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This chapter focuses on the automated mapping of high level specifica-
tions of DSP applications into implementation platforms that employ program-
mable DSPs. Since programmable DSPs are often used in conjunction with other
types of programmable processors, such as microcontrollers and general-purpose
microprocessors, and with various types of hardware modules, such as FPGAs,
and ASIC circuitry, this mapping task, in general, is one of cosynthesis — the
joint synthesis of both hardware and software — for a heterogeneous multipro-
cessor.

Since a large variety of cosynthesis techniques have been developed to
date, it is not possible here to provide comprehensive coverage of the field.
Instead, we focus on a subset of topics that are central to DSP-oriented cosynthe-
sis — application modeling, hardware/software partitioning, synchronization
optimization, and block-processing. Some important topics related to cosynthesis
that are not covered here include memory management [1, 11, 26, 37, 53], which
is discussed in Chapter 10; DSP code generation from procedural language spec-
ifications [39], which is the topic of Chapter 7; and performance analysis [36, 49,
54]. 

Additionally, we focus on synthesis from coarse-grain dataflow models
due to the increasing importance of such modeling in DSP design tools, and the
ability of such modeling to expose valuable, high-level structure of DSP applica-
tions that is difficult to deduce from within compilers for general purpose pro-
gramming models, and other types of models. Thus, we do not explore
techniques for fine-grain cosynthesis [21], including synthesis of application-
specific instruction processors (ASIPs) [43], nor do we explore cosynthesis for
control-dominant systems, such as those based on procedural language specifica-
tions [22], communicating sequential processes [50], and finite state machine
models [6]. All of these are important directions within cosynthesis research, but
they do not fit centrally within the DSP-oriented scope of this chapter.

Motivation for coarse-grain dataflow specification stems from the grow-
ing trend towards specifying, analyzing, and verifying embedded system designs
in terms of domain-specific concurrency models [33], and the increasing use of
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dataflow-based concurrency models in high-level design environments for DSP
system implementation. Such design environments, which enable DSP systems
to be specified as hierarchies of block diagrams, offer several important advan-
tages, including intuitive appeal, and natural support for desirable software engi-
neering practices such as library-based design, modularity, and design reuse

Potentially, the most useful benefit of dataflow-based graphical program-
ming environments for DSP is that carefully-specified graphical programs can
expose coarse-grain structure of the underlying algorithm, and this structure can
be exploited to facilitate synthesis and formal verification in a wide variety of
ways. For example, the cosynthesis tasks of partitioning and scheduling — deter-
mining the resources on which the computations in an application will execute,
and the execution ordering of computations assigned to the same resource — typ-
ically have a large impact on all of the key implementation metrics of a DSP sys-
tem. A dataflow-based system specification exposes high-level partitioning and
scheduling flexibility that is often not possible to deduce manually or automati-
cally from procedural language (e.g., assembly language or C) specifications.
This flexibility can be exploited by cosynthesis tools to streamline an implemen-
tation based on the given set of performance and cost objectives. We will elabo-
rate on partitioning and scheduling of dataflow-based specifications in Sections
3, 4, and 6.

The organization of the remainder of this chapter is as follows. We begin
with a brief summary of our notation in working with fundamental, discrete math
concepts. Then we discuss the principles of coarse-grain dataflow modeling that
underlie many high-level DSP design tools. This discussion includes a detailed
treatment of synchronous dataflow and cyclo-static dataflow, which are two of
the most popular forms of dataflow employed in DSP design. Next, we review
three techniques — GCLP, COSYN, and the evolutionary algorithm approach of
CodeSign — for automated partitioning of coarse-grain dataflow specifications
into hardware and software. In Section 5, we present an overview of techniques
for efficiently synchronizing multiple processing elements in heterogeneous mul-
tiprocessor systems, such as those that result from hardware/software cosynthe-
sis, and in Section 6, we discuss techniques for optimizing the application of
block processing, which is a key opportunity for improving the throughput of
cosynthesis solutions. Finally, we conclude in Section 7 with a summary of the
main developments in the chapter. Throughout the chapter, we occasionally
incorporate minor semantic modifications of the techniques that we discuss —
without changing their essential behavior — to promote conciseness, clarity, and
more uniform notation.
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1  Background
We denote the set of non-negative integers  by the symbol

, the set of extended non-negative integers  by , the set of posi-
tive integers by , the set of extended integers 
by , and the cardinality of (number of elements in) a finite set  by . By a
directed graph, we mean an ordered pair , where  is a set of objects
called vertices, and  is a set of ordered pairs, called edges, of elements in .
We use the usual pictorial representation of directed graphs in which circles rep-
resent vertices, and arrows represent edges. For example, Figure 1 represents a
directed graph with vertex set , and edge set

. (1)

If  is an edge in a directed graph, we write , and
; and we say that  is the source vertex of ,  is the

sink vertex of ;  is directed from  to ;  is an outgoing edge
of ; and  is an incoming edge of . 

Given a directed graph , and a vertex , we define the
incoming and outgoing edge sets of  by

, and , (2)

respectively. Furthermore, given two vertices  and  in , we say that  is a
predecessor of  if there exists  such that  and ;
we say that  is a successor of  if  is a predecessor of ; and we say that

 and  are adjacent if  is a successor or predecessor of . A path in 
is a finite sequence  such that
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Figure 1. An example of a directed graph.
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for , . (3)

Thus, , , , and
 are examples of paths in Figure 1.

We say that a path  originates at the vertex ,
and terminates at , and we write

, and 

. (4)

A cycle is a path that originates and terminates at the same vertex. A cycle
 is a simple cycle if  for all . In Figure 1,

, , and  are examples
of simple cycles. The path  is a cycle that is not
a simple cycle.

By a subgraph of a directed graph , we mean the directed
graph formed by any subset  together with the set of edges

. For example, the directed graph

(5)

is a subgraph of the directed graph shown in Figure 1.
Given a directed graph , a sequence of vertices 

is a chain that joins  and  if  is adjacent to  for .
We say that a directed graph is connected if for any pair of distinct members ,

 of , there is a chain that joins  and . Thus, the directed graph in Figure 1
is not connected (e.g., since there is no chain that joins  and ), while the sub-
graph associated with the vertex subset  is connected. 

A strongly connected directed graph  has the property that between
every distinct pair of vertices  and  in , there is a directed path from  to 
and a directed path from  to . A strongly connected component (SCC) of a
directed graph is a maximal strongly connected subgraph. The directed graph in
Figure 1 contains four SCCs. Two of these SCCS —  and  —
are called trivial SCCs since each contains a single vertex and no edges. The
other two SCCS in Figure 1 are the directed graphs  and , where

, , , and
.

Many excellent textbooks, such as [17, 52], provide elaboration on the
graph-theoretic fundamentals summarized in this section.
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2  Coarse-grain dataflow modeling for DSP

2.1  Dataflow modeling principles
In the dataflow paradigm, a computational specification is represented as a

directed graph. Vertices in the graph (called actors) correspond to computational
modules in the specification. In most dataflow-based DSP design environments,
actors can be of arbitrary complexity. Typically, they range from elementary
operations such as addition or multiplication to DSP subsystems such as FFT
units or adaptive filters.

An edge  in a dataflow graph represents the communication of
data from  to  . More specifically, an edge represents a FIFO (first-in-first-
out) queue that buffers data values (tokens) as they pass from the output of one
actor to the input of another. When dataflow graphs are used to represent signal
processing applications, a dataflow edge  has a non-negative integer delay

 associated with it. The delay of an edge gives the number of initial data
values that are queued on the edge. Each unit of dataflow delay is functionally
equivalent to the  operator in DSP: the sequence of data values  gener-
ated at the input of the actor  is equal to the shifted sequence ,
where  is the data sequence generated at the output of the actor .

A dataflow actor is enabled for execution any time it has sufficient data on
its incoming edges (i.e., in the associated FIFO queues) to perform its specified
computation. An actor can execute (fire) at any time when it is enabled (data-
driven execution). In general, the execution of an actor results in some number of
tokens being removed (consumed) from each incoming edge, and some number
being placed (produced) on each outgoing edge. This production activity in gen-
eral leads to the enabling of other actors.

The order in which actors execute is not part of a dataflow specification,
and is constrained only by the simple principle of data-driven execution defined
above. This is in contrast to many alternative programming models, such those
that underlie procedural languages, in which execution order is overspecified by
the programmer [4]. The actor execution order for a dataflow specification may
be determined at compile time (if sufficient static information is available), at
run-time, or using a mixture of compile-time and run-time techniques.

2.2  Synchronous dataflow 
Synchronous dataflow (SDF), introduced by Lee and Messerschmitt [34],

is the simplest, and currently, the most popular form of dataflow modeling for
DSP design. SDF imposes the restriction that the number of data values produced
by an actor onto each outgoing edge is constant, and similarly, the number of data
values consumed by an actor from each incoming edge is constant. Thus, an SDF

v1 v2,( )
v1 v2

e
e( )del

z 1– yn{ }
e( )snk xn e( )del–{ }

xn{ } e( )src
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edge  has two additional attributes — the number of data values produced onto
 by each firing of the source actor, denoted , and the number of data val-

ues consumed from  by each firing of the sink actor, denoted .

Example 1:  A simple example of an SDF abstraction is shown in Figure 2. Here,
each edge is annotated with the number of data values produced and consumed
by the source and sink actors, respectively. For example, , and

. The “2D” next to the edge  represents two units of
delay. Thus, .

