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Mini Project #2: Octave-spaced FIR filter banks 

Mr. Dan Jacobellis and Prof. Brian Evans 

Solution Version 0.2 

 

Reading:  McClellan, Schafer and Yoder, Signal Processing First, 2003, Chapters 5-7. Errata. 

Companion Web site with demos and other supplemental information:  http://dspfirst.gatech.edu/ 

Web site contains solutions to selected homework problems from DSP First. 

 

1.0 Introduction 

An octave is a musical interval corresponding to a doubling of frequency. In the western musical scale, 

each octave is divided into twelve notes, with each note’s frequency being 21/12 higher than the previous 

note. See Mini-project #1 from Fall 2024 for more information. 

In this project, we design and implement a discrete-time analysis filter bank that separates an audio signal 

into octaves, and a discrete-time synthesis filter bank that recovers the signal from its components. The 

filter bank consists of a cascade of high-pass and low-pass filters combined with downsampling and 

upsampling operations. For an overview of downsampling and upsampling, see Appendix A. An example 

using two levels is shown below. The MATLAB code for one, two, and four level transforms are presented 

in Appendices C, D, and E. 

 

 

Two level analysis transform

Two level synthesis transform

highpass analysis filter
: lowpass analysis filter

highpass synthesis filter
: lowpass synthesis filter

: downsample by two

: upsample by two

http://dspfirst.gatech.edu/spfirst/SPFirst-errata.pdf
http://dspfirst.gatech.edu/
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2024/miniproject1sol.pdf
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In the two level analysis transform, 𝑦1[2𝑛] corresponds to the octave containing frequencies  
𝑓𝑠

4
< 𝑓 <

𝑓𝑠

2
, 

𝑦2[4𝑛] corresponds to the octave containing frequencies 
𝑓𝑠

8
< 𝑓 <

𝑓𝑠

4
, and 𝑦3[4𝑛] corresponds to 𝑓 <

𝑓𝑠

8
. More 

levels can be applied by recursively applying the process to the bottommost branch of the analysis 

transform, allowing the signal to be separated into a greater number of octaves. 

When the filters satisfy certain properties, it is possible to achieve perfect reconstruciton, meaning that 

𝑥̂[𝑛] = 𝑥[𝑛]; this process is also known as a discrete wavelet transform. For additional reading, see Lecture 

9: Multirate, Polyphase, and Wavelet Filter Banks from Stanford University Center for Computer Research 

in Music and Acoustics (CCRMA). 

 

2.0 Complex sinusoidal response of FIR filters cascaded with downsampling and upsampling 

Consider sampling a continuous-time signal 𝑥(𝑡) at a rate 𝑓𝑠 = 1/𝑇𝑠, resulting in a discrete time signal 

𝑥[𝑛] = 𝑥(𝑡)|𝑛𝑇𝑠. In the time domain, downsampling by a factor of 𝑀 is equivalent to sampling 𝑥(𝑡) at a 

lower rate =
𝑓𝑠

𝑀
. Upsampling by 𝐿 is equivalent to sampling 𝑥(𝑡) at a higher rate 𝐿𝑓𝑠, then multiplying by an 

impulse train Ш𝐿[𝑛] = ∑ 𝛿[𝑛 − 𝑘𝐿]∞
𝑘=−∞ . In the special case that 𝐿 = 2, Ш2[𝑛] =

1

2
+
1

2
cos(𝜋𝑛). 

↓𝑀 {𝑥[𝑛]} = 𝑥[𝑛] downsampled by a factor of 𝑀 
= 𝑥[𝑘]|𝑘=𝑀𝑛 

↑𝐿 {𝑥[𝑛]} = 𝑥[𝑛] upsampled by a factor of 𝐿 
= Ш𝐿[𝑛]𝑥[𝑘]|𝑘=𝑛

𝐿
 

If a complex sinusoidal signal with frequency −𝜋 ≤ 𝜔̂ < 𝜋 is downsampled by a factor of 𝑀 = 2, the 

frequency is doubled: 

↓2 {𝑒
𝑗𝜔̂𝑛} = 𝑒𝑗𝜔̂𝑘|

𝑘=2𝑛
= 𝑒𝑗(2𝜔̂)𝑛. 

If the original frequency 𝜔̂ is larger than 𝜋/2 or smaller than −𝜋/2, aliasing will occur. 

