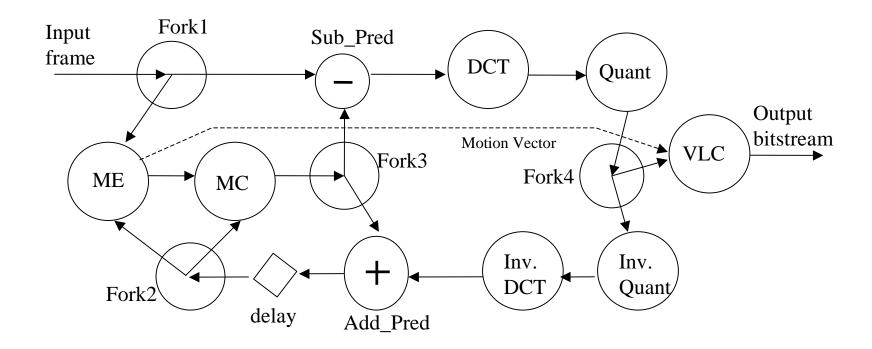


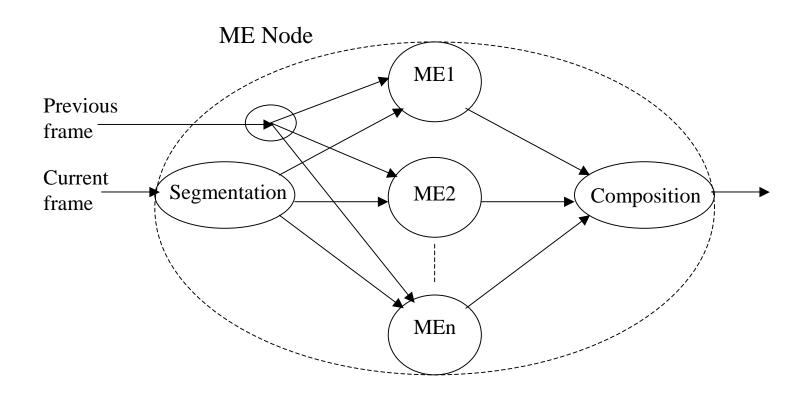
System Modeling and Software Implementation of MPEG-4 Encoder

Chen He Shi Zhong

May 4, 2000


Problem Statement

- Real-time implementation of MPEG-4 encoder
 - Computation-intensive
 - Inherent parallelism
 - Precedence preservation
 - Flexible configuration


Our Approach

- System modeling using Computational Process Networks
 - Deterministic concurrent model
 - Precedence-preserving
- Software implementation
 - C++, POSIX Threads
 - Allen's CPN framework

PN Model of the Core Encoder

Finer Hierarchical Model of Motion Estimation Node

Software Implementation

- Node and queue design
 - Data type and structure for node input, node output and tokens
- Code generation (time-consuming!)
 - Based on existing C source code on the web
- Simulation
 - Frame-based top level core encoder
 - Platform: Single Intel Pentium III Xeon (733MHz?)
 processor, Linux, 256MB memory

Example of Nodes Execution

...

Encoding frame 0 ...

ForkNode starting.

ForkNode processed 1 frame(s).

ForkNode starting.

ForkNode processed 1 frame(s).

MENode starting.

MENode processed 1 frame(s).

MCNode starting.

MCNode processed 1 frame(s).

ForkNode starting.

ForkNode processed 1 frame(s).

SUBPredNode starting.

SUBPredNode processed 1 frame(s).

DCTNode starting.

DCTNode processed 1 frame(s).

QvlcNode starting.

QvlcNode processed 1 frame(s).

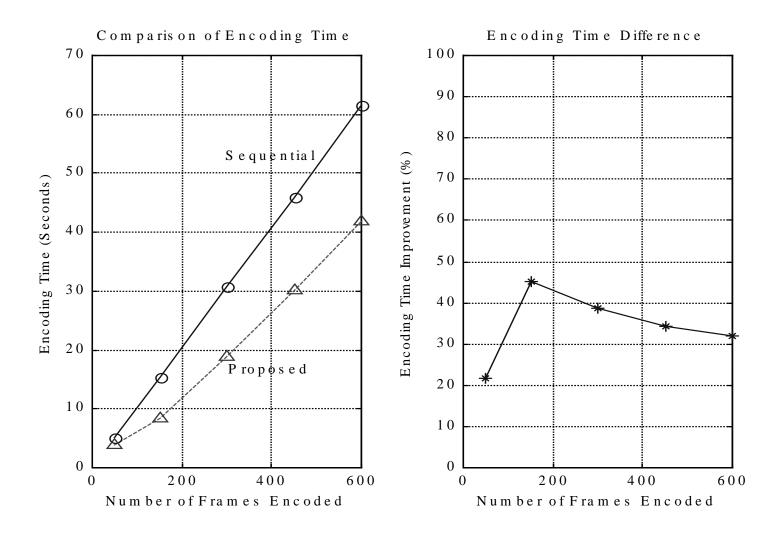
IQUANTNode starting.

IQUANTNode processed 1 frame(s).

IDCTNode starting.

IDCTNode processed 1 frame(s).

ADDPredNode starting.


ADDPredNode processed 1 frame(s).

• •

Simulation Results

- Successful encoding results
 - On test sequences (128*128, color format 4:2:0)
 - Decodable and playable by existing MPEG player
- Faster than the original sequential encoder
 - Even on a single processor!
 - Benefits from concurrent model and Pthread implementation outweigh thread overheads
 - Benefit margin may depend on the inherent parallelism exposed by the designed model and node granularity

Performance Evaluation

Conclusion

- Our approach is
 - Scalable to multi-processor environment (expected to have approximate linear speedup thus potentially feasible for real-time implementation)
 - Faster due to concurrent execution (Pthread implementation of PN nodes)
- Future work
 - Profiling the computation load of each node
 - Evaluation on multi-processor platform