The restrictions imposed by the SDF model offer a number of important
advantages, including static scheduling, which avoids the execution time and
power consumption overhead, and the unpredictability of dynamic scheduling
approaches; and decidability of key verification problems — in particular, deter-
mination of bounded memory requirements and deadlock avoidance. These two
verification problems are critical in the development of DSP applications since
DSP systems involve iterative operation on vast, often unbounded, sequences of
input data. Not all SDF graphs permit admissible operation on unbounded input
sets — that is, operation without deadlock, and without unbounded data accumu-
lation on one or more edges. However, it can always be determined at compile
time whether or not admissible operation is possible for a given SDF graph. In
exchange for its strong advantages, the SDF model has limited expressive power
— not all applications can be expressed in the model.

A necessary and sufficient condition for admissible operation to be possi-
ble for an SDF graph is the existence of a valid schedule for the graph, which is a

e
e prd e( )

e cns e( )

A

B C D

E

1
2

1

2

1

11

1

5

1 1

10

2D

Figure 2. An example of an SDF graph.
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finite sequence of actor firings that executes each actor at least once, fires actors
only after they are enabled, and produces no net change in the number of tokens
queued on each edge. SDF graphs for which valid schedules exist are called con-
sistent SDF graphs. 

Efficient algorithms have been developed by Lee and Messerschmitt [34]
to determine whether or not a given SDF graph is consistent, and to determine the
minimum number of times that each actor must be fired in a valid schedule. We
represent these minimum numbers of firings by a vector (called the repetitions
vector) , indexed by the actors in  (we often suppress the subscript if  is
understood). These minimum numbers of firings can be derived by finding the
minimum positive integer solution to the balance equations for , which specify
that  must satisfy

, for every edge  in . (6)

Associated with any valid schedule , there is a positive integer 
such that  fires each actor  exactly  times. This number 
is referred to as the blocking factor of .

Given a consistent SDF graph , the total number of samples exchanged
(per schedule iteration) on an SDF edge  in , denoted , is defined
by the equal-valued products in the LHS and RHS of (6). That is,

. (7)

Example 2:  Consider again the SDF graph of Figure 2. The repetitions vector of
this graph is given by 

. (8)

Additionally, we have , and .

If a repetitions vector exists for an SDF graph, but a valid schedule does
not exist, then the graph is deadlocked. Thus, an SDF graph is consistent if and
only if a repetitions vector exists, and the graph is not deadlocked. For example,
if we reduce the number of delays on the edge  in Figure 2 (without add-
ing delay to any of the other edges), then the graph will become deadlocked.

In summary, SDF is currently the most widely-used dataflow model in
commercial and research-oriented DSP design tools. Although SDF has limited
expressive power, the model has proven to be of great practical value in the
domain of signal processing and digital communication. SDF encompasses a
broad and important class of applications, including modems, digital audio
broadcasting systems, video encoders, multirate filter banks, and satellite

qG G G
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q

e( )src( )q prd e( )× e( )snk( )q cns e( )×= e G
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e G TNSEG e( )

TNSEG e( ) e( )src( )q prd e( )× e( )snk( )q cns e( )×= =

A B C D E, , , ,( )q 10 2 1 1 2, , , ,( )=
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receiver systems, just to name a few [2, 11, 12, 34, 46, 51]. Commercial tools that
employ SDF semantics include Simulink by The Math Works, SPW by Cadence,
and ADS by Hewlett Packard. SDF-based research tools include Gabriel [32] and
several key domains in Ptolemy [16], from U.C. Berkeley; and ASSIGN from
Carnegie Mellon [40]. Except where otherwise noted, all of the cosynthesis tech-
niques discussed in this chapter are applicable to SDF-based specifications.

2.3  Alternative dataflow models
To address the limited expressive power of SDF, a number of alternative

dataflow models have been investigated for the specification of DSP systems.
These can be divided into three major groups — the decidable dataflow models,
which, like SDF, enable bounded memory and deadlock determination to be
solved at compile time; the dynamic dataflow models, in which there is sufficient
dynamism and expressive power that the bounded memory and deadlock prob-
lems become undecidable; and the dataflow meta-models, which are model-inde-
pendent mechanisms for adding expressive power to broad classes of dataflow
modeling approaches. Decidable dataflow models include SDF; cyclo-static
dataflow [12] and scalable synchronous dataflow [44], which we discuss in Sec-
tions 2.4 and 6, respectively; and multidimensional synchronous dataflow [35]
for expressing multidimensional DSP applications, such as those arising in image
and video processing. Dynamic dataflow models include boolean dataflow and
integer-controlled dataflow [14, 15], and bounded dynamic dataflow [41]. Meta-
modeling techniques relevant to dataflow include the starcharts approach [23],
which provides flexible integration of finite state machine and dataflow models,
and parameterized dataflow [7, 8], which provides a general mechanism for
incorporating dynamic reconfiguration capabilities into arbitrary dataflow mod-
els.

2.4  Cyclo-static dataflow 
Cyclo-static dataflow (CSDF) and scalable synchronous dataflow

(described in Section 6) are presently the most widely-used alternatives to SDF.
In CSDF, introduced by Bilsen, Engels, Lauwereins, and Peperstraete, the num-
ber of tokens produced and consumed by an actor is allowed to vary as long as
the variation takes the form of a fixed, periodic pattern [12]. More precisely, each
actor  in a CSDF graph has associated with it a fundamental period ,
which specifies the number of phases in one minimal period of the cyclic produc-
tion/consumption pattern of . For each incoming edge  of , the scalar SDF
attribute  is replaced by a -tuple , where each

 is a nonnegative integer that gives the number of data values consumed from
 by  in the th phase of each period of . Similarly, for each outgoing edge
,  is replaced by a -tuple , which gives the

numbers of data values produced in successive phases of .

A τ A( ) Z+∈

A e A
cns e( ) τ A( ) Ce 1, Ce 2, … Ce τ A( ),, , ,( )

Ce i,

e A i A
e prd e( ) τ A( ) Pe 1, Pe 2, … Pe τ A( ),, , ,( )

A
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Example 3:  A simple example of a CSDF actor is a conventional downsampler
actor from multirate signal processing. Functionally, a downsampler actor (with
downsampling factor ) has one incoming edge and one outgoing edge, and per-
forms the function , where for ,  and 
denote the th data values produced and consumed, respectively, by the actor.
Thus, for every input value that is copied to the output,  input values are
discarded. This functionality can be specified by a CSDF actor that has 
phases. A data value is consumed from the incoming edge for all  phases,
resulting in the -component consumption tuple ; however, a data
value is produced onto the outgoing edge only on the first phase, resulting in the
production tuple .

Like SDF, CSDF permits efficient verification of bounded memory
requirements and deadlock avoidance [12]. Furthermore, static schedules can
always be constructed for consistent CSDF graphs.

A CSDF actor  can easily be converted into an SDF actor  such that if
identical sequences of input data values are applied to  and , then identical
output data sequences result. Such a functionally-equivalent SDF actor  can be
derived by having each firing of  implement one fundamental CSDF period of

 (that is,  successive phases of ). Thus, for each incoming edge of
, the SDF parameters of  are given by

; ; and similarly, , (9)

where  is the corresponding incoming edge of the CSDF actor .
Since any CSDF actor can be converted in this manner to a functionally

equivalent SDF actor, it follows that CSDF does not offer increased expressive
power at the level of individual actor functionality (input-output mappings).
However, the CSDF model does offer increased flexibility in compactly and effi-
ciently representing interactions between actors.

Example 4:  As an example of increased flexibility in expressing actor interac-
tions, consider the CSDF specification illustrated in Figure 3. This specification
represents a recursive digital filter computation of the form

. (10)

In Figure 3, the two-phase CSDF actor labeled  represents a scaling (multipli-
cation) by the constant factor . In each of its two phases, actor  consumes a
data value from one of its incoming edges, multiplies the data value by , and

N
y i[ ] x N i 1–( ) 1+[ ]= k Z+∈ y k[ ] x k[ ]
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∑= cns e′( ) Ce i,

i 1=
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e A
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Figure 3. (a) An example that illustrates the compact modeling of
resource sharing using CSDF. The actors labeled frk denote dataflow
“forks,” which simply replicate their input tokens on all of their output
edges. The top right portion of the figure gives a valid schedule for this
CSDF specification. Here,  and  denote the first and second phases
of the CSDF actor . (b) The SDF version of the specification in (a). This
graph is deadlocked due to the presence of a delay-free cycle.
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produces the resulting value onto one of its outgoing edges. The CSDF specifica-
tion of Figure 3 thus exploits our ability to compute (10) using the equivalent for-
mulation

, (11)

which requires only addition actors and -scaling actors. Furthermore, the two
-scaling operations contained in (11) are consolidated into a single CSDF actor

(actor ). 

Such consolidation of distinct operations from different data streams
offers two advantages. First, it leads to more compact representations since fewer
vertices are required in the CSDF graph. For large or complex applications, this
can result in more intuitive representations, and can reduce the time required to
perform various analysis and synthesis tasks. Second, it allows a precise model-
ing of resource sharing decisions — pre-specified assignments of multiple oper-
ations in a DSP application onto individual hardware resources (such as
functional units) or software resources (such as subprograms) — within the
framework of dataflow. Such pre-specified assignments may arise from con-
straints imposed by the designer, and from decisions taken during synthesis or
design space exploration. 

Another advantage offered by CSDF that is especially relevant to cosyn-
thesis tasks is that by decomposing actors into a finer level (phase-level) of spec-
ification granularity, basic behavioral optimizations such as constant propagation
and dead code elimination [3, 20] are facilitated significantly [42]. As a simple
example of dead code elimination with CSDF, consider the CSDF specification
shown in Figure 4(a) of a multirate FIR filtering system that is expressed in terms
of basic multirate building blocks. From this graph, the equivalent “acyclic pre-
cedence graph,” (APG) shown in Figure 4(b), can be derived using concepts dis-
cussed in [12, 34]. In the CSDF APG, each actor corresponds to a single phase of
a CSDF actor or a single firing of an SDF actor within a valid schedule. We will
discuss the APG concept in more detail in Section 3.1. 