Upsampling a complex sinusoidal signal with frequency 𝜔̂ results in two frequency components: one at 

𝜔̂/2 and another at 𝜔̂/2 − 𝜋. 

↑2 {𝑒
𝑗𝜔̂𝑛} = (

1

2
+
1

2
cos(𝜋𝑛)) 𝑒𝑗𝜔̂𝑛/𝐿 

=
1

2
𝑒𝑗𝜔̂𝑛/𝐿 +

1

2
𝑒𝑗𝜔̂𝑛/𝐿 cos(𝜋𝑛) 

=
1

2
𝑒𝑗𝜔̂𝑛/𝐿 +

1

4
𝑒𝑗𝜔̂𝑛/𝐿−𝜋 +

1

4
𝑒𝑗𝜔̂𝑛/𝐿+𝜋 

=
1

2
𝑒𝑗𝜔̂𝑛/𝐿 +

1

4
𝑒𝑗𝜔̂𝑛/𝐿−𝜋 +

1

4
𝑒𝑗𝜔̂𝑛/𝐿+𝜋−2𝜋 

=
1

2
𝑒𝑗𝜔̂𝑛/𝐿 +

1

2
𝑒𝑗𝜔̂𝑛/𝐿−𝜋 

Upsampling and downsampling are linear operations, but not time-invariant. Systems that include 

upsampling and downsampling operations may not be LTI, but it is still useful to analyze the response of 

these systems to complex sinusoidal inputs. 

  

https://ccrma.stanford.edu/~jos/JFB/JFB.html
https://ccrma.stanford.edu/~jos/JFB/JFB.html
https://ccrma.stanford.edu/~jos/JFB/JFB.html
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1. Consider the system consisting of an FIR filter with frequency response 𝐻1(𝑒
𝑗𝜔̂) followed by 

downsampling by a factor of two, and let 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. 

 

Complex sinusoids are eigenfunctions of LTI systems. When a complex sinusoid 𝑥[𝑛] = 𝐴𝑒𝑗𝜔̂𝑛+𝜙 

is input to an LTI system, the output is a complex sinusoid with the same frequency scaled by the 

frequency response i.e.,  𝑦[𝑛] = 𝐻(𝑒𝑗𝜔̂)𝐴𝑒𝑗𝜔̂𝑛+𝜙 . In this case, the output of the filter is 

𝑦1[𝑛] = 𝑥[𝑛] ∗ ℎ1[𝑛] = 𝐻1(𝑒
𝑗𝜔̂)𝑒𝑗𝜔̂𝑛 

The output of the filter-then-downsample cascade is: 

𝑦1[2𝑛] = 𝑦1[𝑚]|𝑚=2𝑛 = 𝐻1(𝑒
𝑗𝜔̂)𝑒𝑗(2𝜔̂)𝑛 

 

2. Consider the cascade of upsampling by a factor of two followed by an FIR filter with frequency 

response 𝐻2(𝑒
𝑗𝜔̂), and let 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. 

 

Setting odd-indexed samples of a discrete signal equal to zero is equivalent to multiplying by 

cos2 (
𝜋𝑛

2
) =

1

2
+
1

2
cos(𝜋𝑛) = {1,0,1,0, … }. Therefore, the output of the upsampler is 

↑2 {𝑒
𝑗𝜔̂𝑛} =

1

2
𝑒
𝑗(
𝜔̂
2
)𝑛
+
1

2
𝑒
𝑗(
𝜔̂
2
)𝑛
cos(𝜋𝑛) =

1

2
𝑒
𝑗(
𝜔̂
2
)𝑛
+
1

2
𝑒
𝑗(
𝜔̂
2
−𝜋)𝑛

 

The output of the upsample-then-filter cascade is: 

𝑦2[𝑛/2] = ℎ2[𝑛] ∗ (↑2 {𝑒
𝑗𝜔̂𝑛}) 

= ℎ2[𝑛] ∗ (
1

2
𝑒
𝑗(
𝜔̂
2
)𝑛
+
1

2
𝑒
𝑗(
𝜔̂
2
−𝜋)𝑛

) 

= (ℎ2[𝑛] ∗
1

2
𝑒
𝑗(
𝜔̂
2
)𝑛
) + (ℎ2[𝑛] ∗

1

2
𝑒
𝑗(
𝜔̂
2
−𝜋)𝑛

) 

