
May 2, 2000

Given a structural filter description, create
the most hardware-efficient filter architecture,

while satisfying the real-time constraints.

Existing Tools:
HYPER - UC Berkeley
FIR Compiler - Altera

Cadence, Synopsys also have tools

May 2, 2000

INPUTS: Real-time constraints,
Filter description, Module Library

OUTPUT: Optimized Filter Net-list
(for dir ect synthesis into hardware)

May 2, 2000

SIMPLIFYING ASSUMPTIONS

• Filter description has no control-flow
• Data rate constraints already met
• Tool can only perform retiming and folding
• Control-flow will be synthesized later
• Only tested on small graphs (nodes < 100)

May 2, 2000

MODULE LIBRAR Y

• Multiple Fine-Grain DFGs for basic functions
• Each cell contains resource-usage information
• Tied to target technology

For example, multipliers:

CSA Array,
Shift-and-Add,

Wallace/Dadda Tree,
Booth Recoded

May 2, 2000

SYNTHESIS STEPS

• Run scheduling algorithm on input DFG
• Allocate resources (# of functional units)
• Use this allocation as upper-bound
• Break all arcs with delays
• Create directed acyclic graph
• Retime until height reaches iteration bound
• Schedule new graph, and compare with bound
• Back-track on retiming decision tree, repeat

May 2, 2000

SCHEDULING ALGORITHM

• create priority list for each path in DAG
• longest list becomes critical path
• rank each node according distance from tail
• schedule node(s) with highest rank
• remove node(s) from path(s)
• repeat last 2 steps until all nodes scheduled
• scheduling complexity O(n)

May 2, 2000

May 2, 2000

May 2, 2000

May 2, 2000

May 2, 2000

RESULTS/COMPARISON

BIQUAD/HYPER BIQUAD/FINE-GRAIN

TIME
UNIT

ADD
MULT

1
MULT

2
TIME
UNIT

ADD
1

ADD
2

PART.
MULT

1 A2 M3 M4 1 A1 Y4 X3

2 A1 2 A4 Y3 X1

3 A4 M1 M2 3 A3 Y1 X2

4 A3 4 A2 Y2 X4

1 Adder, 2 Multipliers,
5 Registers

1 Adder, 1 (effective) Multiplier ,
5 Registers

Assumptions: 1 Adder = 1 TU,
I Multiply = 2 TU

Assumptions: 1 Adder = 1 TU,
1 Partial Multiply = 1 TU

May 2, 2000

CONCLUSIONS

• Successful implementation of synthesis
• Subset of transformations (no unfolding)
• Constrictive input conditions
• Produces DFG with control block hierarchy
• Control blocks are simply firing schedules
• Still need to synthesize control logic

