(10) Question 1. Consider a game that has 100 bouncing balls.

```c
void SameSpace(void){
    unsigned long i,j;
    for(i=0; i<99; i++){
        for(j=i+1; j<100; j++){
            if((Ball[i].x == Ball[j].x)&&(Ball[i].y == Ball[j].y)){
                Ball[i].angle = (Ball[i].angle+90)%360;
                Ball[j].angle = (Ball[j].angle+90)%360;
            }
        }
    }
}
```

(5) Question 2. Interface a single-pole double-throw (SPDT) switch to input port PA0

```
+3.3
Microcontroller
            
PA0
            
A
B
C
```

(5) Question 3. Interface an LED to PA1. R = (3.3-1.2-0.1)/2mA = 2V/2mA = 1000Ω.

```
+3.3
R
PA1
```

(8) Problem 4. Implement a C function outputs a string to UART0.

```c
void UART_OutString(unsigned char *pt){
    while(*pt){
        while((UART0_FR_R & 0x20) != 0){};    // Wait until TXFF = 0
        UART0_DR_R = *pt;      // output
        pt++;                  // next
    }
}
```

(8) Question 5. Design a 5-bit DAC using the binary-weighted configuration. Any set of resistor values that doubles is ok. Choose values in 1k to 1M range.

```
Microcontroller

PE0 16kΩ
PE1 8kΩ
PE2 4kΩ
PE3 2kΩ
PE4 1kΩ
DACout
```
(6) Question 6. Add C code to define the following variables

- **v1** should be a public permanently-allocated 32-bit signed variable
- **v2** should be a temporary 32-bit unsigned variable private to the function `Fun_Init`
- **v3** should be a permanently-allocated 16-bit signed variable private to the function `Fun_Init`
- **v4** should be a permanently-allocated 16-bit signed variable, private to the file `Fun.c`

```c
// This is the first line of the Fun.c code file
long v1;          // public permanent
static short v4;  // private to file, permanent

void Fun_Init(int in){     // code
    unsigned long v2; // private to function, temporary
    static short v3;  // private to function, permanent
}
// this is the last line of the Fun.c code file
```

(10) Question 7. Show an assembly subroutine that sets each element of the buffer to its index value. Assuming i varies from 0 to 99, set `Buffer[i] = i`;

```assembly
Fill LDR R0,=Buffer    ;pointer to buffer
    MOV R1,#0         ;index
    MOV R2,#100       ;ending index
loop STR R1,[R0]       ;put index into buffer
    ADD R1,#1         ;next index
    ADD R0,#4         ;next address
    CMP R1,R2
    BLO loop
BX  LR
```

(10) Question 8. Write C or assembly code that creates this output on PA2 using SysTick interrupts.

```
1s 1s 1s 3s 3s
```

Part a) Show the initialization code that runs once

```c
volatile unsigned long Counts = 0;
#define PA2 (*((volatile unsigned long *)0x40004010))
void SysTick_Init(void){
    SYSCTL_RCGC2_R |= 0x01;    // activate port A
    Counts = 0;
    GPIO_PORTA_DIR_R |= 0x04;   // make PA0 out
    GPIO_PORTA_DEN_R |= 0x04;   // enable digital I/O on PA0
    NVIC_ST_CTRL_R = 0;         // disable SysTick during setup
    NVIC_ST_RELOAD_R = 4999999; // reload value
    NVIC_ST_CURRENT_R = 0;      // any write to current clears it
    NVIC_SYS_PRI3_R = (NVIC_SYS_PRI3_R&0x00FFFFFF)|0x40000000;
    NVIC_ST_CTRL_R = 0x07;      // enable,source,arm
    EnableInterrupts();
    PA2 = 0x04;                 // PA2 initially high
}
```
Part b) Show the SysTick ISR

```c
// Executed every 100ms
void SysTick_Handler(void){
    Counts = Counts + 1;
    if(Count == 10){
        PA2 = 0x00;  // PA2 now is low
    }
    if(Count == 40){
        PA2 = 0x04;  // PA2 now is high
        Count = 0;
    }
}
```

(10) Question 9. State the term that is best described by each definition.