=
1

2
𝐻2(𝑒

𝑗𝜔̂/2)𝑒
𝑗(
𝜔̂
2
)𝑛
+
1

2
𝐻2(𝑒

𝑗(𝜔̂/2−𝜋))𝑒
𝑗(
𝜔̂
2
−𝜋)𝑛

 

 

3. Consider the cascade of the systems in part (2) and part (3). 

 

Let 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. 𝑥̂[𝑛] will contain multiple frequencies:  

↑2 {𝑦2[2𝑛]} =
1

2
𝐻1(𝑒

𝑗𝜔̂)𝑒𝑗𝜔̂𝑛 +
1

2
𝐻1(𝑒

𝑗𝜔̂)𝑒𝑗𝜔̂𝑛 cos(𝜋𝑛) =
1

2
𝐻1(𝑒

𝑗𝜔̂)𝑒𝑗𝜔̂𝑛 +
1

2
𝐻1(𝑒

𝑗𝜔̂)𝑒𝑗(𝜔̂−𝜋)𝑛 

𝑥̂[𝑛] =
1

2
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗𝜔̂)𝑒𝑗𝜔̂𝑛

⏟              
output component at original freuqency

+
1

2
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗(𝜔̂−𝜋))𝑒𝑗(𝜔̂−𝜋)𝑛 

Thus, for the output component at the original frequency 𝜔̂, the effective frequency response is  

Heff(𝑒
𝑗𝜔̂) =

1

2
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗𝜔̂) 
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4. Consider the following cascade: 

 

Let 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. 𝑥̂[𝑛] will contain multiple frequencies:  

𝑦1[2𝑛] = 𝐻1(𝑒
𝑗𝜔̂)𝑒𝑗(2𝜔̂)𝑛 

𝑦2[4𝑛] = 𝐻1(𝑒
𝑗𝜔̂)𝐻2(𝑒

𝑗2𝜔̂)𝑒𝑗(4𝜔̂)𝑛 

ℎ3[𝑛] ∗↑2 {𝑦2[4𝑛]} =
1

2
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗2𝜔̂)[𝐻3(𝑒

𝑗2𝜔̂)𝑒𝑗(2𝜔̂)𝑛 + 𝐻3(𝑒
𝑗(2𝜔̂−𝜋))𝑒𝑗(2𝜔̂−𝜋)𝑛] 

𝑥̂[𝑛] =
1

4
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗2𝜔̂) [𝐻3(𝑒

𝑗2𝜔̂)(𝐻4(𝑒
𝑗𝜔̂)𝑒𝑗𝜔̂𝑛 + 𝐻4(𝑒

𝑗(𝜔̂−𝜋))𝑒𝑗(𝜔̂−𝜋)𝑛)

+ 𝐻3(𝑒
𝑗2𝜔̂−𝜋) (𝐻4 (𝑒

𝑗(𝜔̂−
𝜋
2
)
) 𝑒𝑗

(𝜔̂−
𝜋
2
)𝑛 + 𝐻4 (𝑒

𝑗(𝜔̂+
𝜋
2
)
) 𝑒𝑗

(𝜔̂+
𝜋
2
)𝑛)] 

𝑥̂[𝑛]                       =
1

4
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗2𝜔̂)𝐻3(𝑒

𝑗2𝜔̂)𝐻4(𝑒
𝑗𝜔̂)𝑒𝑗𝜔̂𝑛

⏟                          
output component at original frequency

                   

+
1

4
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗2𝜔̂)𝐻3(𝑒

𝑗2𝜔̂)𝐻4(𝑒
𝑗(𝜔̂−𝜋))𝑒𝑗(𝜔̂−𝜋)𝑛

+
1

4
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗2𝜔̂)𝐻3(𝑒

𝑗2𝜔̂−𝜋)𝐻4 (𝑒
𝑗(𝜔̂−

𝜋
2
)
) 𝑒𝑗

(𝜔̂−
𝜋
2
)𝑛

+
1

4
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
𝑗2𝜔̂)𝐻3(𝑒

𝑗2𝜔̂−𝜋)𝐻4 (𝑒
𝑗(𝜔̂+

𝜋
2
)
) 𝑒𝑗

(𝜔̂+
𝜋
2
)𝑛 

Thus, for the output component at the original frequency 𝜔̂, the effective frequency response is  

𝐻eff(𝑒
𝑗𝜔̂) =

1

4
𝐻1(𝑒

𝑗𝜔̂)𝐻2(𝑒
2𝑗𝜔̂)𝐻3(𝑒

𝑗2𝜔̂)𝐻4(𝑒
𝑗𝜔̂). 

