Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

EE 313 Linear Signals & Systems

Solution Set for Mini-Project #2 on Digital Audio Processing

By: Anyesha Ghosh & Prof. Brian L. Evans

1.1. The code below is used to record sound from the microphone. It is directly taken from the
problem statement for Mini-Project #2.

fs = 44100;
numBits = 16;
numChannels = 1;
recordingTime = 5;

recObj = audiorecorder (fs, numBits, numChannels);
disp('Start recording...'");

recordblocking (recObj, recordingTime) ;

disp ('End recording.');

% Store data in double-precision floating-point array
myRecording = getaudiodata (recObj) ;

% Play back the recording with automatic scaling
soundsc (myRecording, £fs);

% Plot the waveform in the time domain
figure; plot (myRecording) ;

% Plot the spectrogram
figure;

spectrogram(myRecording, hamming(16384), 8192, 16384, fs, 'yaxis');

0.15 T - . .

0.1

0.05

-0.05

-0.15 1 1 1 1
0 0.5 1 1.5 2 2.5

x10%
Fig. 1. Time domain plot of recorded voice

As can be seen in Fig. 1, the average value of the signal is approximately 0. This is confirmed by
taking the mean of the signal. The quiet portions of the recording are circled in red.

Frequency (kHz)

Frequency (kHz)

20

—_
(&)

3.5

w

N
&)

N

1.5

—_
o

0.5

Fig.

Fig.3.

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

-40

1-60
=

80 &
z
%)
c
g

-100 g
£
<)
g

120 &

-140

1 1.5 2 25 3 3.5 4 4.5
Time (secs)
Spectrogram generated from the code above.

-40

-60
o

80 &
z
%)
C
S

-100 g
£
5}
g

120 &

-140

1 1.6 2 25 3 35 4 45
Time (secs)

Magnified View (1) of the above spectrogram.

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

10
-40
9.5
9 -60
8.5 —_
_ E
N 80 &
£ :
>
275 5
g -100 g
g 7
L 3
6.5 120 &
6
-140

5.5

0.5 1 1.5 2 25 3 35 4 4.5
Time (secs)

Fig. 4. Magnified view (2) of the above spectrogram.

In the spectrogram, the principal frequencies are those with the highest power density, which are
represented by bright yellow in the spectrogram. We expect to see bright bands at the principal
frequencies & their harmonics. Here, we see the principal frequencies to be (approximately): 250Hz,
400Hz, 750Hz, 2kHz, 7kHz. We also see the entire spectrum dropping to the blue regions (low
power) at t = [2.5s, 4s], which corresponds to the quiet regions observed in the time domain plot.

In English, vowel sounds generally have a harmonic structure. We had seen this with the ‘ah’ sound
in Section 3-3.1 and lecture slide 3-6. An opposite effect can occur from pronouncing ‘s’ which
sounds noise-like; i.e. it has a wide band of frequencies in it without a harmonic structure. There are
many phonemes in English that have a mixture of the two extremes.

1.2. The code used for this part is taken from the Mini-Project #2 problem statement. The audio
track is “Nightbook” by Ludovico Einaudi (https://www.youtube.com/watch?v=0B3wgiaOOvVA).

waveFilename = ‘nightbook einaudi.mp3’; = Pick an audio filename
[v,Fs] = audioread(waveFilename) ;

soundsc (y, fs);

spectrogram(y(:,1), hamming(16384), 8192, 16384, fs, 'yaxis');

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

-20

-40
-60
— e
§ &
é E
> Dl
c 3
3 g
g 100 £
w H
o

-120

-140

Time (mins)

Fig.5. Magnified spectrogram for the music signal.

-20

)
) &
5 E
> w7
c 3
[0 o
S g
g -100 £
w g
o

-120

-140

Time (mins)

Fig. 6. Complete spectrogram for the music signal.

We see that the spectrogram repeats about halfway through the sound, which makes sense,
considering that a large part of the song is repeated in the file. We see many principal frequencies,
which are mostly clustered in the [0, 1.5kHz] band. Look for the bright yellow lines in Fig. 5.

