FILTER SYNTHESIS
USING
FINE-GRAIN DATAFLOW GRAPHS

Waqas Akram, Cirrus Logic Inc.

Given a structural filter description, create
the most hardvare-efficient filter architecture,
while satisfying the real-time constraints.

Existing Tools:
HYPER - UC Berkeley
FIR Compiler - Altera
Cadence, Synopsys also ka tools

May 2, 2000

INPUTS: Real-time constraints,
Filter description, Module Library

(TCONSTRAINTSTJ

(jSYNTHESISfOPTIMIZATION_]

ARTTHMETIC UNIT TECHNOLOGY
ALGORITHM LIEBRARY LIEBRARY

OUTPUT: Optimized Filter Net-list
(for dir ect synthesis into haravare)

May 2, 2000

SIMPLIFYING ASSUMPTIONS

* Filter description has no contol-flow

« Data rate constraints aleady met

 Tool can only perbrm retiming and folding
« Control-flow will be synthesized later

e Only tested on small graphs (nodes < 100)

May 2, 2000

MODULE LIBRAR Y

« Multiple Fine-Grain DFGs for basic functions
« Each cell contains esouice-usage inbrmation
 Tied to target technology

For example, multipliers:

CSA Array,
Shift-and-Add,
Wallace/Dadda Tee,
Booth Recoded

May 2, 2000

SYNTHESIS STEPS

e Run scheduling algorithm on input DFG
 Allocate resources (# of functional units)

» Use this allocation as uppebound

* Break all arcs with delays

» Create directed acyclic graph

« Retime until height reaches iteration bound

» Schedule new graph, and comparwith bound
e Back-track on retiming decision tree, repeat

May 2, 2000

SCHEDULING ALGORITHM

o create priority list for each path in DAG

e longest list becomes critical path

* rank each node according distance om tail

» schedule node(s) with highest rank

e remove node(s) fom path(s)

 repeat last 2 steps until all nodes scheduled
 scheduling complexity O(n)

May 2, 2000

Al

(A

May 2, 2000

ouT

IN

Al

D1

RO RO ICRC R RC

May 2, 2000

D3

W
ﬁz

RESULTS/COMPARISON

BIQUAD/HYPER

BIQUAD/FINE-GRAIN

TIME ADD MULT MULT TIME | ADD | ADD PART.
UNIT 1 2 UNIT 1 2 MULT
1 A2 M3 M4 1 Al Y4 X3
2 Al 2 A4 Y3 X1
3 A4 M1 M2 3 A3 Y1l X2
4 A3 4 A2 Y2 X4

1 Adder, 2 Multipliers,
5 Registers

1 Adder, 1 (effectve) Multiplier,
5 Registers

Assumptions: 1 Adder =1 TU
| Multiply =2 TU

Assumptions: 1 Adder=1TU
1 Partial Multiply =1 TU

May 2, 2000

CONCLUSIONS

e Successful implementation of synthesis

e Subset of transbrmations (no unfolding)
 Constrictive input conditions

* Produces DFG with contol block hierarchy
 Control blocks are simply firing schedules
o Still need to synthesize contl logic

May 2, 2000