3.0 Effective frequency response of individual branches. 

Four FIR filters are used as building blocks in two_level_octave.m: a lowpass analysis filter (𝐿𝐴), 

highpass analysis filter (𝐻𝐴), lowpass synthesis filter (𝐿𝑆), and highpass synthesis filter (𝐻𝑆). The impulse 

responses are provided in the MATLAB code and plotted below. 

 

We can use freqz to calculate the frequency response of these filters. We can also use freqz to calculate the 

effective frequency response at the original frequency when the filters are cascaded with upsampling and 

downsampling operations, though other frequencies will also be created by upsampling. For the two level 

transform, the effective frequency responses of the three branches are: 

https://danjacobellis.net/_static/two_level_octave.m
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a. Upper octave branch: (𝐻𝐴 ∘ ↓2 ∘ ↑2 ∘ 𝐻𝑆) 

𝐻1(𝑒
𝑗𝜔) =

1

2
𝐻𝐻𝐴(𝑒

𝑗𝜔̂)𝐻𝐻𝑆(𝑒
𝑗𝜔̂) 

b. Middle octave branch: (𝐿𝐴 ∘ ↓2 ∘ 𝐻𝐴 ∘ ↓2∘ ↑2∘ 𝐻𝑆 ∘ ↑2∘ 𝐿𝑆) 

𝐻2(𝑒
𝑗𝜔̂) =

1

4
𝐻𝐿𝐴(𝑒

𝑗𝜔̂)𝐻𝐻𝐴(𝑒
2𝑗𝜔̂)𝐻𝐻𝑆(𝑒

𝑗2𝜔̂)𝐻𝐿𝑆(𝑒
𝑗𝜔̂) 

c. Low frequency branch: (𝐿𝐴 ∘ ↓2 ∘ 𝐿𝐴 ∘ ↓2∘ ↑2∘ 𝐿𝑆 ∘ ↑2∘ 𝐿𝑆) 

𝐻3(𝑒
𝑗𝜔̂) =

1

4
𝐻𝐿𝐴(𝑒

𝑗𝜔̂)𝐻𝐿𝐴(𝑒
2𝑗𝜔̂)𝐻𝐿𝑆(𝑒

𝑗2𝜔̂)𝐻𝐿𝑆(𝑒
𝑗𝜔̂) 

Nplot = 101; 
[HLA, w] = freqz(LA,1,Nplot); [HHA, w] = freqz(HA,1,Nplot); 
[HLS, w] = freqz(LS,1,Nplot); [HHS, w] = freqz(HS,1,Nplot); 
 
figure; plot(w,abs(HLA),linewidth=2); hold on; plot(w,abs(HHA),linewidth=2); 
xlabel('Frequency \omega [radians per sample]') 
ylabel('Magnitude response | H(e^{j\omega}) |') 
legend("Low pass","High pass") 
 
H1 = 0.5*HHA.*HHS; figure; plot(w,abs(H1),linewidth=2) 
HHA2 = downsample([HHA; flipud(conj(HHA))],2); 
HHS2 = downsample([HHS; flipud(conj(HHS))],2); 
H2 = 0.25*HLA.*HHA2.*HHS2.*HLS; hold on; plot(w,abs(H2),linewidth=2) 
HLA2 = downsample([HLA; flipud(conj(HLA))],2); 
HLS2 = downsample([HLS; flipud(conj(HLS))],2); 
H3 = 0.25*HLA.*HLA2.*HLS2.*HLS; hold on; plot(w,abs(H3),linewidth=2) 
 
xlim([0,pi]); set(gca,'XTick',[0,pi/4,pi/2,pi]) 
set(gca,'XTickLabels',["0", "\pi/4","\pi/2","\pi"]) 
xlabel('Frequency \omega [radians per sample]') 
ylabel('Magnitude response | H(e^{j\omega}) |') 
legend("Highest octave", "Middle Octave", "Low Freq.") 
 

 

Frequency response for Analysis filters 

 

Effective responses for two level transform. 
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4.0 Extending to more octaves. 

More levels of the transform can be applied by recursively decomposing the low frequency branch, thus 

dividing the signal into a greater number of octaves. The highest octave covers the range from 
𝑓𝑠

4
< 𝑓 <

𝑓𝑠

2
. 

