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• Exam duration.  The exam is scheduled to last 75 minutes. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the particular content in the source for your justification.  You 

could reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

Problem Point Value Your score Topic 

1 25  FIR Filter Analysis 

2 27  Predistortion 

3 24  Discrete-time Feedback System 

4 24  Mystery Systems 

Total 100   

  



Problem 1.1 FIR Filter Analysis.  25 points. 

Consider a causal linear time-invariant (LTI) discrete-time finite impulse response (FIR) filter with 

input x[n] and output y[n] observed for n  0.  The transfer function in the z-domain is 

𝐻(𝑧) = 𝑎 + 𝑏 𝑧−100    for  𝑧 ≠ 0 

where 𝑎 and 𝑏 are real-valued, non-zero constants. 

(a) Give the equation for output y[n] in terms of the input x[n] in the discrete-time domain for 𝑛 ≥ 0.  

6 points. 

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
= 𝒂 + 𝒃 𝒛−𝟏𝟎𝟎 which means 𝒀(𝒛) = 𝒂 𝑿(𝒛) +  𝒃 𝒛−𝟏𝟎𝟎 𝑿(𝒛) 

So, 𝒚[𝒏] = 𝒂 𝒙[𝒏] + 𝒃 𝒙[𝒏 − 𝟏𝟎𝟎] for 𝒏 ≥ 𝟎. 

(b) What are the initial condition(s) and their value(s)?  Why?  3 points. 

We can see the initial conditions by starting to compute the first few values of 𝒚[𝒏]. 

𝒚[𝟎] =  𝒂 𝒙[𝟎] + 𝒃 𝒙[−𝟏𝟎𝟎] 

𝒚[𝟏] =  𝒂 𝒙[𝟏] + 𝒃 𝒙[−𝟗𝟗] 

The initial conditions are 

𝒙[−𝟏] = 𝒙[−𝟐] = ⋯ = 𝒙[−𝟏𝟎𝟎] = 𝟎 

This will satisfy the necessary (but not sufficient) conditions for linearity and time-invariance 

properties to hold. 

(c) In managing the memory for storing the previous input values, would you advocate for a linear 

buffer or a circular buffer?  Why?  3 points 

To update the storage of the current and previous 100 input samples each time a new input 

sample arrives, a linear buffer would require 100 reads and 100 writes 

𝒙[−𝟏𝟎𝟎] = 𝒙[−𝟗𝟗]; 𝒙[−𝟗𝟗] = 𝒙[−𝟗𝟖]; … ; 𝒙[−𝟏] = 𝒙[𝟎] 

whereas a circular buffer would require one read and two writes.  The circular buffer update 

would need to read the pointer to the oldest value, write the current input value into the 

memory location for the oldest sample, and then update the pointer to the oldest value.  I 

would use a circular buffer due to its much lower complexity. 

(d) Derive a formula for the discrete-time frequency response of the filter.  3 points. 

Since the transfer function 𝑯(𝒛) includes the unit circle in the region of convergence, we can 

substitute 𝒛 = 𝒆𝒋 𝝎 to convert the transfer function into a frequency response: 

𝑯(𝒆𝒋 𝝎) =  𝒂 + 𝒃 𝒆−𝒋 𝟏𝟎𝟎 𝝎 

(e) Give all possible conditions on the constants 𝑎 and 𝑏 so that the FIR filter has constant group 

delay.  Compute the constant group delay.  10 points. 

𝑯(𝒆𝒋 𝝎) =  𝒂 + 𝒃 𝒆−𝒋 𝟏𝟎𝟎 𝝎 = 𝒆−𝒋 𝟓𝟎 𝝎(𝒂 𝒆𝒋 𝟓𝟎 𝝎 + 𝒃 𝒆−𝒋 𝟓𝟎 𝝎) 

Constant group delay means the phase response has constant slope: 𝑮𝑫(𝝎) = −
𝒅

𝒅𝝎
 ∠𝑯(𝒆𝒋 𝝎)  

Only possible if there’s symmetry in impulse response about its midpoint (lecture slide 5-17): 