From Figure 4(b), it is apparent that the results of some computations
(SDF firings or CSDF phases) are never needed in the production of any of the
system outputs. Such computations correspond to dead code and can be elimi-
nated during synthesis without compromising correctness. For this example, the
complete set of subgraphs that correspond to dead code is illustrated in Figure
4(b). Parks, Pino, and Lee show that such “dead subgraphs” can be detected with
a straightforward algorithm [42].

Other advantages of CSDF include improved support for hierarchical
specifications, and more economical data buffering [12]. 

yn k kyn 1– xn+( ) xn 1–+=

k
k

A
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In summary, CSDF is a useful generalization of SDF that maintains the
properties of efficient verification, and static scheduling, while offering a more
rich range of inter-actor communication patterns, and improved support for basic
behavioral optimizations. CSDF concepts were introduced in the GRAPE design
environment [30], which is a research tool developed at K. U. Leuven, and are
currently used in a number of commercial design tools such as DSP Canvas by
Angeles Design Systems, and Virtuoso Synchro by Eonic Systems.

3  Multiprocessor implementation of dataflow models
A fundamental task in synthesizing hardware and software from a data-

flow specification is that of scheduling, which, as described in Section 2.2, refers
to the process of determining the order in which actors will be executed. During
cosynthesis, it is often desirable to obtain efficient, parallel implementations,
which execute multiple actor firings simultaneously on different resources.

For this purpose, the class of “valid schedules” introduced in Section 2.2 is
not sufficient; multiprocessor schedules, which consist of multiple firing

IN 3 FIR 2 OUT

A B C
(1,0,0) (1,1,1) (1,1) (1,0)

1 1

IN1 OUT1A1 B1 C1

A2 B2 C2

OUT2A3 B3 C3

IN2 A4 B4 C4

OUT3A5 B5 C5

A6 B6 C6

“dead
subgraphs”

1 1

Figure 4. An example of efficient dead code elimination using CSDF.

(a)

(b)
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sequences — one for each processing resource — are required. However, the
consistency concepts developed in Section 2.2, are inherent to SDF specifica-
tions, and apply regardless of whether or not parallel implementation is used. In
particular, when performing static, multiprocessor scheduling of SDF graphs, it is
still necessary to first compute the repetitions vector, and also, to verify that the
graph is deadlock-free, and the techniques for accomplishing these objectives are
no different for the multiprocessor case.

However, there are a number of additional considerations that arise when
attempting to construct and implement multiprocessor schedules. We elaborate
on these in the remainder of this section.

3.1  Precedence expansion graphs
Associated with any connected, consistent SDF graph , there is a unique

directed graph, called its equivalent acyclic precedence graph (APG), that speci-
fies the precedence relationships between distinct actor firings throughout an iter-
ation of a valid schedule for  [34]. Cosynthesis algorithms typically operate on
this APG representation since it fully exposes inter-firing concurrency, which is
hidden in the more compact SDF representation. The APG can thus be viewed as
an intermediate representation when performing cosynthesis from an SDF speci-
fication.

Each vertex of the APG corresponds to an actor firing within a single iter-
ation period of a valid schedule. Thus, for each actor  in an SDF graph, there
are  corresponding vertices in the associated APG. For each

, the vertex associated with the th firing of  is often
denoted as . Furthermore, there is an APG edge directed from the vertex corre-
sponding to firing  to the vertex corresponding to firing  if and only if at
least one token produced by  is consumed by . 

Example 5:  As a simple example, Figure 5 below shows an SDF graph and its
associated APG.

G

G

A
A( )q

i 1 2 … q A( ), , ,= i A
Ai

Ai Bj
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Figure 5. (a) An SDF graph, and (b) its equivalent APG.
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For an efficient algorithm that systematically constructs the equivalent
APG from a consistent SDF graph, we refer the reader to [47]. Similar techniques
can be employed to map CSDF specifications into equivalent APG representa-
tions.

We refer to an APG representation of an SDF or CSDF application specifi-
cation as a dataflow application graph, or simply, an application graph. In other
words, an application graph is an application specification in which each vertex
represents exactly one firing within a valid schedule for the graph. Additionally,
when the APG is viewed in isolation (i.e., independent of any particular SDF
graph), each vertex in the APG may be referred to as an actor without ambiguity.

3.2  Multiprocessor scheduling models
Cosynthesis requires two central tasks — allocation of resources (e.g., pro-

grammable processors, FPGA devices, and so-called “algorithm-based” comput-
ing modules [38]), and scheduling of application actors onto the allocated
resources. The scheduling task can be further subdivided into three main opera-
tions: assigning actors to processors, ordering actors on each processor, and
determining the time at which each actor begins execution. Based on whether
these scheduling operations are performed at run-time or compile-time, we can
classify multiprocessor scheduling strategies into four categories — fully static,
static assignment, fully dynamic, and self-timed scheduling [31]. In fully-static
scheduling, all three scheduling operations are performed at compile-time; in
static allocation, only the processor assignment is performed at compile-time;
and in the fully dynamic approach, all three operations are completed at run-time.
As we move from fully static to fully dynamic scheduling, we trade-off simplic-
ity and lower run-time cost for increased generality. 

For DSP systems, an efficient and popular scheduling model is the self-
timed model [31], where we obtain a fully static schedule, but we ignore the pre-
cise timing that such a strategy would enforce. Instead, processors synchronize
with one another only based on interprocessor communication (IPC) require-
ments. Such a strategy retains much of the reduced overhead of fully-static
scheduling; offers robustness when actor execution times are not constant or pre-
cisely known; improves efficiency by eliminating extraneous synchronization
requirements; eliminates the need for specialized synchronization hardware; and
naturally supports asynchronous design [31, 49]. The techniques discussed in this
chapter are suitable for incorporation in the context of fully-static or self-timed
scheduling.

3.3  Scheduling techniques
Numerous scheduling algorithms have been developed for multiprocessor

scheduling of dataflow application graphs. Two general categories of scheduling
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techniques that are frequently used in cosynthesis approaches are clustering and
list scheduling.

Clustering algorithms for multiprocessor scheduling operate by incremen-
tally constructing groupings, called clusters, of actors that are to be executed on
the same processor. Clustering and list scheduling can be used in a complemen-
tary fashion. Typically, clustering is applied to focus the efforts of a list schedul-
ing algorithm on effective processor assignments. When used efficiently,
clustering can significantly enhance the results produced by list scheduling, and a
variety of other scheduling techniques.

In list scheduling, a priority list  of actors is constructed; a global time
clock  is maintained; and each actor  is eventually mapped into a time inter-
val  on some processor (the time intervals for two distinct actors assigned
to the same processor cannot overlap). The priority list  is a linear ordering

 of the actors in the input application graph 
( ) such that for any pair of distinct actors  and ,  is to
be given higher scheduling priority than  if and only if . Each actor is
mapped to an available processor as soon as it becomes the highest-priority actor
— according to  — among all actors that are ready. An actor is ready if it has
not yet been mapped, but its predecessors have all been mapped, and all satisfy

, where  is the current value of . For self-timed implementation, actors
on each processor are ordered according to the order of their associated time
intervals. 

A wide variety of actor prioritization schemes for list scheduling can be
specified in terms of a parameterized longest path function

, (12)

where  denotes the application graph that is being scheduled; 
is any actor in ;  is a function that maps application graph actors
into (extended) integers (vertex weights); and similarly,  is a function
that maps application graph edges into integers (edge weights). The value of

 is defined to be

. (13)
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Under this formulation, the priority of an actor is taken to be the associated value
of ; in other words, the priority list for list scheduling is constructed
in decreasing order of the metric .

Example 6:  If actor execution times are constant,  is taken to be the execu-
tion time of , and  is taken to be the zero function on  (  for all

), then  gives the famous Hu-level priority function [25],
which is the value of the longest-cumulative-execution-time path that originates
at a given actor. For homogeneous communication networks, another popular pri-
ority function is obtained by taking  to be the interprocessor communica-
tion latency associated with edge  (the communication latency if  and

 are assigned to different processors), and again taking  to be the
execution time of . In the presence of non-deterministic actor execution times,
common choices for  include the average- and worst-case execution times.

4  Partitioning into hardware and software
This section focuses on a fundamental component of the cosynthesis pro-

cess — the partitioning of application graph actors into hardware and software.
Since partitioning and scheduling are, in general, highly interdependent, these
two tasks are usually performed jointly. The net result is thus an allocation (if
applicable) of hardware and software processing resources and communication
resources; an assignment of application graph actors to allocated resources; and a
complete schedule for the derived allocation/assignment pair. Here, we examine
three algorithms, ordered in increasing levels of generality, that address the parti-
tioning problem.

4.1  GCLP
The global criticality, local phase (GCLP) algorithm [27], developed by

Kalavade and Lee, gives an approach for combined hardware/software partition-
ing and scheduling for minimum latency. Input to the algorithm includes an
application graph , a target platform consisting of a programmable
processor and a fabric for implementing custom hardware, and constraints on the
latency, and on the code size of the software component. Each actor  is
characterized by its execution time  and area  if implemented in
hardware, and its execution time  and code size  if implemented in
software. The GCLP algorithm attempts to compute a mapping of graph actors
into hardware and software, and a schedule for the mapped actors. The objective
is to minimize the area of the custom hardware subject to the constraints on
latency and software code size.

At each iteration  of the algorithm, a ready actor is selected for mapping
and scheduling based on a dynamic priority function  that takes into
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account the relative difficulty (time-criticality) in achieving the latency constraint
based on the partial schedule  constructed so far. Increasing levels of time crit-
icality translate to increased affinity for hardware implementation in the compu-
tation  of actor priorities. Since it incorporates the structure of the entire
application graph and current scheduling state , this affinity for hardware
implementation is called the global criticality. We denote the value of global crit-
icality computed at algorithm iteration  by .