The next highest octave covers the range from 
𝑓𝑠

8
< 𝑓 <

𝑓𝑠

4
, and so on. See the MATLAB code 

four_level_octave.m provided in Appendix E. We ensure that the output signal approximately matches 

the input using the line assert( max(abs(x-xrec)) < 1e-10 ). The spectrograms corresponding the 

outputs of individual branches is shown: 
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5.0 Playback and use as compression system 

Using the filter bank from part 4.0, we divide the signal into 5 bands (low frequency + four octaves), Each 

branch is reconstructed independently and played as audio using soundsc. We compute the PSNR1 of each 

band compared the original signal, and plot it vs the compression ratio. 

four_level_octave; close all; % run the four_level_octave.m script first. 
PSNR = @(x,y) -10*log10(mean(abs(x - y).^2)) + 6.02; 
CR = @(x,y) length(x)/length(y); 
PSNR_CR_table = [ PSNR(x, y1_rec), CR(x, y1) 
                  PSNR(x, y2_rec), CR(x, y2) 
                  PSNR(x, y3_rec), CR(x, y3) 
                  PSNR(x, y4_rec), CR(x, y4) 
                  PSNR(x, low_rec), CR(x, low_freq)]; 
figure;hold on; 
plot(PSNR_CR_table(1,2), PSNR_CR_table(1,1), 'hexagramk',MarkerSize=10, 
LineWidth=2); 
plot(PSNR_CR_table(2,2), PSNR_CR_table(2,1), 'pentagramk',MarkerSize=10, 
LineWidth=2); 
plot(PSNR_CR_table(3,2), PSNR_CR_table(3,1), 'sk',MarkerSize=10, LineWidth=2); 
plot(PSNR_CR_table(4,2), PSNR_CR_table(4,1), '^k',MarkerSize=10, LineWidth=2); 
plot(PSNR_CR_table(5,2), PSNR_CR_table(5,1), 'ok',MarkerSize=10, LineWidth=2); 
ylim([0,35]); xlim([1,17]); grid on; set(gca,'XTick',[1,2,4,8,16]); 
title('PSNR vs Compression ratio when using single band for reconstruction') 
xlabel('Compression Ratio') 
ylabel('PSNR') 
legend('4-line octave branch','3-line octave branch', ... 
    '2-line octave branch','1-line octave branch', 'low frequency branch'); 
soundsc(y1_rec,fs); pause(16); 
soundsc(y2_rec,fs); pause(16); 
soundsc(y3_rec,fs); pause(16); 
soundsc(y4_rec,fs); pause(16); 
soundsc(low_rec,fs); pause(16); 
 

 

1 For a pair of signals in the range [-1,1] with length 𝐿, the PSNR is: 

PSNR(𝑥[𝑛], 𝑦[𝑛]) = 20 log10 (
(𝐼max − 𝐼min)

2

MSE(𝑥[𝑛], 𝑦[𝑛])
) 

= 20 log10 2 − 10 log10(MSE(𝑥[𝑛], 𝑦[𝑛])) 

= −10 log10(MSE(𝑥[𝑛], 𝑦[𝑛])) + 6.02 dB 

where  

MSE(𝑥[𝑛], 𝑦[𝑛]) =
1

𝐿
∑(𝑥[𝑛] − 𝑦[𝑛])2
𝐿

0

 

In MATLAB: 

PSNR = -10*log10(mean(abs(x - y).^2)) + 6.02 
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After each downsampling operation the number of samples is reduced by two. If the other bands are 

discarded, this leads to a doubling of the compression ratio2. If the group delay is not accounted for until 

after the synthesis transform, the compression ratio will be slightly lower than a power of two. 

Reconstructing individual bands provides roughly 28 dB PSNR, except for the lowest frequency band (33 

dB). The low frequency component provides the best trade-off between PSNR and compression ratio. 

 

 
 

Frequency band PSNR (dB) Comp. Ratio Description of sound 

4-line octave 28.02 2.000 

The highest harmonics in the original signal are 
audible. Other audible artifacts are also present 
corresponding to frequencies that were not present 
in the original signal.  

3-line octave 28.07 3.999 
The treble range notes and harmonics in the original 
signal are audible. Artifacts and frequencies not in 
the original signal are also present. 

