
CORE-BASED DESIGNS pose a significant

test challenge. Vendors of intellectual prop-

erty cores usually give no information about

a core’s internal logic (in other words, it is a

black box). As a result, system designers can-

not perform traditional test generation

processes such as automatic test pattern gen-

eration (ATPG) and fault simulation. In-

stead, the core vendor specifies a set of test

vectors that must be applied to the core to

guarantee a certain fault coverage. The prob-

lem is how to apply the specified test vectors

to the core and how to test the logic sur-

rounding the core.

One simple approach for testing embed-

ded cores is to use multiplexing to make the

core’s inputs and outputs accessible to the

chip pins.1 But this approach does not help

with testing the logic surrounding the core

and thus results in degraded fault coverage.

Another approach is to place an isolation

ring around the core, as illustrated in Figure

1. An isolation ring is essentially a boundary

scan that provides full controllability of the

core’s inputs and full observability of the

core’s outputs. It also provides full observ-

ability of the logic driving the core and full

controllability of the logic driven by the core.

The drawback of a full isolation ring is the

large area and performance overhead it

adds. It requires a boundary-scan element

and associated routing for each input and

output of the core and a multiplexer delay

for every path to and from the core. As a re-

sult, a full isolation ring may not be an ac-

ceptable solution in many high-performance

applications. Moreover, for a compact core

with a large number of I/Os, adding a full iso-

lation ring can more than double the area.

We have developed a design-for-testabili-

ty (DFT) method that reduces the area and

performance overhead of using an isolation

ring. This systematic procedure for design-

ing a partial isolation ring provides the same

fault coverage as a full isolation ring but

avoids adding muxes on critical timing

paths. Treating the core as a black box, the

procedure assumes no information about

the core other than the set of test vectors

specified by the core supplier. The proce-

dure uses ATPG techniques to analyze the

user-defined logic (UDL) surrounding the

core. This analysis identifies a maximal set of

core inputs and outputs (including the crit-

ical timing paths) that need not be includ-

ed in the partial isolation ring. If one core is

driving another core, the procedure identi-

fies a maximal set of isolation ring elements

that can be removed from the interface be-

tween the cores.

Selecting core inputs
To start, we focus on reducing the num-

ber of isolation ring elements at the core in-

Using Partial Isolation Rings to
Test Core-Based Designs

PARTIAL ISOLATION RINGS

52 0740-7475/97/$10.00 © 1997 IEEE IEEE DESIGN & TEST OF COMPUTERS

A partial isolation ring
provides the same fault

coverage as a full
isolation ring but avoids
adding multiplexers on
critical timing paths and
reduces area overhead.

The authors examine
several partial isolation
ring selection strategies

that vary in
computational

complexity.

NUR A. TOUBA
BAHRAM POUYA
University of Texas

.

OCTOBER–DECEMBER 1997 53

puts. The isolation ring elements at the core inputs serve two

purposes. First, they provide controllability of the core in-

puts. We can shift the core test vectors into the isolation ring

and apply them directly to the core. The core may have an

internal scan chain for controlling internal flip-flops. In that

case, in addition to shifting a test vector into the isolation

ring, we would also shift a test vector into the internal scan

chain. The second purpose of the isolation ring elements at

the core inputs is to provide observability of the UDL driving

the core. Figure 2 illustrates an isolation ring architecture

using a scan methodology. Testing the UDL involves shift-

ing a test pattern into the scan chain and loading the re-

sponse into the isolation ring.

For a partial isolation ring, we partition the core inputs into

two sets: IR, the set of core inputs included in the ring; and

NIR, the set not included. For the NIR core inputs, we need

an alternate means of applying the specified core test vec-

tors and of observing the outputs of the UDL that drives them.

Our method of applying the test vectors to the NIR core inputs

is to justify the vectors through the UDL that drives them. To

observe the outputs of that UDL, we perform space com-

paction by exclusive-ORing each output driving an NIR core

input with an output driving an IR core input. Then we feed

the combined output into the partial isolation ring.

