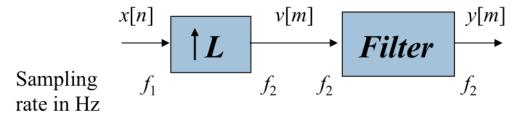
The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

Prof. Brian L. Evans


Date: December 5, 20	16	Course: EE 445S
Name:		
	Last,	First

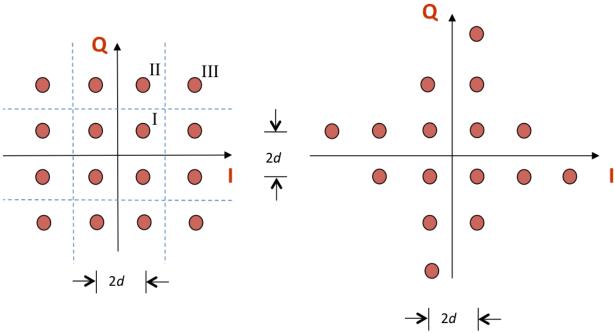
- The exam is scheduled to last 50 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets. You may not share materials with other students.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network. Disable all wireless access from your standalone computer system.
- Please turn off all smart phones and other personal communication devices.
- Please remove headphones.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers unless instructed otherwise. When justifying your answers, you may refer to the Johnson, Sethares & Klein (JSK) textbook, the Welch, Wright and Morrow (WWM) lab book, course reader, and course handouts. Please be sure to reference the page/slide number and quote the particular content in your justification.

Problem	Point Value	Your score	Topic
1	21		Interpolation
2	27		QAM Communication Performance
3	28		Phase Locked Loop (PLL)
4	24		Communication System Design
Total	100		

Problem 2.1. *Interpolation. 21 points.*

Interpolation can change the sampling rate of discrete-time signal x[n] through discrete-time operations of upsampling by L and then filtering:

(a) Give a formula for f_2 in terms of f_1 . 3 points.


(b) Specify the filter's passband frequency ω_{pass} and stopband frequency ω_{stop} in rad/sample to pass as many frequencies in x[n] as possible and reduce artifacts due to upsampling. 6 points.

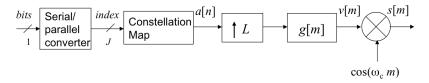
(c) If x[n] is represented with B bits, specify the passband tolerance A_{pass} in dB and the stopband attenuation A_{stop} in dB. 6 points.

- (d) Give an advantage for each type of interpolation filter below. 6 points.
 - i. Finite impulse response filter.
 - ii. Infinite impulse response filter.

Problem 2.2 *QAM Communication Performance. 27 points.*

Consider the two 16-QAM constellations below. Constellation spacing is 2d.

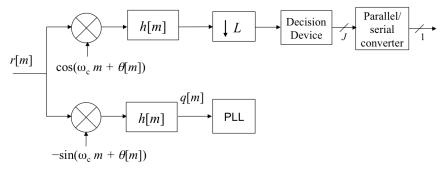
Energy in the pulse shape is 1. Symbol time T_{sym} is 1s. The constellation on the left includes the decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines.


Each part below is worth 3 points. Please fully justify your answers.

	Left Constellation	Right Constellation		
(a) Peak transmit power	$18d^2$			
(b) Average transmit power	$10d^2$			
(c) Draw the decision regions for the right constellation on top of the right constellation.				
(d) Number of type I regions	4			
(e) Number of type II regions	8			
(f) Number of type III regions	4			
(g) Probability of symbol error	$30(d) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
for additive Gaussian noise	$3Q\left(\frac{d}{\sigma}\right) - \frac{9}{4}Q^2\left(\frac{d}{\sigma}\right)$			
with zero mean & variance σ^2	, , , , , ,			

(h) Which of the constellations would you advocate using? Why? Please give two reasons. 6 points.

Problem 2.3. Phase Locked Loop (PLL). 28 points.


The discrete-time transmitter below is for pulse amplitude modulation (PAM) with upconversion:

where

a[n] symbol amplitude f_s sampling rateg[m] pulse shapeJ bits/symbolL samples/symbol ω_c carrier frequency

The discrete-time PAM receiver below has two downconversion paths, and one feeds into the PLL:

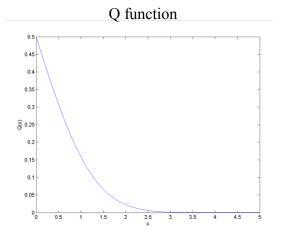
 $\theta[m]$ is the carrier phase offset, and h[m] represents a lowpass finite impulse response (FIR) filter.

- (a) When the receiver carrier phase matches the transmitter carrier phase, i.e. when $\theta[m] = 0$, show that q[m] is zero. 6 points.
- (b) Develop a steepest descent algorithm to estimate the carrier phase offset, $\theta[m]$, per the steps below.
 - i. Give an objective function. 6 points.
 - ii. Give an update equation for $\theta[m+1]$ in terms of $\theta[m]$. 9 points.

- iii. Give an initial value of $\theta[m]$. 3 points.
- iv. What values of the step size, μ , would you use. Why? 4 points.

Problem 2.4. Communication System Design. 24 points

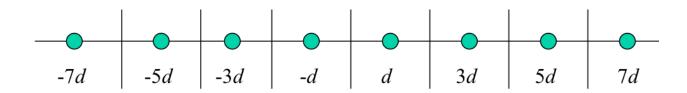
For *M*-level pulse amplitude modulation systems, the probability of a symbol error in the receiver is


$$P_{error} = \frac{2(M-1)}{M} \; Q\left(\frac{d}{\sigma} \sqrt{T_{sym}}\right) \label{eq:percor}$$

where

2d is spacing between adjacent constellation points in Volts, σ^2 is variance of the noise in the communication channel,

 T_{sym} is symbol time, and


$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\frac{-y^2}{2}} dy$$

(a) How would you choose M, d and T_{sym} for a high-speed communication link with probability of symbol error of 10^{-3} . 9 points.

(b) How would you choose M, d and T_{sym} for a low-speed control channel with probability of symbol error of 10^{-7} . The control channel would allow the feedback of information from receiver to transmitter, such as estimated SNR and channel impulse responses, with high accuracy. *9 points*.

(c) Give an optimal encoding for symbols of bits for the 8-PAM constellation below. In what sense is your encoding optimal? *6 points*.