2-line octave 28.12 7.993 
The upper-mid range notes and harmonics in the 
original signal are audible. Artifacts and frequencies 
not in the original signal are also present. 

1-line octave 29.15 15.97 
The lower-mid range notes and harmonics in the 
original signal are audible. Artifacts and frequencies 
not in the original signal are also present. 

Low frequency 33.10 15.97 

The bass notes in the original signal are present, but 
only the fundamental frequency. The harmonics are 
significantly attenuated. Some other frequencies 
and artifacts are also audible. 

 

 

2 The compression ratio for the 𝑖th band is CR𝑖 =
Number of samples in the original audio signal

Number of output samples for 𝑖th band
. In the original mini 

project assignment, it was erroneously defined as the reciprocal. Either ratio can be used to analyze the 
efficacy of a compression system as long as it is interpreted appropriately. 
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Appendix A: Downsampling and Upsampling 

One way to modify a continuous-time signal 𝑥(𝑡) is by scaling the time axis, (e.g. 𝑥(2𝑡) or 𝑥 (
𝑡

2
)). 

Downsampling and upsampling are the discrete-time versions of scaling the time axis. 

When a discrete-time signal 𝑥[𝑛] is downsampled by an integer factor of 𝑀 (denoted ↓𝑀), samples are 

discarded following a regular pattern, making the signal 𝑀 times shorter. 

↓𝑀 {𝑥[𝑛]} = 𝑥[𝑀𝑛] 

This can be performed in MATLAB using downsample(x,M). 

Upsampling a signal by an integer factor 𝐿 (denoted ↑𝐿 ) makes the signal 𝐿 times longer by inserting 

zeros following a regular pattern. 

↑𝐿 {𝑥[𝑛]} = {
𝑥[𝑛/𝐿] if 𝑛/𝐿 is an integer
0 otherwise

  

If we assume the convention that a discrete-time signal is zero-valued for non-integer values of 𝑛, then 

we can simply write ↑𝐿 {𝑥[𝑛]} = 𝑥[𝑛/𝐿]. This cane be performed in MATLAB using upsample(x,L). 

Upsampling and downsampling are linear operations, but not time-invariant. 

Example: Consider a continuous-time signal 𝑥(𝑡) = sin(𝜋𝑡2) 𝟏[0,2](𝑡). Sampling 𝑥(𝑡) at a rate 𝑓𝑠 = 10 Hz 

produces 𝑥[𝑛] = sin (
𝜋

100
𝑛2)𝟏[0,2](𝑛). The plots of ↓2 {𝑥[𝑛]} = 𝑥[2𝑛] and ↑2 {𝑥[𝑛]} = 𝑥[𝑛/2] are shown. 

 

     
  

 

 

     
  

 

 

     
  

 

 

  

 

 

         

  

 

 

         

  

 

 

         

https://www.mathworks.com/help/signal/ref/downsample.html
https://www.mathworks.com/help/signal/ref/upsample.html
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Appendix B: Homework and Mini-Project Guidelines 

Here are some things you should follow for all assignments. 

Amount of work to show: 

1. An explanation should be given for every single answer. Answers written without explanation 
will lose two-thirds of the points allotted for that part. 

2. Only "standard" formulas (like Euler's formula, trigonometric formulas, etc.) can be used without 
a reference. If you're using something non-standard, then please put a reference to the formula 
number in the book, or whatever source you got it from. Just using the final result of a similar 
problem done in the class, and omitting the intermediate steps, is not okay. You have to show 
your work. 

3. There shouldn't be big jumps in logic from one step to the next. 

4. For everything, expect to show at least one intermediate step between the first line and the 
answer. Even if it seems unnecessary to you, please err on the side of caution. Things that seem 
obvious to you when you're writing the solution are not quite so obvious for someone reading it. 

5. If you're in any doubt about how much work to show, please ask the instructor or the teaching 
assistant. 

MATLAB source code guidelines: 

1. Put a comment before the solution of each part, telling the question number of the solution. 

2. If you're using complicated logic, leave a comment telling what that block of code is supposed to 
do. 

3. Use variable names that related to their meaning/use. 

4. Avoid using two different variables for the same thing. 

5. Try to avoid using "magic numbers" in the code. If you're using a number, write a comment 
telling me how you derived it. 

6. Make sure that your code will compile & run in a clean workspace; i.e., one without any variables 
present. Use a clear all; at least once before submitting it. 