Selection procedure. The output space of the UDL dri-

ving the core may not contain all the core test vectors spec-

ified by the core supplier. This does not mean that faults in

the core are necessarily redundant. A large set of test vectors

may exist for a fault in the core, but the particular test vector

specified by the core supplier may happen to be one that is

not contained in the UDL’s output space. Because other test

vectors for the fault may exist in the UDL’s output space, the

fault may not be redundant. But we cannot identify those test

vectors without knowledge of the core’s internal logic. Thus,

the problem is to select a set of core inputs that will enable

us to apply all the specified test vectors to the core. We have

devised a selection procedure that minimizes the number of

core inputs included in the partial isolation ring.

The first step is to see which of the specified test vectors

can be justified through the driving UDL and which cannot.

To check each vector, we append an AND gate to the UDL

outputs (each UDL output is an AND gate input). Next we

add inverters on AND gate inputs corresponding to each 0

bit in the vector. We then use an ATPG tool to target a stuck-

at-0 fault at the AND gate output. If the fault is detectable,

we know it is possible to justify the specified test vector

through the UDL to the core inputs. The test vectors that can-

not be justified through the UDL are the ones we must con-

sider in designing the partial isolation ring. If all the test

vectors can be justified through the UDL, no isolation ring el-

ements are needed at the core inputs.

If there are n core inputs, there are 2n possible partial iso-

lation rings, because each core input can be either includ-

ed or not included in the ring. A particular ring enables a

test vector to be applied if the subset of bits in the test vec-

tor corresponding to excluded core inputs can be justified

through the UDL. A ring is a solution if it enables all the spec-

ified test vectors to be applied to the core. We determine

whether a ring is a solution by appending AND gates (AND

gate inputs correspond to excluded core inputs) to the UDL

outputs and performing ATPG as described earlier.

An exhaustive approach for selecting a partial isolation

ring would be to check all 2n possibilities to see which are

solutions. Then one would choose the solution containing

the fewest isolation ring elements and including none of the

core inputs on critical timing paths. However, if the number

of core inputs is large (that is, if n is large), this approach is

not computationally feasible. Thus, we need some other

strategies for searching the exponential space of possible

Embedded core

Chip

Isolation
ring

Figure 1. Isolation ring for testing an embedded core.

Intellectual
property core

Internal scan

Scan chain

User-defined logic

Isolation
ring

Figure 2. Architecture for testing the core and its driving UDL.

.

PARTIAL ISOLATION RINGS

54 IEEE DESIGN & TEST OF COMPUTERS

partial isolation rings. The following paragraphs describe

several strategies, varying in computational complexity. The

first step is always to remove core inputs on critical timing

paths from the isolation ring, since they are the ones that im-

pact performance. After that step, the remaining task is to

remove as many additional core inputs as possible.

Hill climbing—O(n). This procedure removes each core

input from the isolation ring one at a time. After each re-

moval, it checks whether the resulting partial isolation ring

is still a solution. If not, it adds the core input back to the

ring. If the ring is a solution, the core input remains off the

ring. After the procedure loops through all n core inputs, it

stops and the resulting partial isolation ring is the solution.

This search strategy is not very clever, but it is very fast.

Clique hill climbing—O(n2). Let A, B, and C be core in-

puts, and let Ring − {A,B} be the partial isolation ring that re-

sults from removing the set of core inputs A and B. If Ring −
{A,B}, Ring − {B,C}, and Ring − {A,C} are all solutions, that

does not imply that Ring − {A,B,C} is a solution. Consider the

case where 111 is a core test vector, and vectors 110, 011,

and 101 can all be justified through the UDL. Removing any

two core inputs from the partial isolation ring is a solution,

but removing all three is not. If Ring − {A,B} is not a solution,

however, that does imply that Ring − {A,B,C} is not a solu-

tion. In other words, for Ring − {A,B,C} to be a solution, it is

necessary but not sufficient

that Ring − {A,B}, Ring −
{B,C}, and Ring − {A,C} are

all solutions.

From this fact, we can

compute a bound on the to-

tal number of core inputs

that can be removed from

an isolation ring. We do this

by forming a compatibility

graph in which each node

corresponds to a core input.

We place an edge between

two nodes if the ring that re-

sults from removing both

corresponding core inputs is

a solution. The largest clique

(complete subgraph) in the

compatibility graph corre-

sponds to the largest set of

core inputs that potentially

can be removed from the

isolation ring.

