
% In-Lecture #3 Assignment related to Homework 5.1 Steepest Descent 

% Copy this file into a Matlab script window, add your code and answers to the 
% questions as Matlab comments, hit "Publish", and upload the resulting PDF file 
% to this page for the tune-up assignment.  Please do not submit a link to a file 
% but instead upload the file itself.   Late penalty: 2 points per minute late. 

% This assignment introduces steepest descent algorithms. 
% Please see Fig. 6.15 on page 116 in JSK’s Software Receiver Design book. 
% See steepest descent slides and Midterm Problem 2.1 in Spring 2016. 

% Consider performing an iterative minimization of objective function 
% J(x) = x^2 – 14x + 49 = (x - 7)^2 
% via the steepest descent algorithm (JSK equation (6.5) on page 116). 

% 𝑥[𝑘 + 1] = 𝑥[𝑘] − 𝜇
𝑑𝐽(𝑥)

𝑑𝑥
]

𝑥=𝑥[𝑘]
 

% a. Visualize and analyze the shape of the objective function J(x). 
%     1) Plot J(x) for 5 < x < 9.  Give the Matlab code for your answer. 
x = [5 : 0.01 : 9]; 

J = x.^2 - 14*x + 49; 

figure; 

plot(x, J);   %% At end of document 

%     2) Describe the plot. 
%          Answer: It’s a concave up parabola (bowl) 
%     3) How many local minima do you see? 
%         Answer: 1 at x = 7 
%     4) Of the local minima, how many are global minima? 
%         Answer: The local minimum is also a global minimum. 
 
% b. As first step in deriving steepest descent update equation, 
%      compute the first derivative of J(x) with respect to x. 
%     Answer:  dJ(x)/dx = 2x - 14 
 
% c. Implement the steepest descent algorithm in Matlab with x[0] = 5. 
%     1) What value of x did steepest descent reach in 50 iterations with mu=0.01?  
%         Answer: x = 6.2568 
%     2) What value of x did steepest descent reach in 50 iterations with mu=0.1?  
%         Answer: x = 7.0 
%     3) Is the above value the global minimum of J(x)?  Why or why not? 
%         Answer: Yes, the objective function has only one minimum. 

% polyconverge.m find the minimum of J(x) via steepest descent 

N=50;                      % number of iterations 

mu=0.01;                   % algorithm stepsize 

x=zeros(1,N);              % initialize sequence of x values to zero 

x(1)=5.0;                  % starting point x(1) 

for k=1:N-1 

  x(k+1)= x(k) - (2*x(k)-14)*mu;    % update equation 

end 

figure;  

stem(x);          % to visualize approximation 

x(N) 

See plots and comments on the next page… 
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Convergence.  In general, the convergence of the steepest descent algorithm depends on the initial 
guess and the value of the step size mu. 

In this problem, the steepest descent algorithm is a first-order IIR filter with a pole at 1 − 2𝜇: 

𝑥[𝑘 + 1] = (1 − 2𝜇)𝑥[𝑘] + 14𝜇 𝑢[𝑘] 

The current output is 𝑥[𝑘 + 1], previous output is 𝑥[𝑘], and current input is 14𝜇 𝑢[𝑘] where 𝑢[𝑘] is 
the unit step function.  For the first-order IIR filter to be BIBO stable, the pole has to be inside the 
unit circle, i.e. −1 < 1 − 2𝜇 < 1 or equivalently 0 < 𝜇 < 1.  We choose a small positive value for the 
step size so that the steepest descent algorithm converges.  See additional analysis next. 

The first derivative acts like a highpass filter:  As an LTI system, the first derivative is a highpass 
FIR filter.  Recall that the first-order FIR difference filter from homework 1.1(b) and 2.1(b) is a 
discrete-time approximation of the first derivative and is a highpass filter. 

Often in practice, the first derivative is calculated by formula or estimated numerically using 
measured data, e.g. using a continuous-time analog signal that has been converted to a discrete-
time digital signal.  The first derivative, as a highpass filter, will amplify high-frequency components 
of noise and measurement error. 

In this problem, steepest descent acts like a lowpass filter if the step size is small enough.  For a 
lowpass filter, we want the pole location to be at say 0.9 which would mean a 𝜇 = 0.05.  By choosing 
an appropriate 𝜇 value, we can equalize the highpass response of the first derivative. 
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