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EE 313 Linear Signals & Systems (Fall 2017)

Solution Set for Homework #3 on Sampling & Reconstruction

By: Anyesha Ghosh & Prof. Brian L. Evans

1. Prologue: This question revisits the Fourier series coefficient computation with a somewhat
more complex integration.
Solution: The given signal is:
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The Fourier series synthesis equation is x(t) = Y _, axe/®okt where w, = 2mf;.
Here, the fundamental frequency f; is the inverse of the fundamental period Ty.
The coefficient aq is the average value of x(t) over the fundamental period:
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Now consider I,.
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Substltutlng back into (1), we have,
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We can now use the Fourier synthesis formula to validate the Fourier series coefficients:
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N
2(t) = Z ael®okt
k=—N
Below, we plot the synthesisfor N=0, 1, 2, ..., 10. For N =10, we have 2N+1=21 terms.

Fourier series sum forn=0,1,...,10
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The approximated function is shown using 21 Fourier synthesis terms (N=10) on the left and
201 Fourier synthesis terms (N=100) on the right:

Fourier series sum forn=10
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On the right, Gibbs phenomena occur at the amplitude discontinuities at —0.25Tyand 0.25T,.
At these points, there is an 8.9% error at the value of 1 and 8.9% error in the value of 0.

MATLAB code:

Fourier synthesis for square wave
Prof. Brian L. Evans

The University of Texas at Austin
Fall 2017

o0 o0 oo

oe

Pick a value for the period of x(t)

= 1;

=1/ TO;
Pick number of terms for Fourier synthesis
= 100;
max = N * £0;

Define a sampling rate for plotting

s = 24 * fmax;

s =1/ fs;

Define samples in time for one period
= -0.5*T0 : Ts : 0.5*T0;

First Fourier synthesis term

0
0

00 (t 00 HF Hh 00 Hh = 00 Hh H o°

a0 = 0.25;
x = a0 * ones(l, length(t));
figure;

plot(t, x);
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hold on;

% Generate each pair of synthesis terms

for k =1 : N
% Define Fourier coefficients at k and -k
akpos = 8*(sin(pi*k/2)/(4*2*pi*k)+ (cos(pi*k/2)-1)/((2*pi*k)"2));
akneg = akpos;
theta = j*2*pi*k*f0*t;
x = x + akpos * exp(theta) + akneg * exp(-theta);
% Plot Fourier synthesis for indices -k ... k
plot(t, x);

end

hold off;

Epilogue: Think about why a; and a, had to be calculated separately, even though there’s
just one common formula for calculating both of them. Can you think of a signal for which
they would not have to be computed separately?

Prologue: This question goes over some of the basics of sampling, and helps you understand
the difference between the concept of frequency in continuous & discrete time domains.
Solution: x(t) = 10 cos(8807nt + ¢). Sampling time is T, = 0.00001s, so f; = 10* Hz.

a) x(t) has a fundamental period of
1 1

To=—=——5
7 £, 440
We are taking samples every T, seconds, so the nth sample occurs at timet=nT;.
We solve for nT; = T, to obtain n =22.727 samples. Note: this is not an integer value.

b) y(nTs) = 10 cos(w,nTs + @) and x(nT,) = 10 cos(880nnTs + ¢)

Let wg = 8807 + w; where w;> 0.

y(nTg) = 10 cos((8801 + w;)nTs + @) = 10 cos(880nnT + w,Tsn + @)

We would like w;> 0 so that w1 T; = 2w, which is w; = 2 7 f; = 20000 .

So, wo = 208807 rad/s would satisfy the requirement, and so would 40880m, 60880, ... rad/s.

c) Using wo= 20880m rad/s, we get n = To/T, = (21m)/(woTs) = 0.95785 samples.
Epilogue: Here, we see the Nyquist sampling theorem in action: The undersampled signal in

parts (b) & (c) loses its continuous-time frequency information, whereas the oversampled
signal in part (a) retains its continuous-time frequency information.

Prologue: This question starts concerns the reconstruction of a continuous-time signal from
its discrete-time samples. It asks you to interpolate a short discrete-time signal using two
different interpolation functions.