To search for the best par-

tial isolation ring, we use the

compatibility graph to guide the order in which hill climb-

ing is performed. The best possible solution obtainable by

removing a particular core input from the isolation ring is

bound by the size of the largest clique the core input is in.

Therefore, we guide the hill-climbing procedure so that it

first considers the core inputs contained in the largest

cliques, since they are most likely to be in the best solution.

We identify the largest cliques, and order the core inputs for

the hill-climbing procedure. Identifying the largest cliques in

a graph is an NP-complete problem, but good heuristics ex-

ist for it.

Clique greedy—O(n3). For this strategy, we construct a

compatibility graph as previously described. We identify the

largest clique. Then we remove from the isolation ring the

core input corresponding to the node that is in the largest

clique and has the largest number of edges. We repeat this

procedure recursively for the resulting partial isolation ring.

Each time we remove a core input from the ring, we add

more constraints for further removing core inputs. As a result,

we remove edges from the compatibility graph. This re-

peated updating of the compatibility graph provides more

accurate information to guide the search.

Branch and bound—O(2n). Since the largest clique in the

compatibility graph provides a bound on the best possible

solution, we can use this information to avoid unproductive

Mux

FF

Scan

MuxTest

Core

User-defined logic

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

(a)

Mux

FF

Scan

MuxTest

Core

User-defined logic

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

XOR XOR

(b)

Figure 3. Full isolation ring (a) and partial isolation ring (b).

.

OCTOBER–DECEMBER 1997 55

searching. When we are exploring a branch of the search

tree, the largest clique in the graph places a bound on the

best possible solution in the branch. If no solution in the

branch can be better than the best ring solution found so

far, we can cut off the branch. In the worst case, this proce-

dure is exponential, but generally it greatly reduces the

search space. We can run the branch-and-bound procedure

as long as we wish. Whenever it stops, it will provide the best

solution it has found so far. If it is allowed to run to com-

pletion, it is guaranteed to find the optimum solution.

Observing the UDL. Our next task is to design a space

compactor that will combine the outputs of the UDL driving

the core, making their test response observable in the par-

tial isolation ring. If n is the number of outputs and k is the

size of the partial isolation ring, we can use a space com-

pactor with n − k exclusive-OR gates. By using the techniques

described by Chakrabarty and Hayes,2 we can ensure that

the UDL can be tested for single stuck-at faults without any

aliasing in the space compactor. These techniques involve

either modifying the test set or making minor circuit modi-

fications that sensitize each fault to an odd number of out-

puts. As a result, the fault’s effect will not be masked in the

exclusive-OR gates but rather will be captured in the partial

isolation ring.

Figure 3 illustrates the results of the core input selection

and space compaction techniques we have described.

Figure 3a shows an example of a full isolation ring. Figure 3b

shows the same ring with the third and fifth core inputs re-

moved and exclusive-OR gates compacting the outputs of

the combinational logic driving those inputs.

Selecting core outputs
Now, our focus shifts to the outputs of the core. The iso-

lation ring elements at the core outputs serve two purposes.

They provide observability of the core outputs and control-

lability of the inputs of the UDL driven by those outputs. If it

were possible to justify a sufficient set of test vectors for the

core-driven UDL through the core itself, we would need only

a shift register for observing the core outputs (or we could

multiplex the outputs to chip pins). A shift register is much

better than an isolation ring because a shift register does not

add any logic on the system paths. An isolation ring, on the

other hand, adds a mux delay on every path and requires

that a test mode line be routed to control the muxes. The

problem is that if the core contains sequential logic, plac-

ing the core in the states needed to justify test vectors for the

UDL at the core outputs may be difficult. The core may have

an internal scan path, but that won’t help if we know noth-

ing about the core’s internal logic.

A full isolation ring solves this problem by enabling the

test vectors to be shifted in and directly applied to the UDL.

The procedure described here reduces the area and per-

formance penalty of a full isolation ring by replacing some

ring elements with shift register elements (or multiplexing

ring elements to chip outputs). The idea is to justify a subset

of the bits of each test vector through the core and use a par-

tial isolation ring to shift in the rest of the bits. Figure 4 shows

an example in which we generate each test vector by shift-

ing the first, second, and fifth bits into a partial isolation ring

and justifying the third and fourth bits through the core. The

goal is to avoid adding isolation ring elements on the criti-

cal timing paths.

