### The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

### Prof. Brian L. Evans

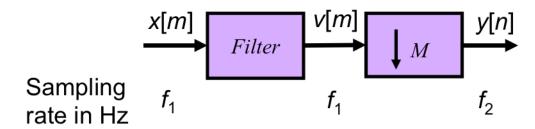
First

| Date: May 5, 2017 | Course: EE 445S |  |
|-------------------|-----------------|--|
|                   |                 |  |
|                   |                 |  |

• The exam is scheduled to last 50 minutes.

Last,

- Open books and open notes. You may refer to your homework assignments and the homework solution sets. You may not share materials with other students.
- Calculators are allowed.

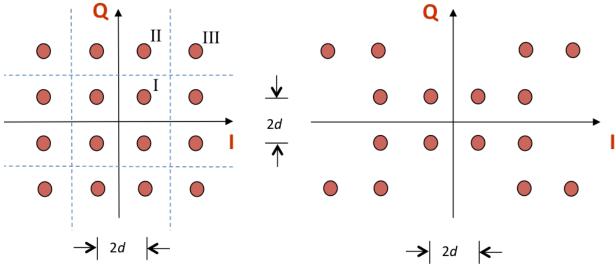

Name:

- You may use any standalone computer system, i.e. one that is not connected to a network. Disable all wireless access from your standalone computer system.
- Please turn off all smart phones and other personal communication devices.
- Please remove headphones.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers unless instructed otherwise. When justifying your answers, you may refer to the Johnson, Sethares & Klein (JSK) textbook, the Welch, Wright and Morrow (WWM) lab book, course reader, and course handouts. Please be sure to reference the page/slide number and quote the particular content in your justification.

| Problem | Point Value | Your score | Topic                              |  |
|---------|-------------|------------|------------------------------------|--|
| 1       | 21          |            | Decimation                         |  |
| 2       | 27          |            | QAM Communication Performance      |  |
| 3       | 28          |            | Blind Channel Equalization         |  |
| 4       | 24          |            | Channel Equalization With Training |  |
| Total   | 100         |            |                                    |  |

# **Problem 2.1.** Decimation. 21 points.

Decimation can change the sampling rate of discrete-time signal x[n] through discrete-time operations of filtering and then downsampling by M.

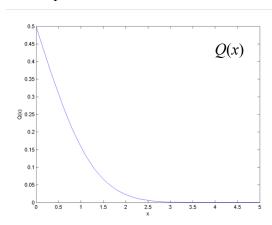



- (a) Give a formula for y[n] in terms of v[]. 3 points.
- (b) Give a formula for  $f_2$  in terms of  $f_1$ . 3 points.
- (c) Specify the filter's passband frequency  $\omega_{pass}$  and stopband frequency  $\omega_{stop}$  in rad/sample to pass as many frequencies in x[m] as possible and reduce as many artifacts due to downsampling in y[n] as possible. 6 points.

- (d) In converting an audio signal sampled at 48 kHz to a speech signal sampled at 8 kHz,
  - i. What is the value of M? 3 points.
  - ii. Would you use a finite impulse response filter or an infinite impulse response filter. Why? *6 points*

**Problem 2.2** *QAM Communication Performance. 27 points.* 

Consider the two 16-QAM constellations below. Constellation spacing is 2d.




Energy in the pulse shape is 1. Symbol time  $T_{\text{sym}}$  is 1s. The constellation on the left includes the decision regions with boundaries shown by the in-phase (I) axis, quadrature (Q) axis and dashed lines.

Each part below is worth 3 points. Please fully justify your answers.

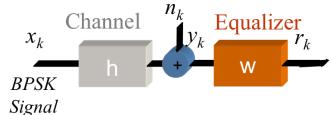
|                                                                                              | Left Constellation                                                              | Right Constellation |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------|--|--|
| (a) Peak transmit power                                                                      | $18d^2$                                                                         |                     |  |  |
| (b) Average transmit power                                                                   | $10d^2$                                                                         |                     |  |  |
| (c) Draw the decision regions for the right constellation on top of the right constellation. |                                                                                 |                     |  |  |
| (d) Number of type I regions                                                                 | 4                                                                               |                     |  |  |
| (e) Number of type II regions                                                                | 8                                                                               |                     |  |  |
| (f) Number of type III regions                                                               | 4                                                                               |                     |  |  |
| (g) Probability of symbol error                                                              | $3O(d)  ^{9}O^{2}(d)$                                                           |                     |  |  |
| for additive Gaussian noise                                                                  | $3Q\left(\frac{d}{\sigma}\right) - \frac{9}{4}Q^2\left(\frac{d}{\sigma}\right)$ |                     |  |  |
| with zero mean & variance $\sigma^2$                                                         |                                                                                 |                     |  |  |

(h) Which constellation has a lower probability of symbol error vs. signal-to-noise ratio? Why? 6 points.



# Problem 2.3. Blind Channel Equalization. 28 points.

Blind channel equalization occurs without a training sequence, as shown below.


When the transmitted sequence x[k] is binary phase shift keying (BPSK), i.e. is +1 or -1, an adaptive method can be based on the fact that  $x^2[k] = 1$ .

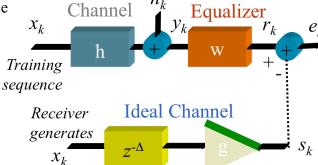
Assume a two-tap finite impulse response (FIR) equalizer with its first coefficient fixed at one:

$$w[k] = \delta[k] + w_1 \delta[k-1]$$

(a) Using the objective function

$$J(k) = \frac{1}{4} (1 - r^2[k])^2$$




derive the adaptive update equation for  $w_1$ . 16 points

- (b) Give an initial value for  $w_1$ . Why did you choose that value? 3 points
- (c) What range of values would you use for the step size  $\mu$ ? Why? 3 points
- (d) How would you adjust the objective function for 4-level pulse amplitude modulation? 6 points

# **Problem 2.4.** Channel Equalization With Training. 24 points

For the finite impulse response (FIR) channel equalizer on the right:

(a) Give two reasons why pseudo-noise is a good choice for the training sequence. *3 points*.



(b) Here is the update equation for an adaptive least mean squares FIR filter with N coefficients w:

$$\mathbf{w}[k+1] = \mathbf{w}[k] - \mu \ e[k] \ \mathbf{y}[k]$$

where 
$$y[k] = [y[k] \ y[k-1] \ \dots \ y[k-(N-1)]$$
 and  $e[k] = r[k] - g \ x[k-\Delta]$  and  $r[k] = FIR\{y[k]\}$ 

i. How many multiplications are needed per iteration? How does this compare with an FIR filter? *6 points* 

- ii. How many words of memory are needed the adaptive FIR filter? How does this compare with an FIR filter? 6 points
- iii. What range of values would you use for the step size  $\mu$ ? Why? 3 points
- (c) For a training sequence of length 2N, would you advocate using a least squares equalizer or an adaptive least mean squares equalizer? 6 points