Solution: In the plots, x[n] refers to the y[n] specified in the question. Interpolation plots are
given for part (a) sample-and-hold on the left and part (b) linear interpolation on the right:
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x[n]*p(t)
p(t)
/
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Epilogue: Here we see that different interpolation functions give very different
reconstructed signals. In lecture, we have also discussed sinc interpolation, which can
perfectly reconstruct a bandlimited signal.

The summation that you evaluated in this question is a convolution sum. Convolution sums
and integrals are extremely important in signal processing & mathematics, and will be
revisited many times throughout this course.

4. Prologue: This question goes over sampling (again), this time with chirp signals. Chirp
signals are nice examples for studying the effects of different sampling frequencies, as you
can get a very clear illustration of the frequency domain effects of sampling by looking at its
spectrogram.
Solution: For this problem, the sampling rate f; = 8000 Hz.
a) O[n] = m (0.7 * 1073) n?

S0,0[10] = 0.07m and 6[50] = 1.75m and 6[100] = 7w

If
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b) Consider the signal x(t) = cos(2 it f, t%)

Sampling this with a sampling period of T, we get x[n] = cos(2 1t f (nT,)?) = cos(2 f, T.> n?)
Substituting the values in this problem, we get

21 f, (1/(8x10%)* = 0.7*10° 1t => f, = 22.4x10° s /2,

The units of s /2

are needed to cancel with the units of T,

So, x(t) = cos(2m (22.4x10%) t?) = cos( f(t) )

We know that instantaneous frequency of x(t) is fi(t) = df(t)/dt
Substituting, we get f(t) = (44.8*10%) t Hz

Now, by passing the discrete-time signal through a digital-to-analog (D/A) converter, we will
recover the original signal if and only if the conditions of the Nyquist sampling theorem are
satisfied. To check this, we need to calculate the maximum instantaneous frequency:

Tomax = Nimax Ts = Nmax / fs = 200 / (8x10°) = 0.025s

The maximum instantaneous frequency is fmax = (44.8x10°) Tmax= 1120 Hz.

Since f; > 2 fiax Nyquist sampling theorem is satisfied holds, and we faithfully get back the

continuous-time signal x(t) = cos(2 it (22.4x10%) ).
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Code for plotting the spectrogram:

n=1: 200;

x = cos(pi*(0.7*10"(=3))*(n."2));

fs = 8000;

blockSize = 50;

shift = blockSize/2;

spectrogram(x, blockSize, shift, blockSize, fs, 'vyaxis');
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Here’s a magnified view of the above graph.
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In this case, it is difficult to get a well-defined spectrogram because we only have 200
samples to work with and the chirp is increasing its frequency quickly over the 200 samples.

c) Consider the signal x(t) = cos(2 it fy t)
Sampling this with a sampling period of T, we get x[n] = cos(2 it f, (n T)) = cos(2m f, Ty n)
Substituting the values in the question, we get,
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21 f, (1/(8x10°%) = 0.7t => f, = 2.8x10° Hz.
So, we hear an analog frequency of 2.8kHz. Note that this is irrespective of whether the
original signal was sampled above the Nyquist rate or not.

d) Code taken directly from Prof. Evans’ update to Tune-Up #4.

n =1 : 24000;
X = cos(pi*(0.7*10"(-4))*(n."2));
fs = 8000;

blockSize = 150;

shift = blockSize/2;

spectrogram(x, blockSize, shift, blockSize, fs, 'vyaxis');
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To explain this plot, first calculate the maximum frequency without aliasing effects as we did
in part (b) above. In this part, Tr.x = 24000 T, = 24000 / f; = 3 s and the maximum
instantaneous frequency is frnax = (44.8x102) Tmax = 13.44 kHz which means fi.x / fs= 1.68. The
sampling theorem is not followed for continuous-time frequencies at or above 4 kHz.

Due to sampling, continuous-time frequencies “turn around” at 0.5 f;, decrease until they
stop at f;, increase until 1.5 f;, “turn around” at 1.5 fs, etc. The ratio fmax/ fs shows the
number of cycles in the plot, which is exactly what we can observe from the spectrogram.

Epilogue:

This problem shows that while continuous time frequency may increase indefinitely, once it
is sampled (which is necessary for almost all applications), the effective frequency is
restricted. After midterm #2, we will return to this issue using another type of Fourier
analysis known as the continuous-time Fourier transform.