The set of core outputs that we need not include in the iso-

lation ring depends on what vectors can be justified at the

core outputs. One set of vectors easily justified at the core

outputs is the output response of the test vectors specified

by the core supplier. Since we will test the core with these

test vectors, their output response will be generated at the

core outputs. Thus, we can use them in testing the UDL dri-

ven by the core outputs. Consider the example in Figure 4.

One of the supplier-specified test vectors is 1011010, and the

corresponding core output vector is 01100. We apply test vec-

tor 1011010 to the core inputs. If the core has an internal scan

path, the appropriate specified scan vector also shifts into

the core’s internal scan path. The corresponding core out-

put vector 01100 is now justified at the core outputs, so we

can use it for testing the UDL driven by the core outputs.

Moreover, we can apply any test vector that has 10 in the third

and fourth bit positions (having the form XX10X) to the dri-

ven UDL by shifting the bits into the ring.

Based on the set of easily justified vectors, we can design

a partial isolation ring that enables a sufficient set of test vec-

tors to be applied to the driven UDL. Depending on the

core’s functionality, it may be possible to identify a greater

User-defined logic

Embedded core

Internal scan

1 0 1 1 0 1 0

0 1 1 0 0

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Figure 4. Using a partial isolation ring at core outputs.

.

PARTIAL ISOLATION RINGS

56 IEEE DESIGN & TEST OF COMPUTERS

number of easily justified vectors than just the output re-

sponse of the supplier-specified test vectors.

Checking core output fault coverage. Let us refer to

the set of vectors easily justified at the core outputs as the

“core output vectors.” Given the core output vectors, we

must determine which core outputs we can remove from

the isolation ring without reducing the UDL’s fault coverage.

Let FRR be the set of faults that require an isolation ring in

order to be detected. FRR equals all the faults in the UDL mi-

nus redundant faults (undetectable by any set of test vec-

tors) and minus faults detectable by the core output vectors.

Computing the set of faults in FRR requires a redundancy

check on the UDL and fault simulation for the core output

vectors.

Removing a set of core outputs from the isolation ring may

restrict the vectors that can be justified at those outputs.

Again consider the example in Figure 4. If justifying a 11 on

the third and fourth core outputs is not possible, no test vec-

tors of the form XX11X can be applied to the UDL. The ques-

tion then is whether or not all the faults in FRR can be

detected without using any test vectors of the form XX11X.

We determine this by performing ATPG with constraints on

the allowable values of a test vector’s bits. These constrained

ATPG techniques3-5 consider the constraints as early as pos-

sible in the ATPG decision-making process. We use these

techniques to check whether the faults in FRR are detectable

under the constraints imposed by a particular partial isola-

tion ring. If some cannot be detected because of the re-

stricted set of vectors that can be applied by that ring, it will

degrade fault coverage and thus is not a solution.

Given the set of excluded core outputs, we determine the

ATPG constraints by analyzing the core output vectors. Let’s

say, for example, that the second, third, and fourth core out-

puts are not included in the partial isolation ring and the

core output vectors are 110101, 100101, 011010, and 011101.

Therefore, the ATPG constraints are that all test vectors must

have the form X101XX, X001XX, X110XX, or X111XX. We can

simplify this set of allowable test cubes to XX01XX and

X11XXX by combining adjacent cubes. The procedure for

checking that a particular partial isolation ring is a solution

is as follows:

1. Set bit positions in the core output vectors corre-

sponding to core outputs included in the partial isola-

tion ring to don’t cares (X’s) to form the set of allowable

test cubes.

2. Use a two-level minimizer to minimize the set of allow-

able test cubes.

3. Perform ATPG for the faults in FRR under the constraint

that test vectors must be contained in the allowable test

cubes.

If all the faults in FRR are detectable under these constraints,

the partial isolation ring is a solution.