Even symmetry:  𝒂 = 𝒃.   𝑯(𝒆𝒋 𝝎) = 𝒆−𝒋 𝟓𝟎 𝝎(𝟐 𝒂 𝐜𝐨𝐬(𝟓𝟎 𝝎)) and 𝑮𝑫(𝝎) = 𝟓𝟎 samples 

Odd symmetry: 𝒂 = −𝒃.  𝑯(𝒆𝒋 𝝎) = 𝒆−𝒋 𝟓𝟎 𝝎(𝟐 𝒋 𝒂 𝐬𝐢𝐧(𝟓𝟎 𝝎)) and 𝑮𝑫(𝝎) = 𝟓𝟎 samples 

 

JSK Ch. 7 Midterm 1 Problem 1: Sp10, F16, F18, F20, F23 

Lectures 3 5 & 6 
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Problem 1.2 Predistortion.  27 points.  

Predistortion is a technique used to compensate the distortion in another system. 

An example is applying predistortion to an audio signal before being played by an audio system. 

The block diagram illustrates the use of predistortion 

when the predistorter is a linear time invariant (LTI) 

system and the distortion is modeled as LTI. 

• sampling rate 𝑓𝑠 is 44100 Hz. 

• 𝑔[𝑚] is the impulse response of the 

discrete-time LTI predistorter 

• ℎ[𝑚] is the impulse response of a discrete-time 

LTI model of the distortion in a playback system. 

A predistorter is bounded-input bounded-output stable. 

Distortion.  Its poles and zeros are given below and its 

magnitude response |𝐻(𝑒𝑗 𝜔)| is on given on the right. 

 

 

 

 

An all-pass cascade would mean |𝑮𝒇𝒓𝒆𝒒(𝝎) 𝑯𝒇𝒓𝒆𝒒(𝝎)| = 𝒈 where 𝒈 is a positive constant. Per 

lecture slide 6-15, a pole-zero pair in an all-pass configuration has two cases: (1) if the zero is 

inside the unit circle, then the pole and zero have the same value and cancel or (2) if the zero is 

outside the unit circle, the pole would have the same angle and reciprocal magnitude.  If the zero 

is on the unit circle, place pole inside the unit circle at the zero angle for a notch configuration. 

(a) What continuous-time frequency corresponds to pole location 𝑝2?  3 points. 

From sampling a continuous-time sinusoidal signal 𝒙(𝒕) = 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝟎 𝒕) at sampling rate 𝒇𝒔 , 

𝒙[𝒏] = 𝒙(𝒏 𝑻𝒔) = 𝐜𝐨𝐬 (𝟐 𝝅 
𝒇𝟎

𝒇𝒔
𝒏) where 𝝎̂𝟎 = 𝟐 𝝅 

𝒇𝟎

𝒇𝒔
 . 

The discrete-time frequency 𝝎̂𝟐 association with pole location 𝒑𝟐 is 0.02 𝝅, so 

𝝎̂𝟐 = 𝟐 𝝅 
𝒇𝟐

𝒇𝒔
 which means 𝒇𝟐 =

𝝎̂𝟐

𝟐 𝝅
 𝒇𝒔 =

𝟎.𝟎𝟐 𝝅

𝟐 𝝅
 (𝟒𝟒𝟏𝟎𝟎 𝐇𝐳) = 𝟒𝟒𝟏 𝐇𝐳.  Close to note ‘A4’. 

(b) Give the zeros of the predistorter. Explain how you determined each one.  12 points. 

Answer #1: The zeros of the predistorter would be the values of the poles of the distortion.  

This will lead to pole-zero cancellations.  Zeros do not cause BIBO stability. 

𝒛𝟎 = 𝒑𝟎 = 𝟎. 𝟕𝟓 𝒆𝒋 𝟎.𝟖 𝝅 and 𝒛𝟏 = 𝒑𝟏 = 𝟎. 𝟕𝟓 𝒆−𝒋 𝟎.𝟖 𝝅 

𝒛𝟐 = 𝒑𝟐 = 𝟎. 𝟗𝟗 𝒆𝒋 𝟎.𝟎𝟐 𝝅 and 𝒛𝟑 = 𝒑𝟑 = 𝟎. 𝟗𝟗 𝒆−𝒋 𝟎.𝟎𝟐 𝝅 

Answer #2: Put the zeros in an all-pass configuration where each zero is at the same angle as 

the pole but the magnitude is inverted. Lecture Slide 6-15 and Handout O on all-pass filters. 

