}$ are all greater than 0. The weights on the nodes in \tilde{G} are: $\theta_1 + c$ on node “1” on the left, $\theta_2 + c$ for node “1” on the right, $\theta_{12} + c$ for the node “11”, and c for all the other nodes.

Fig. 3. An example of reduction from MAP problem to max. weight independent set problem.

VIII. DISCUSSION

We believe this paper opens several interesting directions for investigation. In general, the exact relationship between max-product and linear programming is not well understood. Their close similarity for the MWIS problem, along with the reduction of MAP estimation to an MWIS problem, suggests that the MWIS problem may provide a good first step in an investigation of this relationship.

Our novel message-passing algorithm and the reduction of MAP estimation to an MWIS problem immediately yields a new message-passing algorithm for general MAP estimation problem. It would be interesting to investigate the power of this algorithm on more general discrete estimation problems.

REFERENCES