An obvious concern about this procedure is the amount

of ATPG it requires. There are several approaches to reduc-

ing the amount. One very effective technique is to perform

fault simulation for some random patterns to reduce the

number of faults needing ATPG. We generate the random

patterns by randomly specifying the unspecified bit positions

in allowable test cubes. This ensures that the random pat-

terns are contained in the allowable test cubes. Another ef-

fective technique is to record each test vector found for each

fault. Since we target the same faults each time we consider

a partial isolation ring, we can check whether one of the pre-

viously identified test vectors for the fault satisfies the cur-

rent constraints. If so, ATPG is not necessary. These two

techniques can dramatically reduce the amount of ATPG re-

quired. Note that not all faults are considered—only those

in FRR. Moreover, as soon as one fault is found untestable

under the constraints, we classify the partial isolation ring as

not being a solution. Thus, almost all the ATPG is targeting

testable faults. Time-consuming ATPG for untestable faults

takes place no more than once per partial isolation ring.

Selection procedure. The procedure for selecting core

outputs to remove from the partial isolation ring is almost

exactly the same as that for core inputs. The only difference

is the method of determining whether the resulting partial

isolation ring is a solution.

Thus, we can use the four

search strategies described

earlier.

Selecting ring elements
at core interfaces

So far we have assumed

that only user-defined logic

surrounds the core. Now we

must extend our techniques

to handle cases in which

Mux

FF

Scan

MuxTest

Driven core

Driving core

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Mux

FF

Scan

MuxTest

Figure 5. Example of full isolation ring at interface between cores.

.

OCTOBER–DECEMBER 1997 57

one core is driving some or all the inputs of another core.

With a full isolation ring, we place ring elements on all the

connections in the interface between cores, as shown in

Figure 5. The issue is which of these elements can be re-

moved without losing fault coverage. As described earlier,

the set of test vectors that can be justified at the driving core’s

output may be limited. If the driving core contains sequen-

tial logic, placing that core in the states needed to justify the

test vectors for the core being driven may be very difficult.

One set of vectors easily justified at the driving core’s out-

puts is the output response of the supplier-specified test vec-

tors. Since we will test the driving core with the specified

test vectors, we can use their output response, generated at

the core outputs, in testing the driven core. It may be possi-

ble to justify other vectors at the output of the driving core,

depending on its functionality.

We use the same procedure for this case as that described

for selecting a partial isolation ring at a core’s inputs, with

one difference: For the previous case, we used ATPG to de-

termine whether a partial vector can be justified at the dri-

ven core’s inputs. For this case, we check to see if that vector

is contained in one of the core output vectors that can be

justified at the driving core’s outputs. So determining

whether a partial isolation ring at the core interface is a so-

lution is a simple procedure: It involves checking whether

all specified test vectors on connections not containing ring

elements are contained in the set of vectors justifiable at the

driving core’s outputs. Thus, we can use all the search strate-

gies described earlier.

Experimental results
We used the procedures described here to select partial

isolation rings for some designs constructed from the MCNC

(Microelectronics Center of North Carolina) benchmark cir-

cuits. For designs in which UDL surrounded a core, we treat-

ed one benchmark circuit as an intellectual property core

and thus as a black box; we treated another benchmark cir-

cuit as the UDL at the core’s input or output. For designs with

two interconnected cores, we used two benchmark circuits

as cores treated as black boxes. We partitioned two bench-

mark circuits, C5315 and C7552, into two parts, one consid-

ered a core and the other either UDL or another core.

Selecting at core inputs. Table 1 shows the results for

experiments in selecting partial isolation rings at a core’s in-

puts. For each design, the table shows the name of the UDL

driving the core, followed by the core’s name and the num-

ber of specified test vectors for the core. (We obtained the test

vectors through ATPG on the core.) Next, the table shows

the number of isolation ring elements in a full isolation ring,

followed by results for each of the four search strategies de-

scribed earlier. For each strategy, the table shows the num-

ber of isolation ring elements in the selected partial isolation

ring, along with the CPU time (CPU times would be much

smaller if we had used an industrial-quality ATPG tool). NA

indicates that a procedure ran for more than five hours.

The procedures ran on a Sun UltraSparc. As the table

shows, we could use the clique-greedy and branch-and-

bound search strategies only when the number of core in-

puts (n) was small (less than 50). The branch-and-bound

strategy is guaranteed to find the optimum solution.