Poles 

𝑝0 = 0.75 𝑒𝑗 0.8 𝜋 

𝑝1 = 0.75 𝑒−𝑗 0.8 𝜋 

𝑝2 = 0.99 𝑒𝑗 0.02 𝜋 

𝑝3 = 0.99 𝑒−𝑗 0.02 𝜋 

Zeros 

𝑧0 = 1 

𝑧1 = −1 

𝑧2 = 1 

𝑧3 = −1.25 

Distortion Magnitude 

Response |𝐻(𝑒𝑗 𝜔)|  

Midterm 1: Prob 1.2 Sp24, 1.3 Sp23 & 1.2 F19 Lecture Slide 6-15 
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Lab #3 HW 2.1, 2.3, 3.1, 3.3 

 

JSK Ch. 7 

Note:  If the predistorter were 

placed after the system, then it 

would be called an equalizer 

Handout O 



𝒛𝟎 =
𝟏

𝟎.𝟕𝟓
 𝒆𝒋 𝟎.𝟖 𝝅 =

𝟒

𝟑
 𝒆𝒋 𝟎.𝟖 𝝅 and 𝒛𝟏 =

𝟏

𝟎.𝟕𝟓
 𝒆−𝒋 𝟎.𝟖 𝝅 =

𝟒

𝟑
 𝒆−𝒋 𝟎.𝟖 𝝅 

𝒛𝟐 =
𝟏

𝟎.𝟗𝟗
 𝒆𝒋 𝟎.𝟎𝟐 𝝅 and 𝒛𝟑 =

𝟏

𝟎.𝟗𝟗
 𝒆−𝒋 𝟎.𝟎𝟐 𝝅 

(c) Give the poles of the predistorter. Explain how you determined each one.  12 points. 

Notch configuration: 𝒑𝟎 = 𝟎. 𝟗 and 𝒑𝟏 = −𝟎. 𝟗 and 𝒑𝟐 = 𝟎. 𝟗. 

Reciprocal magnitudes for an all-pass configuration:  𝒑𝟑 = −𝟎. 𝟖. 

 

 

%% Matlab code to generate the magnitude response in Problem 1.2 

clear all; 

 

fs = 44100; 

  

z0 = 1; 

z1 = -1; 

numer1 = [1 -(z0+z1) z0*z1]; 

poleAngle = 0.8*pi; 

r0 = 0.75; 

p0 = r0 * exp(j*poleAngle); 

p1 = r0 * exp(-j*poleAngle); 

denom1 = [1 -(p0+p1) p0*p1]; 

  

z2 = 1; 

z3 = -1.25; 

numer2 = [1 -(z2+z3) z2*z3]; 

r = 0.99; 

fpole = 441; 

poleAngle = 2*pi*fpole/fs; 

p2 = r * exp(j*poleAngle); 

p3 = r * exp(-j*poleAngle); 

denom2 = [1 -(p2+p3) p2*p3]; 

  

%%% Normalize the DC response to 1 in linear units by 

%%% setting H(z) evaluated at z = exp(j pi/2) to be 1 

numer = conv(numer1, numer2);  % polynomial multiplication 

denom = conv(denom1, denom2);  % polynomial multiplication 

zval = exp(j*pi/2); 

zvec = zval .^ [0 -1 -2 -3 -4]; 

C = (denom * zvec') / (numer * zvec'); 

  

figure; 

[h,w] = freqz(C*numer, denom); 

p = plot(w,20*log10(abs(h)),'k'); 

p(1).LineWidth = 2; 

xlim( [0 pi] ); 

xlabel('Frequency w in rad/sample'); 

ylabel('Magnitude Response in dB'); 

 

  



Problem 1.3.  Discrete-Time Feedback System.  24 points.  