Once a ready actor  is chosen for scheduling based on global criticality
considerations, the hardware and software mapping alternatives for  are taken
into account, based on so-called local phase information, to determine the most
attractive implementation target (hardware or software) for , and  is sched-
uled accordingly.

The global criticality metric  is derived by determining a tentative
implementation target for each unscheduled actor in an effort to efficiently
extend the partial schedule  into a complete schedule. The goal in this rough,
schedule extension step is to determine the most economical subset  of
unscheduled actors to implement in hardware such that the latency constraint is
achieved. This subset is iteratively computed based on an actor-priority function
that captures the area/time trade-offs for each actor, and a fast scheduling heuris-
tic that computes the overall latency for a given hardware/software mapping. 

Given , the global criticality at iteration  is computed as an estimate of
the fraction of overall computation in the set  of unscheduled actors that is
contained in the tentatively-hardware-mapped subset :

, (14)

where  denotes the number of elementary operations (e.g., addition,
multiplication, …) within actor . 

Once  is computed, the hardware mapping  is discarded, and
 is loosely interpreted as an actor-invariant probability that any given actor

will be implemented in hardware. This probabilistic interpretation is applied to
compute “critical path lengths” in the application graph, in which the implemen-
tation targets, and hence the execution times, of unscheduled actors are not yet
known. More specifically, the actor that is selected for mapping and scheduling at
algorithm iteration  is chosen to be one (ties are broken arbitrarily) that maxi-
mizes
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(15)

over all , where  is the parameterized longest path function
defined by (13);  is defined by

; (16)

 is the zero function on ; and  is the set of application
graph actors that are ready at algorithm iteration . The “execution time esti-
mate” given in (16) can be interpreted loosely as the expected execution time of
actor  if one wishes to extend the partial schedule  into an economical imple-
mentation that achieves the given latency constraint.

4.1.1 Hardware/software selection threshold

In addition to determining (via (16)) the actor  that is to be scheduled at
algorithm iteration , the global criticality  is used to determine whether

 should be implemented in hardware or software. In particular, an actor-depen-
dent cut-off point  is computed such that if ,
then  is mapped into hardware or software based on the alternative that results
in the earliest completion time for  (based on the partial schedule ), while if

, then the mapping for  is chosen to be the one that
results in the leanest resource consumption.

The objective function selection threshold associated with an actor  is
computed as

, (17)

where  measures aspects of the specific hardware/software
trade-offs associated with actor . More specifically, this metric incorporates
the classification of  as either an extremity actor, a repeller actor, or a “normal”
actor. An extremity actor is either a software extremity or a hardware extremity.
Intuitively, a software extremity is an actor whose software execution time (SET)
is one of the highest SETs among all actors, but whose hardware implementation
area (HIA) is not among the highest HIAs. Similarly, a hardware extremity is an
actor whose HIA is one of the highest HIAs, but whose SET is not among the
highest SETs. The precise methods to compute thresholds that determine the
classes of “highest” SET and HIA values are parameters of the GCLP framework
that are to be configured by the tool developer or the user.

An actor is a repeller with respect to software (hardware) implementation
if it is not an extremity actor, and its functionality contains components that are
distinguishably ill-suited to efficient software (hardware) implementation. For
example the bit-level instruction mix, defined as the overall proportion of bit-
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level operations, has been identified as an actor property that is useful in identify-
ing software repellers (a software repeller property). Similarly, the proportion of
memory-intensive instructions is a hardware repeller property. For each such
repeller property of a given repeller actor, a numeric estimate is computed to
characterize the degree to which the property favors software or hardware imple-
mentation for the actor.

The  value in (17) is set to zero for normal actors — i.e.,
actors that are neither extremity nor repeller actors. For extremity actors, the
value is determined as a function of the SETs and HIAs, and for repeller actors it
is computed as

, (18)

where  and  represent normalized, weighted sums of contributions from
individual hardware and software repeller properties, respectively. Thus, for
example, if the hardware repeller properties of actor  dominate ( ), it
becomes more likely (from (17) and (18)), that , and
thus, that  will be mapped to software (assuming that the communication and
code size costs associated with software mapping are not excessive).

The overall appeal of the GCLP algorithm stems from its ability to inte-
grate global, application- and partial-schedule-level information with the actor-
specific, heterogeneous-mapping metrics associated with the local phase concept.
Also, the scheduling, estimation, and mapping heuristics within the GCLP algo-
rithm consider area and latency overheads associated with communication
between hardware and software. Thus, the algorithm jointly considers actor exe-
cution times, hardware and software capacity costs, and both temporal and spa-
cial costs associated with interprocessor communication.

4.1.2 Cosynthesis for multi-function applications

Kalavade and Subrahmanyam have extended the GCLP algorithm to han-
dle cosynthesis involving multiple applications that are operated in a time-multi-
plexed manner [28]. Such multi-function systems arise commonly in embedded
applications. For example, a video encoding system may have to be designed to
support a variety of formats, such as MPEG2, H.261, and JPEG, based on the dif-
ferent modes of operation that are available to the user.

The multi-application codesign problem is a formulation of multi-function
cosynthesis in which the objective is exploit similarities between distinct system
functions to streamline the result of synthesis. An instance of this problem can be
viewed as a finite set of inputs to the original GCLP algorithm described earlier
in this section. More precisely, an instance of multi-application codesign consists
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of a set of application graphs , where each
 has an associated latency constraint . Furthermore, if we define

, then each actor  is characterized by its
node type , execution time  and area  if implemented in
hardware, and execution time  and code size  if implemented in soft-
ware. The objective is to construct an assignment of actors in  into hardware
and software, and schedules for all of the application graphs in  such that
the schedule for each  satisfies its associated latency constraint , and overall
hardware area is minimized. An underlying assumption in this codesign problem
is that at any given time during operation, at most one of the application graphs in

 may be active.
The node type attribute specifies the function class of the associated actor,

and is used to identify opportunities for resource sharing across multiple actors
within the same application, as well as across actors in different applications. For
example, if two applications graphs each contain a DCT module (an actor whose
node type is that of a DCT), and one of these is mapped to hardware, then it may
be profitable to map the other DCT actor into hardware as well, especially since
both DCT actors will never be active at the same time.

4.1.3 Modified threshold adjustment

Kalavade’s “multi-function extension” to GCLP, which we call GCLP-
MF, retains the global criticality concept, and the threshold-based approach to
mapping actors into hardware and software. However, the metrics associated
with local phase computation (threshold adjustment), are replaced with a number
of alternative metrics, called commonality measures, that take into account char-
acteristics that are relevant to the multi-function case. These metrics are consis-
tently normalized to keep their values within predictable and meaningful ranges.

Recall that higher values of the GCLP threshold favor software implemen-
tation, while lower values favor hardware implementation, and the threshold in
GCLP is computed from (17) as the sum of 0.5 and an adjustment term, called
the local phase. In GCLP, this local phase adjustment term is replaced by an alter-
native function that incorporates re-use of node types across different actors and
applications, and actor-specific, performance-area trade-offs. Type re-use is
quantified by a type repetitions metric, denoted , which gives the total number
of actor instances of a given type over all application graphs in . In other
words, for a given node type ,

, (19)

and the normalized form of this metric, which we denote , is defined by nor-
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malizing to values restricted within :

. (20)

Performance-area trade-off information is quantified by a metric  that
measures the speedup in moving an actor implementation from software to hard-
ware relative to the required hardware area:

 for each . (21)

The normalized form of this metric, , is defined in a fashion analogous to (20)
to again obtain a value within .

4.1.4 GCLP-MF algorithm versions

Two versions of GCLP-MF have been proposed. In the first version,
which we call GCLP-MF-A, the normalized commonality metrics  and  are
combined into a composite metric , based on user-defined weighting factors

 and :

 for each . (22)

This composite metric, in turn, is mapped into a -normalized form by
applying a formula analogous to (20), and then multiplying by . The resulting
normalized, composite metric, which we denote by  becomes the threshold
adjustment value for GCLP-MF-A. More specifically, in GCLP-MF-A, the hard-
ware/software mapping threshold is computed as

. (23)

This threshold value, which replaces the original GCLP threshold expression
(17), is compared against an actor’s application-specific global criticality mea-
sure during cosynthesis. Intuitively, this threshold systematically favors hardware
implementation for actor types that have relatively high type-repetition counts,
and for actors that deliver large hardware vs. software performance gains with
relatively small amounts of hardware area overhead.

The GCLP-MF-A algorithm operates by applying to each member of
 the original GCLP algorithm with the threshold computation (17)

replaced by (23).
The second version, GCLP-MF-B, attempts to achieve some amount of

“interaction” across cosynthesis decisions of different application graphs in
 rather than processing each application in isolation. In particular, the
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composite adjustment term (22) is discarded, and instead, a mechanism is intro-
duced to allow cosynthesis decisions for the most difficult (from a synthesis per-
spective) applications to influence those that are made for less difficult
applications. The difficulty of an application graph  is estimated by
its criticality, which is defined to be the sum of the software execution times
divided by the latency constraint.

. (24)

Intuitively, an application with high criticality requires a large amount of hard-
ware area to satisfy its latency constraint, and thus makes it more difficult to meet
the minimization objective of cosynthesis.

GCLP-MF-B operates by processing application graphs in decreasing
order of their criticality, keeping track of inter-application resource-sharing pos-
sibilities throughout the cosynthesis process, and systematically incorporating
these possibilities into the hardware/software selection threshold. Resource shar-
ing information is effectively stored as an actor-indexed array  of 3-valued
“sharing state” elements. For a given actor ,  indicates that no
actor of type  has been considered in a previous mapping step;

 indicates that a  actor has previously been considered, and
has been mapped into hardware; and  indicates a previous software
mapping decision for .