Therefore, where all four search strategies were used, the

results indicate that the clique hill-climbing strategy found

something very close to the optimum solution. In some cas-

es, the simple hill-climbing strategy performed poorly be-

cause early in the procedure it selected a core input that

was incompatible with many other core inputs.

Selecting at core outputs. Table 2 shows our results for

experiments in selecting partial isolation rings at the outputs

Table 1. Results for partial isolation rings at core inputs.

Hill climbing Clique hill Clique greedy Branch and
Core O(n) climbing O(n2) O(n3) bound O(2n)

UDL Test Full Ring Time Ring Time Ring Time Ring Time
name Name vectors ring size size (min.) size (min.) size (min.) size (min.)

vda s838 185 34 31 1 30 1 29 4 29 28
k2 s9234 285 36 33 1 31 3 31 9 31 70
apex7 C499 68 41 9 1 7 2 6 31 6 200
x4 s13207 831 62 9 6 9 15 NA NA NA NA
apex6 s15850 738 77 8 11 8 16 NA NA NA NA
C2670 dsip 63 140 29 15 28 36 NA NA NA NA
C5315-a C5315-b 71 117 74 12 73 30 NA NA NA NA
C7552-a C7552-b 92 261 69 10 63 43 NA NA NA NA

.

PARTIAL ISOLATION RINGS

58 IEEE DESIGN & TEST OF COMPUTERS

of a core. For each design, it shows the core’s name, num-

ber of outputs in the core, and number of core output vec-

tors. Then it shows the name of the UDL driven by the core

and the number of faults that require an isolation ring in or-

der to be detected (faults in FRR). Finally, for two search

strategies, the table shows the number of isolation ring ele-

ments in the selected partial isolation ring and CPU time.

Selecting at core interface. Table 3 shows results for ex-

periments in selecting partial isolation rings at the interface

between two cores. For each design, we show the driving

core’s name, the number of output vectors generated during

testing, the name of the core being driven, and the number

of specified test vectors for the driven core. We show the

number of isolation ring elements in a full isolation ring and

results for each search strategy.

In general, the proportion of removable elements in a par-

tial isolation ring to a full isolation ring is not as high at core

interfaces as in designs

whose UDL drives the core.

This result is due to our con-

servative assumption that

only the output response of

the specified test vectors for

the driving core can be justi-

fied at the core interface.

Again, depending on the dri-

ving core’s functionality, it

may be possible to justify

other vectors and thus re-

duce the number of isola-

tion ring elements needed at

the interface.

OUR RESULTS INDICATE that partial isolation rings provide

a means for significantly reducing DFT overhead in core-

based designs (with no loss of fault coverage). They are an

effective alternative to full isolation rings for supporting the

use of highly optimized cores in timing-critical and area-

limited applications.

Acknowledgments
This work was supported in part by the Advanced Research

Projects Agency under prime contract DABT63-94-C-0045, and in

part by the National Science Foundation under grant MIP-9702236.

References
1. V. Immaneni and S. Raman, “Direct Access Test Scheme—De-

sign of Block and Core Cells for Embedded ASICs,” Proc. Int’l

Test Conf., IEEE Computer Society Press, Los Alamitos, Calif.,

1990, pp. 488-492.

2. K. Chakrabarty and J.P. Hayes, “Efficient Test Response Com-

Table 2. Results for partial isolation rings at core outputs.

Hill climbing Clique hill
Core O(n) climbing O(n2)

Output UDL FRR Full Ring Time Ring Time
Name Outputs vectors name faults ring size size (min.) size (min.)

mm30a 30 210 x1 128 30 11 1 8 6
s9234 39 285 C880 56 39 7 2 7 12
s5378 49 402 apex6 54 49 7 19 7 140
sbc 56 229 i5 87 56 25 12 19 16
s15850 150 738 i4 79 150 28 22 25 180
dsip 197 63 i7 21 197 4 10 4 710
C5315-a 117 34 C5315-b 30 117 12 13 11 200
C7552-a 261 63 C7552-b 80 261 12 25 12 230

Table 3. Results for partial isolation rings at core interfaces.