Consider a discrete-time linear time-invariant (LTI) system with input signal x[n] and output signal y[n] 

that is governed by the following second-order difference equation for n ≥ 0: 

𝑦[𝑛] = 1.6 𝑦[𝑛 − 1] − 𝐾 𝑦[𝑛 − 2] + 𝑥[𝑛] 

where K is a real-valued constant. 

(a) What are the initial conditions of the system and what values should they have?  6 points. 

A necessary condition for a system to have LTI properties is that it must be “at rest”. 

That is, the initial conditions of the system must be zero. 

We can find the initial conditions of the system by computing the first output values: 

𝒚[𝟎] = 𝟏. 𝟔 𝒚[−𝟏] − 𝑲 𝒚[−𝟐] + 𝒙[𝟎] 
𝒙[𝟎] and 𝒚[𝟎] are initial values of input signal 𝒙[𝒏] and output signal 𝒚[𝒏], respectively. 

Neither is an initial condition of the system.  Hence 𝒚[−𝟏] = 𝟎 and 𝒚[−𝟐] = 𝟎. 

(b) Derive the transfer function H(z) for the system, which will 

depend on K.   6 points. 

Take the z-transform of both sides of the equation:  

 𝒀(𝒛) = 𝟏. 𝟔 𝒛−𝟏𝒀(𝒛) − 𝑲 𝒛−𝟐 𝒀(𝒛) + 𝑿(𝒛) 

Next, collect Y(z) terms on left-hand side of the equation: 

𝒀(𝒛) − 𝟏. 𝟔 𝒛−𝟏 𝒀(𝒛) + 𝑲 𝒛−𝟐 𝒀(𝒛) = 𝑿(𝒛) 

(𝟏 − 𝟏. 𝟔 𝒛−𝟏 + 𝑲 𝒛−𝟐) 𝒀(𝒛) = 𝑿(𝒛) 

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
=

𝟏

𝟏 − 𝟏. 𝟔 𝒛−𝟏 + 𝑲 𝒛−𝟐
=

𝒛𝟐

𝒛𝟐 − 𝟏. 𝟔 𝒛 + 𝑲 
 

H(z) has two zeros at the origin (z = 0) and poles at 

−𝟏.𝟔±√(−𝟏.𝟔)𝟐−𝟒𝑲

𝟐
=

−𝟏.𝟔±√(−𝟐×𝟎.𝟖)𝟐−𝟒𝑲

𝟐
= 𝟎. 𝟖 ± √𝟎. 𝟔𝟒 − 𝑲  

Region of convergence is complex z plane outside a circle 

of the larger pole radius:  |𝒛| > 𝐦𝐚𝐱{ |𝒑𝟎|, |𝒑𝟏| } 

(c) Give the range of values for K for which the system is bounded-

input bounded-output (BIBO) stable.  6 points. 

Both poles must be inside unit circle for BIBO stability. For K ≤ 0.64, poles are real-valued: 

−𝟏 < 𝟎. 𝟖 − √𝟎. 𝟔𝟒 − 𝑲 and 𝟎. 𝟖 + √𝟎. 𝟔𝟒 − 𝑲 < 𝟏 

The left inequality gives K > –2.6 and the right one gives K > 0.6.  Hence, K > 0.6. 

For K > 0.64, the poles are complex-valued:  𝟎. 𝟖 ± 𝒋 √𝑲 − 𝟎. 𝟔𝟒. 

|𝟎. 𝟖 + 𝒋 √𝑲 − 𝟎. 𝟔𝟒| < 𝟏 which means √(𝟎. 𝟖)𝟐 + (𝑲 − 𝟎. 𝟔𝟒) < 𝟏 

By squaring both sides, (𝟎. 𝟖)𝟐 + (𝑲 − 𝟎. 𝟔𝟒) < 𝟏 which means K < 1.  So, 0.64 < K < 1. 

The full range of K for BIBO stability is 0.6 < K < 1. 

(d) Describe the possible frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass or notch) 

that the system could exhibit for different values of K for which the system is BIBO stable.  6 points.   

For 0.6 < K < 0.64, poles are real-valued between 0.8 and 1.0, not inclusive.  Lowpass.  At K = 

0.64, there is double pole at z = 0.8, which is also means a lowpass response.  As K increases 

from 0.64 to 1, the pole separation increases and the response becomes bandpass. 