Like GCLP-MF-A, the GCLP-MF-B algorithm, applies the original GCLP
algorithm to each application graph separately with a modification of the hard-
ware/software threshold function (17). Specifically, the threshold in GCLP-MF-
B is computed as

. (25)

Thus, previous mapping decisions (from equal- or higher-criticality applica-
tions), together with commonality metrics, are used to determine whether or not a
given actor is mapped into hardware or software.

Experimental results have shown that for multi-function systems, both
versions of GCLP-MF significantly outperform isolated applications of the origi-
nal GCLP algorithm to the application graphs in , and that version B,
which incorporates the commonality metrics used in A in addition to the shared
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mapping state , outperforms version A.

4.2  COSYN
Optimal or nearly-optimal hardware/software cosynthesis solutions are

difficult to achieve since there are numerous relevant implementation consider-
ations and constraints. The COSYN algorithm [18], developed by Dave, Laksh-
minarayana, and Jha, takes numerous elements of this complexity into account.
The design considerations and objectives addressed by the algorithm include
allowing arbitrary, possibly heterogeneous collections of processors and commu-
nication links; intraprocessor concurrency (e.g., in FPGAs and ASICs); preemp-
tive vs. non-preemptive scheduling; actor duplication on multiple processors to
alleviate communication bottlenecks; memory constraints; average, quiescent
and peak power dissipation in processing elements and communication links;
latency (in the form of actor deadlines); throughput (in the form of subgraph ini-
tiation rates); and overall dollar cost, which is the ultimate minimization objec-
tive.

4.2.1 Algorithm flow

Input to the COSYN algorithm includes an application graph 
that may consist of several independent subgraphs that operate at different rates
(periods) and with different deadlines; a library of processing elements

; a set of communication resources (“links”)
; an actor execution time function , which

specifies the execution time of each actor on each candidate processing resource;
a communication time function , which gives the latency of com-
munication of each edge on each candidate communication resource; and a dead-
line function , which specifies an optional maximum
allowable completion time for each actor. Under this notation, an infinite value of

 ( ) indicates an incompatibility between the associated actor/resource (edge/
resource) pair, and similarly,  if there is no deadline specified
for actor .

The overall flow of the COSYN algorithm is outlined in Figure 6. In the
initial FormClusters phase, the application graph is analyzed to identify sub-
graphs that are to be grouped together during the allocation and assignment
exploration phases. After clusters have been formed, they are examined — one
by one — and allocated by exploring their respective ranges of possible alloca-
tions, and selecting the ones that best satisfy certain criteria that relate to the
given performance and cost objectives. As individual allocation decisions are
made, execution times of actors in the associated clusters become fixed, and this
information is used to re-evaluate cluster priorities for future cluster selection
decisions, and also to re-evaluate actor edge priorities during scheduling (to eval-
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uate candidate allocations). Thus, cluster selection and scheduling decisions are
computed dynamically based on all previously committed allocations.

4.2.2 Cluster formation

Cluster decisions during the FormCluster phase are guided by a metric
that prioritizes actors based on deadline- and communication-conscious critical
path analysis. Like cluster selection and allocation decisions, actor priorities for
clustering are dynamically evaluated based on all previous clustering operations.
The priority of an actor for clustering is computed as

, (26)

where the execution time contribution function  is given as the worst
case execution time offset by the actor deadline — 

; (27)

and the communication time contribution function  is given as the
worst case communication cost, based on all previous clustering decisions —

. (28)

Here,  denotes the set of edges in  that have been “enclosed” by the
clusters created by all previous clustering operations; that is, the set of edges 
such that  and  have already been clustered, and both belong to the
same cluster.

function COSYN

for 

Select a maximum priority cluster 
Evaluate possible allocations for  and select best one

end for
end function

FormClusters G( ) Cluster set X→
unallocated X=

i 1 2 … X, , ,=
ComputeClusterPriorities unallocated( )

Ci unallocated∈
Ci

unallocated unallocated Ci{ }–=

Figure 6. A pseudocode sketch of the COSYN algorithm.
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At each clustering step, an unclustered actor  that maximizes
 is selected, and based on certain compatibility criteria,  is first

either merged into the cluster of a predecessor actor, or inserted into a new clus-
ter, and then the resulting cluster is may be further expanded to contain a succes-
sor of .

4.2.3 Cluster allocation

After clustering is complete, we have a disjoint set of clusters
, where each  represents a subset of actors that are to be

assigned to the same physical processing element. Clusters are then selected one
at a time, and for each selected cluster, the possible allocations are evaluated by
scheduling. At each cluster selection step, a cluster with maximal priority (among
all clusters that have not been selected in previous steps) is selected, where the
priority of a cluster is simply taken to be the priority of its highest-priority actor,
and actor priorities are determined using an extension of (26) that takes into
account the effects of any previously-committed allocation decisions. More pre-
cisely, we suppose that for each edge ,  if 
has not yet been assigned to a communication resource, and otherwise,

 gives the resource type of the communication link to which  has
been assigned. Similarly, we allow a minor abuse of notation, and suppose that
for each actor ,  if  has not yet been assigned to a process-
ing element (i.e., the enclosing cluster has not yet been allocated), and otherwise,

 gives the resource type of the processing element to which  has
been assigned. Actor priority throughout the cluster allocation phase of COSYN
is then computed as

, (29)

where  is defined by

, (30)

and similarly,  is defined by

. (31)

In other words, if an actor or edge  has been assigned to a resource ,  is mod-
eled with the latency of  on the resource type associated with , and otherwise,
the worst case latency is used to model .
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As clusters are allocated, the values  change, in
general, and thus, for improved accuracy, actor priorities are re-evaluated —
using (29), (30), (31) — during subsequent cluster allocation steps.

4.2.4 Allocation selection

After a cluster is selected for allocation, candidate allocations are evalu-
ated by scheduling and finish time estimation. During scheduling, actors and
edges are processed in an order determined by their priorities, and considerations
such as overlapped vs. non-overlapped communication, and actor preemption are
taken into account at this time. Once scheduling is complete, the best and worst
case finish times of the actors and edges in the application graph are estimated —
based on their individual best and worst cases latencies — to formulate an overall
evaluation of the candidate allocation.

The best and worst case latencies associated with actors and edges are
determined in a manner analogous to the “allocation-conscious” priority contri-
bution values  and  computed in (30) and (31). For each actor ,
the best case latency is defined by

, (32)

and similarly, the best case latency for each edge  is defined by

. (33)

The worst case latencies, denoted  and , are defined (using the
same minor abuse of notation) in a similar fashion.

From these best and worst case latencies, allocation-conscious best and
worst case finish time estimates  and  of each actor and each edge are
computed by

, and (34)

 for ; (35)

, and (36)

 for . (37)

The worst case and best case finish times, as computed by (34)-(37), are

x( )asgn x E V∪( )∈{ }

gt *( ) gc *( ) v V∈

tbest v( )
te v ri,( ) ri R∈( ){ }( )min  if v( )asgn NULL=( )

te v v( )asgn,( )  otherwise,



=

e E∈

tbest e( )
tc e ci,( ) ci C∈( ){ }( )min  if e( )asgn NULL=( )

tc e e( )asgn,( )  otherwise,



=

tworst v( ) tworst e( )

Fbest Fworst
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used in evaluating the quality of a candidate allocation. Let  denote
the subset of actors for which deadlines are specified; let  denote the set of can-
didate allocations for a selected cluster; and let  be the set of candidate
allocations for which all actors in  have their corresponding deadlines sat-
isfied in the best case (i.e., according to ). If , then an alloca-
tion is chosen from the subset  that maximizes the sum

(38)

of worst-case finish times over all actors for which pre-specified deadlines exist.
On the other hand, if , then an allocation is chosen from  that maxi-
mizes the sum 

(39)

of best-case finish times over all actors for which deadlines exist. In both cases,
the maxima over the respective sets of sums are taken because they ultimately
lead to final allocations that have lower overall dollar cost [18].

4.2.5 Accounting for power consumption

A “low power version” of the COSYN algorithm, called COSYN-LP, has
been developed to minimize power consumption along with overall dollar cost.
In addition to the algorithm inputs defined in Section 4.2.1, COSYN LP also
employs average power dissipation functions  and

. The value of  gives an estimate of the average power
dissipated while actor  executes on processing resource , and similarly, the
value of  estimates the average power dissipated when edge  executes
on communication resource . Again, infinite values in this notation correspond
to incompatibility relationships between operations (actors or edges) and
resource types. Similar functions are also defined for peak (maximum instanta-
neous) power consumption, and quiescent power consumption (power consump-
tion during periods of inactivity) of resources for processing and communication.

COSYN-LP incorporates modifications to the clustering and allocation
evaluation phases that take actor and edge power consumption information into
account. For example, the cluster formation process is modified to use the fol-
lowing power-oriented actor priority function:

, (40)

Here,  is defined by

Vdeadline V⊆
α

α′ α⊆
Vdeadline

Fbest v( ){ } α′ ∅≠
α′

Fworst v( )
v Vdeadline∈

∑

α′ ∅= α

Fbest v( )
v Vdeadline∈

∑

pe V R× ℵ →:
pc E C× ℵ →: pe v ri,( )

v ri

pc e ci,( ) e
ci

λG A ρt ρc, ,( )

ρt V ℵ→:
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, (41)

where  is a processing resource type that maximizes the execution time
 of  ; and similarly,  is defined by

, (42)

where  is a communication resource type that maximizes the communi-
cation latency  of  . There is slight ambiguity here since there may be
more than one processing (communication) resource that maximize the latency
for a given actor (edge); tie breaking in such cases can be performed arbitrarily
(it is not specified as part of the algorithm).