Part a) An address that specifies the location of an interrupt service routine. \textbf{vector}

Part b) A type of computer architecture where data is read from memory in the same way machine codes are fetched from memory. \textbf{von Neumann}

Part c) The theorem that says the frequency at which the ADC is sampled must be higher than the frequency of the signal being sampled. \textbf{Nyquist}

Part d) An interfacing approach where the hardware causes a specific software routine to be executed. \textbf{interrupts}

Part e) A debugging technique that stores strategic information into an array at run time, and the contents of the array are observed afterwards. \textbf{dump}

Part f) A term that describes a variable specifying whether some or all of the software has access to the variable. Hint: the answer is not private, and the answer is not public. \textbf{scope}

Part g) A measure of software size, specifying how many bytes of memory are required for the software. \textbf{Static efficiency}

Part h) A software step that explicitly clears the trigger flag. \textbf{acknowledge}

Part i) The name given to describe 1,048,576 bytes. \textbf{mebibyte}

Part j) A type of digital logic where the output is either zero or off. \textbf{Open collector}

(4) Question 10. The Stellaris LM3S1968 has a 0 to 3V 10-bit ADC. What will be the digital output of the ADC if the input voltage is 0.75 V? \[1024 \times 0.75/3 = 256\]

(2) Question 11. If R0 equals -10, what will be in register R0 after executing these instructions?
```
LSL  R1,R0,#3 ; R1 is -80 (times 8)
ADD  R0,R0,R1 ; R0 is -80 + -10 = -90
```
This is a multiply by 9 operation, works with signed or unsigned numbers

(6) Question 12. Consider a SysTick ISR.
Part a) 8 registers are pushed R0,R1,R2,R3,R12,LR,PC,PSW

Part b) Since LR = 0xFFFFFFF9, it pops the 8 registers R0,R1,R2,R3,R12,LR,PC,PSW
(10) Question 13. A distance is represented as unsigned binary fixed-point number with resolution of 2^{-4} cm. Calculate the cost $= (1.5 \text{ dollars/cm}) \cdot \text{distance}$. The cost is represented as an unsigned decimal fixed-point number with resolution of 0.01. The function should return the variable integer representing cost in Register R0. For example if the distance is 1.25 cm. The cost will be $(1.5 \text{ dollars/cm}) \cdot 1.25 \text{ cm} = 1.87 \text{ (or \$1.88 depending on how you round)}$.

Part a) Let I be the variable integer representing distance. Give an equation relating distance and I?

\[
\text{distance} = I \cdot 2^{-4} \text{ cm}
\]

Part b) Let J be the variable integer representing cost. Give an equation relating cost and J?

\[
\text{cost} = J \cdot 0.01
\]

Part c) Write the assembly subroutine that converts distance to cost. Start with the desired operation

\[
\text{cost} = (1.5 \text{ dollars/cm}) \cdot \text{distance} \\
J \cdot 0.01 = (1.5 \text{ dollars/cm}) \cdot I \cdot 2^{-4} \text{ cm} \\
J = 150 \cdot I / 16
\]

Multiply first and divide second

CalculateCost

1. \text{MOV} R1, #150
2. \text{MUL} R0, R0, R1 ; 150 \cdot I
3. \text{LSR} R0, R0, #4 ; 150 \cdot I / 16
4. \text{BX LR}

(6) Question 14. (a) is 8 because R4 and R5 are on top. (b) is 1 because this is an 8-bit FIFO, (c) is 4 because we are deallocating 1 word, 4 bytes.

```asm
pt EQU 8 ; ??(a)??

Fifo_Get
PUSH {R0} ; allocate local
PUSH {R4, R5}
LDR R0, =PutPt
LDR R0, [R0]
LDR R1, =GetPt
LDR R2, [R1]
CMP R2, R0
BNE NotEmpty
MOV R0, #0
B done

NotEmpty
LDRSB R3, [R2]
LDR R4, [SP, #pt]
STRB R3, [R4]
ADD R2, R2, #1
LDR R5, =Fifo+FIFOSIZE
CMP R2, R5
BNE NoWrap
LDR R2, =Fifo

NoWrap
STR R2, [R1]

done
POP {R4, R5}
ADD SP, SP, #4
BX LR
```

```c
#define FIFOSIZE 10
char volatile *PutPt;
char volatile *GetPt;
char static Fifo[FIFOSIZE];

int Fifo_Get(char *pt){
    if(PutPt == GetPt){
        return(0);
    }
    *pt = *(GetPt);
    Get!Pt++;  
    if(GetPt== &Fifo[FIFOSIZE]){  
        GetPt = &Fifo[0];
    }
    return(1);
}
```