K = 0 : 0.001 : 2; 

root1 = 0.8 - sqrt(0.64 - K); 

root2 = 0.8 + sqrt(0.64 - K); 

hold on; 

scatter(real(root1), imag(root1)); 

scatter(real(root2), imag(root2)); 

hold off; 

 

 

Root locus 

plot of pole 

locations for 

0 < K < 2 

Re{z} 

Im{z} 

root1 root2 

K=0 

K=2 

K=2 

K=0 
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Problem 1.4.  Mystery Systems.  24 points.  

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 8000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 8000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

8000 Hz

10 𝑠
= 800 Hz2.  Sampling rate 𝑓𝑠 is 16000 Hz. 

In each part below, identify the unknown system as one of the following with justification: 

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies 

2. upsampler – give upsampling factor 

3. downsampler – give downsampling factor 

4. pointwise nonlinearity – give the integer exponent k to produce the output 𝑦[𝑛] = 𝑥𝑘[𝑛] 
 

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  12 points. 

 

 

 

 

When compared to the input spectrogram, the output spectrogram has the same range of 

frequencies along the vertical axis but one-third the duration in time along the horizontal 

axis. The principal frequency in the output spectrogram is a chirp pattern that is wider and 

has aliasing.  Downsampling by 3 per homework problem 2.2(d).  

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  12 points. 

 

 

𝟑𝒇𝟎 

 

     

 

Same as input 

frequency 𝒇𝟎 

  

Midterm 

Problems 

1.4 Sp 22 

1.2 F 18 

1.2(d) Sp 18 

Lecture 4 

HW 1.2 1.3 & 2.2 In-Lecture #1 Assignment 

Handout Common Signals in Matlab 

Midterm 1: 1.4 Sp11, 1.3 Sp15, 1.5 Sp19, 1.4 F19, 1.4 Sp20, 1.4 F21, 1.4 Sp20, 1.4 F F23 

Lecture 4 

Cubic nonlinearity gives frequencies +𝒇𝟎 and +𝟑𝒇𝟎 as well as their negative counterparts: 

 

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx


𝐜𝐨𝐬𝟑(𝟐𝝅𝒇𝟎𝒕) = 𝐜𝐨𝐬𝟐(𝟐𝝅𝒇𝟎𝒕) 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕) = (
𝟏

𝟐
+

𝟏

𝟐
 𝐜𝐨𝐬(𝟐𝝅(𝟐𝒇𝟎)𝒕)) 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕)  

𝐜𝐨𝐬𝟑(𝟐𝝅𝒇𝟎𝒕) =
𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕) +

𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅(𝟐𝒇𝟎)𝒕) 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕) 

The product of two cosines gives a sum and difference of the frequencies, scaled by (1/2): 

𝐜𝐨𝐬𝟑(𝟐𝝅𝒇𝟎𝒕) =
𝟑

𝟒
𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝒕) +

𝟏

𝟒
𝐜𝐨𝐬(𝟐𝝅(𝟑𝒇𝟎)𝒕)  

The frequency at +𝟑𝒇𝟎 will alias once 𝒇𝟎 ≥
𝟏

𝟔
 𝒇𝒔 .  Folding for 

𝟏

𝟔
 𝒇𝒔  ≤  𝒇𝟎  <  

𝟏

𝟑
 𝒇𝒔 . 

 

 

%% Matlab code to generate the spectrograms for Problem 1.4 

fs = 16000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

  

%% (a) Downsample by 3 

downsamplingFactor = 3; 

xLength = length(x); 

y = x(1:downsamplingFactor:xLength); 

  

%%% Spectrogram parameters 

blockSize = 1024;  

overlap = 1023; 

 

%%% Plot spectrogram of input signal 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

%%% Plot spectrogram of output signal 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

%% (b) Cubic nonlinearity 

y = x .^ 3; 

  

%%% Spectrogram parameters 

blockSize = 1024;  

overlap = 1023; 

  

%%% Plot spectrogram of input signal 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

 

%%% Plot spectrogram of output signal 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 