Thus, in COSYN-LP, priorities for cluster formation are computed on the
basis of average power dissipation based on worst-case execution times.

In a similar manner, the average power dissipation metrics, along with the
peak and quiescent power metrics are incorporated into the cluster allocation
phase of COSYN-LP. For details, we refer the reader to [18].

4.3  CodeSign
As part of the CodeSign project at ETH Zurich, Blickle, Teich, and Thiele

have developed a search technique for hardware/software cosynthesis [13] that is
based on the framework of evolutionary algorithms. In evolutionary algorithms,
complex search spaces are explored by encoding candidate solutions as “chromo-
somes,” and evolving “populations” of these chromosomes by applying the prin-
ciples of reproduction (retention of chromosomes in a population), crossover
(derivation of new chromosomes from two or more “parent” chromosomes),
mutation (modification of individual chromosomes), and fitness (metrics for
evaluating the quality of chromosomes) [5]. These principles incorporate proba-
bilistic techniques to derive new chromosomes from an existing population, and
to replace portions of a population with selected, newly-derived chromosomes. 

4.3.1 Specifications

A key innovation in the CodeSign approach is a novel formulation of joint
allocation, assignment, and scheduling as mappings between sequences of
graphs, and “activations” of vertices and edges in these graphs. This formulation
is intuitively appealing, and provides a natural encoding structure for embedding
within the framework of evolutionary algorithms.

The central data structure that underlies the CodeSign cosynthesis formu-
lation is the specification. A CodeSign specification can be viewed as an ordered
pair , where ; each  is a directed graph
(called a “dependence graph”) ; and each  is a set of mapping edges

ρt v( ) te v rworst v( ),( ) pe× v rworst v( ),( )=

rworst v( )
te v *,( ) v ρc E ℵ→:

ρc e( ) tc e cworst e( ),( ) pc× e cworst e( ),( )=

cworst e( )
tc e *,( ) e

S HS MS,( )= HS G1 G2 … GN, , ,{ }= Gi
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that connect vertices in successive dependence graphs — that is, for each
,  and . If the specification in question is

understood, we write

, , and . (43)

Thus,  and  denote the sets of all dependence graph vertices and edges,
respectively, and  denotes the set of all mapping edges. The specification
graph of  is the graph  obtained by integrating all of the depen-
dence graphs and mapping edges: , and .

The “top-level” dependence graph (the problem graph)  gives a behav-
ioral specification of the application to be implemented. In this sense, it is similar
to the application graph concept defined in Section 3.1. However, it is slightly
different in its incorporation of special communication vertices that explicitly
represent inter-actor communication, and are ultimately mapped onto communi-
cation resources in the target architecture [13]. 

The remaining dependence graphs  specify different levels
of abstraction or refinement during implementation. For example, a dependence
graph could specify an architectural description consisting of available resources
for computation and communication (architecture graph), and another depen-
dence graph could specify the decomposition of a target system into integrated
circuits and off-chip buses (chip graph). Due to the general nature of the Code-
Sign specification formulation, there is full flexibility to define alternative or
additional levels of abstraction in this manner.

Dependence graph edges specify connectivity between modules within the
same level of abstraction, and mapping edges specify compatibility relationships
between successive abstraction levels in a specification. That is,  indi-
cates that  “can be implemented by” .

Example 7:  Figure 7(a) provides an illustration of a CodeSign specification for
hardware/software cosynthesis onto an architecture that consists of a programma-
ble processor resource , a resource for implementing custom hardware ,
and a bidirectional bus  that connects these two processing resources. The s
denote problem graph actors, and the s denote communication vertices. Here,
only hardware implementation is allowed for  and ; only software imple-
mentation is allowed for ; and ,  may each be mapped to either hardware
or software. Thus, for example, there is no edge connecting  or  with the
vertex  associated with the programmable processor. In general, communica-
tion vertices can be mapped either to the bus  (if the source and sink vertices
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are mapped to different processing resources) or internally to either the hardware
( ) or software ( ) resource (if the source and sink are mapped to the same
processing resource). However, mapping restrictions of the problem graph actors
may limit the possible mapping targets of a communication vertex. For example,
since  and  are restricted, respectively, to hardware and software implemen-
tation, communication vertex  must be mapped to the bus . Similarly,  can
be mapped to  or , but not to . The set of mapping edges for this example
is given by 

. (44)

4.3.2 Activation functions

Allocations and assignments of specification graphs are formulated in
terms of activation functions. An activation function for a specification graph 
is any function  that maps vertices and edges of  into
binary numbers. If  is a vertex or a dependence graph edge, then

 is equivalent to the use or instantiation of  in the associated alloca-
tion. On the other hand, if  is a mapping edge, then  if and only if

 is implemented by  according to the associated assignment.
Thus, an activation function uniquely determines an allocation and assign-

ment for the associated specification. The allocation associated with an activation
function  can be expressed in precise terms by

, (45)

and similarly, the assignment associated with  is defined by

Figure 7. An illustration of a specification in CodeSign.
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. (46)

We say that  is activated if . The allocation and
assignment associated with an activation function  are feasible if for each acti-
vated mapping edge , the source and sink vertices are activated — that
is, ; for each activated vertex , there exists
exactly one activated, output mapping edge  — that is,

; and for each activated dependence graph edge
, either

, or 

. (47)

This last condition, (17), simply states that  and  must either be
assigned to same vertex in the succeeding dependence graph, or there must be an
activated edge that provides the appropriate communication between the distinct
vertices that  and  are mapped to. 

4.3.3 Evolutionary algorithm approach

The overall approach in the CodeSign synthesis algorithm is to encode
allocation and assignment information in the chromosome data structure of the
evolutionary algorithm, and use a deterministic heuristic for scheduling, since
effective deterministic techniques exist for computing schedules given pre-speci-
fied allocations and assignments [20].

Decoding of a chromosome (e.g., to evaluate its fitness) begins by inter-
preting the allocation (activation) status (0 or 1) of each specification graph ver-
tex that is given in the chromosome. Some allocations obtained in this way may
be “incomplete” in the sense that there may be some functional vertices for
which no compatible resources are instantiated. Such incompleteness in alloca-
tions is “repaired” by activating additional vertices based on a repair allocation
priority list, which is also a component of the chromosome due to the relatively
large impact of resource activation decisions on critical implementation metrics,
such as performance and area. This priority list specifies the order in which verti-
ces will be considered for activation during repair of allocation incompleteness. 

After a chromosome has been converted into its associated allocation, and
incompleteness of the allocation has been repaired, the assignment information
from the chromosome is decoded. The coding convention for assignment infor-
mation has been carefully devised to be orthogonal to the allocation encoding, so
that the process of interpreting assignment information is independent of the
given allocation. This independence between the interpretation of allocation and
assignment information is important in facilitating efficient evolution of the chro-
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mosome population [13].
Like allocation repair information, assignment information is encoded in

the form of priority lists — each dependence graph vertex has an associated pri-
ority list  of its outgoing mapping edges . These priority
lists are interpreted by examining each allocated vertex , and activating the first
member of  that does not conflict with the requirements of a feasible allo-
cation/assignment that were discussed in Section 4.3.2

It is possible that a feasible allocation/assignment does not result from the
decoding of a particular chromosome. Indeed, Blickle has shown that the prob-
lem of determining a feasible allocation/assignment is computationally intracta-
ble [13], so straightforward techniques — such as applying the decoding process
to random chromosomes — cannot be relied upon to consistently achieve feasib-
lity. 

If such infeasibility is determined during the decoding process, then a sig-
nificant penalty is incorporated into the fitness of the associated chromosome.
Otherwise, the decoded allocation and assignment are scheduled using a deter-
ministic scheduling heuristic, and the resulting schedule, along with the assign-
ment and allocation, are assessed in the context of the designer’s optimization
constraints and objectives to determine the chromosome fitness.

In summary, the CodeSign cosynthesis algorithm incorporates a novel
specification graph data structure, and an evolutionary algorithm formulation
that encodes allocation and assignment information in terms of specification
graph concepts. Due to space limitations, we have suppressed several interesting
details of the complete synthesis algorithm, including mechanisms for promoting
resource sharing, and details of the scheduling heuristic. The reader is encour-
aged to consult [13] for a comprehensive discussion.

5  Synchronization optimization
In Section 3.2, we discussed the utility of self-timed multiprocessor imple-

mentation strategies in the design of efficient and robust parallel processing
engines for DSP. For self-timed DSP multiprocessors, an important consideration
in addition to hardware/software partitioning, and the associated scheduling task,
is synchronization to ensure the integrity of interprocessor communication oper-
ations associated with dataflow edges whose source and sink actors are mapped
to different processing elements. Since cost is often a critical constraint, embed-
ded multiprocessors must often use simple communication topologies, and lim-
ited, if any, hardware support for synchronization. A variety of efficient
techniques have been developed to optimize synchronization for such cost-con-
strained, self-timed multiprocessors [9, 10, 49]. Such techniques can significantly
reduce the execution time and power consumption overhead associated with syn-

Lβ v( ) out v( ) EM∩( )
v

Lβ v( )
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chronization, and can be used as post-processing steps to any of the partitioning
algorithms discussed in Section 4, as well as to a wide variety of multiprocessor
scheduling algorithms for dataflow graphs, such as those described in [19, 24,
47]. 

In this section, we present an overview of these approaches to synchroni-
zation optimization. Specifically, we discuss two closely-related graph-theoretic
models, the IPC graph  [48] and the synchronization graph  [9], that are
used to model the self-timed execution of a given parallel schedule for an appli-
cation graph, and we discuss the application of these models to the systematic
streamlining of synchronization functionality. 