1.3. The code used for this part is (taken directly from the problem statement):

Q

3 Sampling rate and time
fs = 44100;

Ts = 1/fs;

% Generate a chirp signal
tmax = 5;

t =0 : Ts : tmax;

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

fstart = 20;
fend = 4000;
y = chirp(t, fstart, tmax, fend);
Play back the chirp signal
soundsc (y, fs);
Spectrogram
spectrogram(y, hamming(16384), 8192, 16384, fs, 'yaxis');

20
40
60
< 15 i
T g
L i
g -80
5 02
c =]
S 10 g
g -100 5
i 2
o
5 -120
/ -140

0
0.5 1 1.5 2 25 3 3.5 4 4.5

Time (secs)

Fig. 7. Spectrogram of a chirp signal.

Here, we see a pattern of increasing principal (and sole, in this case) frequency. This is exactly what
is expected as we are dealing with a chirp signal.

2. I’'m using the song above for this as well- since most of the class seems to be doing this.
a) A delay of one sample corresponds to a delay of Ty = fi So, for a delay of 0.15s and a sampling
S

rate of 11025 Hz, we need to solve for

0.15s = }? => P = f, + 0.15 = 11025 *72, 0,155 = 1653.75 ~ 1654 samples:
[n] (0] + —2—x [— p] = e] + o s x[n — P

= * * —_ = — % * —
yinl = gg rxinl+ g wxin=pl = g = xlnl + g0+ xn = P]

~ y[n] = 0.5128 x[n] + 0.4872 x[n — 1654]
So, h[n] = 0.51288 * §[n] + 0.4872 = §[n — 1654]. Hence, the filter coefficients are:

0.5128, n=20
h[n] = {0.4872, n = 1654
0, else

The stem and frequency response plots are generated using the following code:

P = 1654;

H = zeros(P+1,1);
H(l1) = 0.5128;
H(P+1)= 0.4872;
stem (H) ;

figure;

freqgz (H) ;

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

Frequency response for h[n]=0.51285[n]+0.48725[n-1654]

IWWWWWWW TW WWTWWWTWWWWPWTW'TWWWWWWNHWW

'
-
o

Magnitude (dB)
N}
o

-30
40 . :) .)) :))
0 0.1 0.2 03 04 05 06 07 08 0.9 1
Normalized Frequency (x rad/sample)
100 . . T T T T T T .

Phase (degrees)

0 01 02 03 04 05 06 07 08 09 1
Normalized Frequency (x = rad/sample)

Impulse response for h[n]=0.5128[n]+0.48725[n-1654]

0.6

05T o

04 r 1

h[n]
o
w

0.2r 1

011

O ———
0 200 400 600 800 1000 1200 1400 1600 1800

n

Fig.8. Frequency & impulse responses for h[n] (single echo filter).

b)

filename = 'nightbook einaudi.mp3';

Reading in only part of the file. This is useful when dealing with
really long files. x has two columns, representing the two audio
channels (left and right). Either of the channels will work for us.
x,fs] = audioread(filename, [1,2250000]) ;

= ceil (fs*0.15); %Number of samples to produce a delay of 0.15s.
lpha = 0.95;

Construct a single echo filter.

= zeros(ptl,1);

1) = 1/ (l+alpha);

p+1l) = alpha/ (l+alpha);

Output of the single echo filter.

y = conv(h,x(:,1)); %Taking just one of the channels.

soundsc (y, fs);

audiowrite('einaudi_echol.wav',y/abs(max(y)),fs)

(
(

0 DD D 00 O G — a0 oe oo

The filtered signal sounds like the original overlapped with a loud echo. This makes sense, as the
filter adds a significantly delayed version of the original signal to itself, which sounds like an echo.

c) h[n] = 0.5128 §[n] + 0.4872 8[n — 1654]

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

=ad[n]+b8[n—P],fora=0.5128b = 0.4872,P = 1654.

Let hy[n] := impulse response of cascade of two filters, h¢[n] := impulse response of entire cascade.

hi[n] = h[n] * h[n] = Z(a §[m]+ b 6[m —P])(a 6[n—m]+ bS [n—m — P))

=Za6[m] (a 6[n—m]+ b &[n—m—P])

m

+Zb6[m—k](a6[n—m]+b6[n—m—P])

=a(ad[n]+bb[n—P])+b(adln—P]+bdbn—2P)])
= a? §[n] + 2ab §[n — P] + b2 §[n — 2P]
he[n] = hy[n] * hy[n]

= Z(azé'[m] + 2ab8[m — P] + b%28[m — 2P])(a? §[n — m] + 2ab 6§[n —m — P] + b%6[n—m