Hill climbing Clique hill Clique greedy Branch and
Driving core Driven core O(n) climbing O(n2) O(n3) bound O(2n)

Output Test Full Ring Time Ring Time Ring Time Ring Time
Name vectors Name vectors ring size size (min.) size (min.) size (min.) size (min.)

s5378 402 mm30a 210 33 28 1 28 1 26 1 26 136
s9234 285 s838 185 34 29 1 28 1 27 1 27 268
s15850 738 sbc 110 40 34 1 34 2 33 3 NA NA
C2670 193 s13207 831 62 58 1 58 7 57 13 NA NA
dsip 63 s15850 738 77 73 1 73 13 72 25 NA NA
C5315-a 34 C5315-b 71 117 115 1 115 2 113 10 NA NA
s38584 1294 des 110 256 248 1 248 198 NA NA NA NA
C7552-a 63 C7552-b 92 261 257 1 257 52 NA NA NA NA

.

OCTOBER–DECEMBER 1997 59

pression for Multiple-Output Circuits,” Proc. Int’l Test Conf.,

IEEE CS Press, 1994, pp. 501-510.

3. M.H. Konijnenburg, J.T. van der Linden, and A.J. van de Goor,

“Test Pattern Generation with Restrictors,” Proc. Int’l Test Conf.,

IEEE CS Press, 1993, pp. 598-605.

4. M.H. Konijnenburg, J.T. van der Linden, and A.J. van de Goor,

“Automatic Test Pattern Generation for Industrial Circuits with

Restrictors,” Microelectronics J., Vol. 26, No. 7, Oct. 1995, pp.

598-605.

5. P. Wohl, and J. Waicukauski, “Test Generation for Ultra-Large

Circuit Using ATPG Constraints and Test-Pattern Templates,”

Proc. Int’l Test Conf., IEEE CS Press, 1996, pp. 13-20.

Nur A. Touba is an assistant professor in the

Department of Electrical and Computer Engi-

neering at the University of Texas at Austin. His

research interests are in automated design of

testable and fault-tolerant circuits. He received

a National Science Foundation Career Award

in 1997. Touba received a BS degree from the

University of Minnesota and MS and PhD degrees in electrical en-

gineering from Stanford University. He is a member of the IEEE.

Bahram Pouya is a graduate student in the

Department of Electrical and Computer En-

gineering at the University of Texas at Austin.

His technical interests include design for testa-

bility, testing core-based designs, and circuit

design. Pouya received his bachelor’s degree

in electrical engineering from the University of

Texas at Austin. He is a member of Tau Beta Pi, Eta Kappa Nu, and

the IEEE.

Send questions and comments about this article to Nur A. Tou-

ba, University of Texas, Dept. of Electrical and Computer Eng., En-

gineering Science Bldg., Austin, TX 78712-1084; [touba,

pouya]@ece.utexas.edu.

Exciting New Single European Event in
Design, Automation, and Test

DATE98, taking place in the prestigious Palais des Congres, Paris, February 23-26, 1998, is the new unified
European Conference, successor of ED&TC, (already covering EDAC, ETC, and ASIC) and EuroDAC/EuroVHDL.

Aside from a highly selective program of excellent scientific papers, the conference features a large number of in-

teresting activities: tutorials, keynotes, hot topic sessions, panels, roundtables, fringe meetings, a designers’ track,

hands-on tutorials by CAD vendors and developers, and more.

Alongside the conference is a major exhibition of design and test software, methodologies, and services, for which

both major and smaller companies have signed up with presentations of their latest products.

Highlights of DATE98 will be:

■ the keynote session featuring Yervant Zorian (LogicVision), Theo Claassen (Philips Semiconductors), and

Rajeev Jain (UCLA)

■ Hot topic sessions and panels on IP-based system-on-chip design, reconfigurable systems, smart cards, next-

generation design tools, silicon debugging of systems on a chip, embedded memory, and embedded logic

Each of these topics will be covered or debated by prominent engineers.

DATE98 is organized jointly by the EDAA, EDAC, ACM SIGDA, IEEE Computer Society TTTC, IFIP 10.5, and ECSI. It

is also supported by all major professional organizations in the field.

For the DATE98 announcements and final program, visit the Web site: http://www.date-conference.com.

.