Given a self-timed multiprocessor schedule for an application graph ,
we derive  and  by first instantiating a vertex for each actor, connecting an
edge from each actor to the actor that succeeds it on the same processor, and add-
ing an edge that has unit delay from the last actor on each processor to the first
actor on the same processor. Also, for each edge  in  that connects actors
that execute on different processors, an IPC edge is instantiated in  from  to

. Figure 8(c) shows the IPC graph that corresponds to the application graph of
Figure 8(a), and the processor assignment and actor ordering of Figure 8(b).

Each edge in  and  is either an intraprocessor edge or an interpro-
cessor edge. Intraprocessor edges model the ordering (specified by the given par-
allel schedule) of actors assigned to the same processor; interprocessor edges in

, called IPC edges, connect actors assigned to distinct processors that must
communicate for the purpose of data transfer; and interprocessor edges in ,
called synchronization edges, connect actors assigned to distinct processors that
must communicate for synchronization purposes.

Each edge  in  represents the synchronization constraint

 for all , (48)
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Figure 8. An illustration of a self-timed schedule and its associated
IPC graph.
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where  and  respectively represent the times at which firing
 of actor  begins execution and completes execution.

Initially, the synchronization graph  is identical to . However, vari-
ous transformations can be applied to  in order to make the overall synchroni-
zation structure more efficient. After all transformations on  are complete, 
and  can be used to map the given parallel schedule into an implementation
on the target architecture. The IPC edges in  represent buffer activity, and are
implemented as buffers in shared memory, whereas the synchronization edges of

 represent synchronization constraints, and are implemented by updating and
testing flags in shared memory. If there is an IPC edge as well as a synchroniza-
tion edge between the same pair of actors, then a synchronization protocol is exe-
cuted before the buffer corresponding to the IPC edge is accessed to ensure
sender-receiver synchronization. On the other hand, if there is an IPC edge
between two actors in the IPC graph, but there is no synchronization edge
between the two, then no synchronization needs to be done before accessing the
shared buffer. If there is a synchronization edge between two actors but no IPC
edge, then no shared buffer is allocated between the two actors; only the corre-
sponding synchronization protocol is invoked.

Any transformation that we perform on the synchronization graph must
respect the synchronization constraints implied by . If we ensure this, then we
only need to implement the synchronization edges of the optimized synchroniza-
tion graph. If  and  are synchronization graphs with
the same vertex-set and the same set of intraprocessor edges (edges that are not
synchronization edges), we say that  preserves  if for all  such that

, we have , where  if there is
no path from  to  in the synchronization graph , and if there is a path from

 to , then  is the minimum over all paths  directed from  to  of
the sum of the edge delays on . The following theorem (developed in [9])
underlies the validity of a variety of useful synchronization graph transforma-
tions, which we discuss in Sections 5.1-5.4.

Theorem 1  The synchronization constraints (as specified by (48)) of  imply
the constraints of  if  preserves .

5.1  Removal of redundant synchronization edges
A synchronization edge is redundant in a synchronization graph  if its

removal yields a graph that preserves . Equivalently, a synchronization edge 
is redundant if there is a path  from  to  such that

, where  is the sum of the edge delays on path . Thus, the
synchronization function associated with a redundant synchronization edge
“comes for free” as a by product of other synchronizations.
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Example 8:  Figure 9 shows an example of a redundant synchronization edge.
The dashed edges in this figure are synchronization edges. Here, before execut-
ing actor , the processor that executes  does not need to synchro-
nize with the processor that executes  because due to the
synchronization edge , the corresponding firing of  is guaranteed to com-
plete before each firing of  is begun. Thus,  is redundant.

The following result establishes that the order in which we remove redun-
dant synchronization edges is not important.

Theorem 2  [9] Suppose  is a synchronization graph,  and  are
distinct redundant synchronization edges in , and . Then

 is redundant in .

Theorem 2 tells us that we can avoid implementing synchronization for all
redundant synchronization edges since the “redundancies” are not interdepen-
dent. Thus, an optimal removal of redundant synchronizations can be obtained by
applying a straightforward algorithm that successively tests the synchronization
edges for redundancy in some arbitrary sequence, and removes each of the edges
that are found to be redundant. Such testing and removal of redundant edges can
be performed in  time.

Example 9:  Figure 10(a) shows a synchronization graph that arises from a two-
processor schedule for a four-channel multi-resolution QMF filter bank, which
has applications in signal compression. As in Figure 9, the dashed edges are syn-
chronization edges. If we apply redundant synchronization removal to the syn-
chronization graph of Figure 10(a), we obtain the synchronization graph in
Figure 10(b): the edges , , , , and  are
detected to be redundant, and the number of synchronization edges is reduced
from  to  as a result.

Figure 9. An example of a redundant synchronization edge.
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5.2  Resynchronization
The goal of resynchronization is to introduce new synchronizations in

such a way that the number of original synchronizations that become redundant
exceeds the number of new synchronizations that are added, and thus, the net
synchronization cost is reduced. To ensure that the serialization introduced by
resynchronization does not degrade the throughput, the new synchronizations are
restricted to lie outside the SCCs of the synchronization graph (feedforward
resynchronization) [49]. 

Resynchronization of self-timed multiprocessors has been studied in two
contexts [10]. In maximum-throughput resynchronization, the objective is to
compute a resynchronization that minimizes the total number of synchronization
edges over all synchronization graphs that preserve the original synchronization
graph. It has been shown that optimal resynchronization is NP-complete. How-
ever, a broad class of synchronization graphs has been identified for which opti-
mal resynchronization can be performed by an efficient, polynomial-time
algorithm. A heuristic for general synchronization graphs called Algorithm Glo-
bal-resynchronize has also been developed that works well in practice.

Effective resynchronization improves the throughput of a multiprocessor
implementation by reducing the rate at which synchronization operations must be
performed. However, since additional serialization is imposed by the new syn-
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chronizations, resynchronization can produce a significant increase in latency. In
latency-constrained resynchronization, the objective is to compute a resynchroni-
zation that minimizes the number of synchronization edges over all valid resyn-
chronizations that do not increase the latency beyond a pre-specified upper bound
on the tolerable latency. Latency-constrained resynchronization is intractable
even for the very restricted sub-class of synchronization graphs in which each
SCC contains only one actor, and all synchronization edges have zero delay.
However, an algorithm has been developed that computes optimal latency-con-
strained resynchronizations for two-processor systems in  time, where 
is the number of actors. Also, an efficient extension of Algorithm Global-resyn-
chronize, called Algorithm Global-LCR, has been developed for latency-con-
strained resynchronization of general synchronization graphs.

Figure 11 illustrates the results delivered by Global-LCR when it is
applied to a six-processor schedule of a synthesizer for plucked-string musical
instruments in 11 voices. The plot in Figure 11 shows how the number of syn-
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Figure 11. An illustration of resynchronization.
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chronization edges in the result computed by Global-LCR changes as the latency
constraint varies. The alternative synchronization graphs represented in Figure 11
offer a variety of latency/throughput trade-off alternatives for implementing the
given schedule. The (right-most) extreme of these trade-off points offers 22% to
27% improvement in throughput, and 32% to 37% reduction in the average rate
at which shared memory is accessed, depending on the access time of the shared
memory. Since accesses to shared memory typically require significant amounts
of energy, this reduction in the average rate of shared memory accesses is espe-
cially useful when low power consumption is an important implementation issue.

5.3  Feedforward and feedback synchronization
In general, self-timed execution of a multiprocessor schedule can result in

unbounded data accumulation on one or more more IPC edges. However, the fol-
lowing result states that each feedback edge (an edge that is contained in an SCC)
has a bounded buffering requirement. This result emerges from the theory of
timed marked graphs, a family of computation structures to which synchroniza-
tion graphs belong.

Theorem 3  Throughout the self-timed execution of an IPC graph , the num-
ber of tokens on a feedback edge  of  is bounded; an upper bound is given
by

, (49)

where  denotes the sum of the edge delays in cycle . The constant bound
specified by (49) is called the self-timed buffer bound of that edge.

A feedforward edge (an edge that is not contained in an SCC), however,
has no such bound on the buffer size.

Based on Theorem 3, two efficient protocols can be derived for the imple-
mentation of synchronization edges. Given an IPC graph , and an IPC
edge , if  is a feedforward edge then we can apply a synchronization pro-
tocol called unbounded buffer synchronization (UBS), which guarantees that

 never attempts to read data from an empty buffer (to prevent underflow),
and  never attempts to write data into the buffer unless the number of
tokens already in the buffer is less than some pre-specified limit, which is the
amount of memory allocated to that buffer (to prevent overflow). If  is a feed-
back edge, then we use a simpler protocol, called bounded buffer synchronization
(BBS), that only explicitly ensures that overflow does not occur. The simpler
BBS protocol requires only half of the run-time overhead that is incurred by
UBS.
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5.4  Implementation using only feedback synchronization
One alternative to implementing UBS for a feedforward edge  is to add

synchronization edges to  so that  becomes encapsulated in an SCC, and then
implement  using BBS, which has lower cost. An efficient algorithm, called
Convert-to-SC-graph, has been developed to perform this graph transformation
in such a way that the net synchronization cost is minimized, and the impact on
the self-timed buffer bounds of the IPC edges is optimized. Convert-to-SC-graph
effectively “chains together” the source SCCs, chains together the sink SCCs,
and then connects the first SCC of the “source chain” to the last SCC of the sink
chain with an edge. Depending on the structure of the original synchronization
graph, Convert-to-SC-graph can reduce the overall synchronization cost by up to
50%.