— 2P))

= ZaZG[m](a26[n—m] + 2abé[n —m — P] + b25[n — m — 2P])

+ Z 2ab8[m — P](a%?8[n — m] + 2ab8[n — m — P] + b?5[n — m — 2P))
+ Z b26[m — 2P](a28[n — m] + 2abd[n — m — P] + b28[n — m — 2P])

= a?(a?8[n] + 2abS[n — P] + b25[n — 2P])
+ 2ab(a®8[n — P] + 2ab8[n — 2P] + b?5[n — 3P])
+ b2(a?8[n — 2P] + 2abS[n — 3P] + b?5[n — 4P])

= a* §[n] + 4a3b §[n — P] + 6a?b? §[n — 2P] + 4ab® §[n — 3P] + b* §[n — 4P].

So, the net impulse response of the cascaded system is:
he[n] = a*8[n] + 4a>b 6[n — P] + 6a®b? §[n — 2P] + 4ab® §[n — 3P] + b* §[n — 4P]

o hy[n] = 0.06915 &[n] + 0.2628 §[n — 1654] + 0.3745 &[n — 3308] + 0.2372 §[n — 4962] +
0.05634 §[n — 6616].

We can see that the coefficients of the component terms of h¢[n] are identical to the terms in the
expansion of (a + b)*. This is not a coincidence, and you can see that by calculating hs[n] by going

through the z-domain, and noting that convolution in the time domain corresponds to multiplication
in the z-domain.

d)
filename = 'nightbook einaudi.mp3';
[x,fs] = audioread(filename, [1,2250000]) ;

p = ceil(f£s*0.15); S%SNumber of samples to produce a delay of 0.15s.
alpha = 0.95;
%Using explicit time domain equation instead of filter () or conv().

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

y prev = x(:,1);
for i=1:1:4
yl = circshift(y prev,p);
yl(l:p) = 0;
y = (1/(l+alpha))*y prev+(alpha/ (l+alpha))*yl;

figure;
inout(x(:,1),vy,30000,8000,6):;

y_prev = y;
end

soundsc (y, fs);
audiowrite('einaudi_echo2.wav‘,y/abs(max(y)),fs)

The final y[n] has very strong echoes (because of the large value of alpha, and the fact that we're
adding 4 echoes to the initial signal). That comes across in the sound file, which can barely be
identified as the original song.

e)

AL AA AL AR AA AN AAAAAA AN AAANANANAAANANANANANANA ANANANANA A

AAAARARARARARA A RARARRARORAA AR Y A A AR AAAAM

9of .) . . . : .]
0 1000 2000 3000 4000 5000 6000 7000
SAMPLE INDEX (n)

xInly,[n]

NALAAAARAAAAAAAARAAAA AR AN AN ANANAAANAAAAANANAADAANAASAD AR NAND AR NS AN
TV A Y Y Y Y Y T Y T Y Y VY Y Y Y VY YV Y

0 1000 2000 3000 4000 5000 6000 7000
SAMPLE INDEX (n)

Fall 2017 EE 313 Linear Signals & Systems | The University of Texas at Austin

10t XInl,y,[n]

9 aaadadadsdsdadadeda e
-9 [L L L L L L L

0 1000 2000 3000 4000 5000 6000 7000
SAMPLE INDEX (n)

x10* x[n],y[n]

s i il e e e P i s e B fo B ~ "
-8 vvvvvvvuvvuvvvvvvvvvvvvvvvuvvvvvvvu adadadadadagadadadatadadadads

0 1000 2000 3000 4000 5000 6000 7000
SAMPLE INDEX (n)

Fig.9.Plots showing effect of echo filters, plotted at the output of
each stage in the cascade. The colour lines represent the time
duration before each delayed signal component starts. The colour
coding is: Red:= time before start of 1°° delayed component, Green:=
Time between start of 1°% & 2" delayed components, Yellow:= Time
between start of 2" & 3@ delayed components, Grey:= Time between
start of 3™ & 4™ delayed components.

The plots above show the initial section of the music signal. We can see the effect of the echoes in
the time plots. Since each delayed component occurs with a delay of P with respect to the previous
component, we can see this visually by searching for regions where the shape of the output signal
changes due to addition of a new component. Using this method, the start times of the delayed
components are marked in the plots above.