Since conversion to a strongly connected graph must introduce one or
more new cycles, it may be necessary to insert delays on the edges added by Con-
vert-to-SC-graph. These delays may be needed to avoid deadlock and to ensure
that the serialization introduced by the new edges does not degrade the through-
put. The location (edge) and magnitude of the delays that we add are significant
since (from Theorem 3) they affect the self-timed buffer bounds of the IPC edges,
which in turn determine the amount of memory that we allocate for the corre-
sponding buffers.

A systematic technique has been developed, called Algorithm Determine
Delays, that efficiently inserts delays on the new edges introduced during the
conversion to a strongly connected synchronization graph. For a broad class of
practical synchronization graphs — those synchronization graphs that contain
only one source SCC or only one sink SCC — Determine Delays computes a
solution (placement of delays) that minimizes the sum of the resulting self-timed
buffer bounds. For general synchronization graphs, Determine Delays serves as
an efficient heuristic.

6  Block processing
Recall from Section 2.2 that DSP applications are characterized by groups

of operations that are applied repetitively on large, often unbounded, data
streams. Block processing refers to the uninterrupted repetition of the same oper-
ation (e.g., dataflow graph actor) on two or more successive elements from the
same data stream. The scalable synchronous dataflow (SSDF) model is an exten-
sion of SDF that enables software synthesis of vectorized implementations,
which exploit the opportunities for efficient block processing, and thus, form an
important component of the cosynthesis design space. The internal specification
of an SSDF actor  assumes that the actor will be executed in groups of 
successive firings, which operate on -unit blocks of data at a

e
Gs e

e

A Nv A( )
Nv A( ) cns e( )×( )
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time from each incoming edge . Block processing with well-designed SSDF
actors reduces the rate of inter-actor context switching, and context switching
between successive code segments within complex actors, and it also may
improve execution efficiency significantly on deeply pipelined architectures.

At the Aachen University of Technology, as part of the COSSAP [44] soft-
ware synthesis environment for DSP (now developed by Synopsys), Ritz,
Pankert, and Meyr have investigated the optimized compilation of SSDF specifi-
cations [45]. This work has targeted the minimization of the context-switch over-
head, or the average rate at which actor activations occur. An actor activation
occurs whenever two distinct actors are invoked in succession. Activation over-
head includes saving the contents of registers that are used by the next actor to
invoke, if necessary, and loading state variables and buffer pointers into registers.

For example, the schedule

(50)

results in five activations per schedule period. Parenthesized terms in (50) repre-
sent schedule loops, which are repetitive firing patterns that are to be translated
into loops in the target code. More precisely, a parenthesized term of the form

 specifies the successive repetition  times of the subschedule
. Schedules that contain only one appearance of each actor, such as the

schedule of (50), are referred to as single appearance schedules. Because of their
code size optimality, and because they have been shown to satisfy a number of
useful formal properties [11], single appearance schedules have been the focus of
a significant component of work in DSP software synthesis.

Ritz estimates the average rate of activations for a valid schedule  as the
number of activations that occur in one iteration of  divided by the blocking
factor . This quantity is denoted by . For example, suppose we have
an SDF graph for which . Then

, and

. (51)

If for each actor, each firing takes the same amount of time, and if we
ignore the time spent on computation that is not directly associated with actor fir-
ings (for example, schedule loops), then  is directly proportional to the
number of actor activations per unit time. In practice, these assumptions are sel-
dom valid; however,  gives a useful estimate and means for comparing
schedules. For consistent acyclic SDF graphs, clearly  can be made arbi-
trarily small by increasing the blocking factor sufficiently; thus, the extent to
which the activation rate can be minimized is limited by the SCCs.

e
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Ritz’s algorithm for vectorization, which we call complete hierarchization
vectorization (CHV), attempts to find a valid single appearance schedule that
minimizes  over all valid single appearance schedules. Minimizing the num-
ber of activations does not imply minimizing the number of appearances, and
thus, the primary objective of CHV is, implicitly, code size minimization. As a
simple example, consider the SDF graph in Figure 12. It can be verified that for
this graph, the lowest value of  that is obtainable by a valid single appearance
schedule is , and one valid single appearance schedule that achieves this
minimum rate is . However, valid schedules exist that are not sin-
gle appearance schedules, and that have values of  below ; for example,
the valid schedule  contains two appearances of  and

, and satisfies .
In the CHV approach, the relative vectorization degree of a simple cycle

 in a consistent, connected SDF graph  is defined by

, (52)

where

(53)

is the delay on edge  normalized by the total number of tokens consumed by
 in a minimal schedule period of , and

(54)

is the set of edges with the same source and sink as .

N'act

Figure 12. This example illustrates that minimizing actor activations
does not imply minimizing actor appearances.
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For example, if  denotes the graph in Figure 12 and  denotes the cycle
whose associated vertices set contains  and , then .

Given a strongly connected SDF graph, a valid single appearance schedule
that minimizes  can be constructed from a complete hierarchization, which is
a cluster hierarchy such that only connected subgraphs are clustered, all cycles at
a given level of the hierarchy have the same relative vectorization degree, and
cycles in higher levels of the hierarchy have strictly higher relative vectorization
degrees than cycles in lower levels [45]. 

Example 10:  Figure 13 depicts a complete hierarchization of an SDF graph. Fig-
ure 13(a) shows the original SDF graph; here, . Fig-
ure 13(b), shows the top level of the cluster hierarchy. The hierarchical actor 
represents , and this subgraph is decomposed as shown in
Figure 13(c), which gives the next level of the cluster hierarchy. Finally, Figure
13(d), shows that  corresponds to  and is the bottom level
of the cluster hierarchy. Now observe that the relative vectorization degree of the
simple cycle in Figure 13(c) with respect to the original SDF graph is

, while the relative vectorization degree of the simple cycle in Fig-

G χ
A C DG χ( ) 7 1⁄ 7= =

N'act

Figure 13. A complete hierarchization of a strongly connected SDF
graph.
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ure 13(b) is ; and the relative vectorization degree of the simple
cycle in Figure 13(d) is . Thus, we see that the relative vectoriza-
tion degree decreases as we descend the hierarchy, and thus, the hierarchization
depicted in Figure 13 is complete. 

The hierarchization step defined by each of the SDF graphs in Figures
13(b)-(d) is called a component of the overall hierarchization.

The CHV technique constructs a complete hierarchization by first evaluat-
ing the relative vectorization degree of each simple cycle, determining the maxi-
mum vectorization degree, and then clustering the graphs associated with the
simple cycles that do not achieve the maximum vectorization degree. This pro-
cess is then repeated recursively on each of the clusters until no new clusters are
produced. In general, this bottom-up construction process has unmanageable
complexity; however, this normally does not create problems in practice since the
SCCs of useful signal processing systems are often small, particularly in large
grain descriptions.

Once a complete hierarchization is constructed, CHV constructs a sched-
ule “template” — a sequence of loops whose iteration counts are to be deter-
mined later. For a given component  of the hierarchization, if  is the
vectorization degree associated with , then all simple cycles in  contain at
least one edge  for which . Thus, if we remove from  all edges
in the set , the resulting graph is acyclic, and if

 is a topological sort of this acyclic graph, then valid sched-
ules exist for  that are of the form

. (55)

This is the subschedule template for .
Here, each  is a vertex in the hierarchical SDF graph  associated

with . Thus, each  is either a base block — an actor in the original SDF
graph  — or a hierarchical actor that represents the execution of a valid sched-
ule for the corresponding subgraph of . Now let  denote the set of actors in

 that are contained in  and in all hierarchical subgraphs nested within ;
and let . Thus, we have

. (56)

The number of activations that  contributes to  is given by
, where  is the set of base blocks in  [45]. Thus, if 

denotes the set of hierarchical components in the given complete hierarchization,
then
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. (57)

In the CHV approach, an exhaustive search over all  and  is carried
out to minimize (57). The search is restricted by constraints derived from the
requirement that the resulting schedule for  be valid. As with the construction
of complete hierarchizations, it is argued that the simplicity of SCCs in most
practical applications permits this expensive evaluation scheme.

Joint optimization of vectorization and buffer memory cost is developed in
[46], and adaptations of the retiming transformation to improve vectorization for
SDF graphs is addressed in [29, 55].

7  Summary
In this chapter, we have reviewed techniques for mapping high-level spec-

ifications of DSP applications into efficient hardware/software implementations.
Such techniques are of growing importance in DSP design technology due to the
increased use of heterogeneous multiprocessor architectures in which processing
components, such as the ones discussed in Chapters 1-5, incorporate varying
degrees and forms of programmability. We have discussed specification models
based on coarse-grain dataflow principles that expose valuable application struc-
ture during cosynthesis. We then developed a number of systematic techniques
for partitioning coarse-grain dataflow specifications into the hardware and soft-
ware components of heterogeneous architectures for embedded multiprocessing.
Synchronization between distinct processing elements in a partitioned specifica-
tion was then discussed, and in this context, we examined a number of comple-
mentary strategies for reducing the execution-time and power consumption
penalties associated with synchronization. We also reviewed techniques for
effectively incorporating block processing optimization into the software compo-
nent of a hardware/software implementation to improve system throughput. 

Given the vast design spaces in hardware/software implementation, and
the complex range of design metrics (e.g., latency, throughput, peak and average
power consumption, memory requirements, memory partitioning efficiency, and
overall dollar cost), important areas for further research include developing and
precisely characterizing a better understanding of the interactions between differ-
ent implementation metrics during cosynthesis; of relationships between various
classes of architectures and the predictability and efficiency of implementations
with respect to different implementation metrics; and of more powerful modeling
techniques that expose additional application structure in innovative ways, and
handle dynamic application behavior (such as the dynamic dataflow models and
dataflow meta-models mentioned in Section 2.3). We expect all three of these

N'act
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directions to be highly active areas of research in the coming years.
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