7. No marks will be deducted based on the efficiency of the code unless the problem asks you to 
write efficient code. 

Technical points: 

1. Merge all the files together into one PDF file. 

2. Please adjust the contrast, exposure etc., to get a good scan quality so that the TA can easily read 
what you write. Take extra care to get a good scan for parts written in pencil. 

3. For the MATLAB code you write for an assignment, please copy the code into Word or include a 
screenshot showing the code. Do not submit handwritten code. 

Other things: 

1. All plots must have axis labels, with units. 

2. Final answers must be boxed, or underlined or otherwise differentiated from the rest of the 
solution. 

3. All final answers must have units, if they exist. 

4. Read the questions carefully. 
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5. Try to answer all parts of a question together. If the solution to some parts of a question is written 
elsewhere, then leave a note telling the reader where to find it. 

Organization of a mini-project report: 

Please write a self-contained narrative report. The audience is someone who has taken the equivalent of 
this class. The report should provide references to the textbook and other sources as needed. Please refer 
to the hints above, which apply to homework assignments and mini-project reports, as well as the 
following additional guidelines for the mini-project. 

Here are example mini-project #1 reports written by the instructors: 

• "FM Synthesis for Musical Instruments" (2018) 

• "Sinusoidal Speech Synthesis" (2021) 

• "Music Synthesis" (2023) 

Please see the homework hints page for specific guidelines for this project. 

  

https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2018/Miniproj1Soln.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2021/miniproject1sol.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2023/miniproject1sol.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2025/index.html
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Appendix C: Matlab code for one_level.m 

% Code accompanying fall 2025 mini project #2 to apply one level of the DWT 
% Originally written by Dan Jacobellis 10/24/2025 
 
% The coefficients below for a dyadic perfect reconstruction filterbank 
% are based on the Cohen–Daubechies–Feauveau wavelet (bior6.8) 
% If the wavelet toolbox is installed, you can also use the following code: 
% [LA, HA, LS, HS] = wfilters('bior6.8'); 
% LA = LA(2:end)/sqrt(2); HA(2:end) = HA/sqrt(2); 
% LS= sqrt(2)*LS(2:end); HS = sqrt(2)*HS(2:end); 
coeffs = [ 
       0.00134974786501001                         0                         0      -0.00269949573002003 
      -0.00135360470301001                         0                         0      -0.00270720940602003 
       -0.0120141966670801        0.0102009221870399        0.0204018443740798        0.0240283933341602 
       0.00843901203981008       -0.0102300708193699        0.0204601416387398        0.0168780240796202 
        0.0351664733065404       -0.0556648607799594        -0.111329721559919       -0.0703329466130807 
       -0.0546333136825205        0.0285444717151497       -0.0570889434302994        -0.109266627365041 
       -0.0665099006248407         0.295463938592917         0.590927877185834         0.133019801249681 
         0.297547906345713        -0.536628801791565          1.07325760358313         0.595095812691426 
         0.584015752240756         0.295463938592917         0.590927877185834         -1.16803150448151 
         0.297547906345713        0.0285444717151497       -0.0570889434302994         0.595095812691426 
       -0.0665099006248407       -0.0556648607799594        -0.111329721559919         0.133019801249681 
       -0.0546333136825205       -0.0102300708193699        0.0204601416387398        -0.109266627365041 
        0.0351664733065404        0.0102009221870399        0.0204018443740798       -0.0703329466130807 
       0.00843901203981008                         0                         0        0.0168780240796202 
       -0.0120141966670801                         0                         0        0.0240283933341602 
      -0.00135360470301001                         0                         0      -0.00270720940602003 
       0.00134974786501001                         0                         0      -0.00269949573002003 
]; 
LA = coeffs(:,1); % Lowpass Analysis 
HA = coeffs(:,2); % Highpass Analysis 
LS = coeffs(:,3); % Lowpass Synthesis 
HS = coeffs(:,4); % Highpass Synthesis 
 
% Example audio file built into matlab. 
audiodata = load('handel.mat'); 
x = audiodata.y(1:end-1); fs = audiodata.Fs; 
 
% Analysis 
L1 = downsample(conv(x,LA),2); 
H1 = downsample(conv(x,HA),2); 
 
% Synthesis 
xrec = conv(upsample(L1,2),LS) + conv(upsample(H1,2),HS); 
 
% Account for delay 
single_filter_delay = (length(coeffs)-1)/2; 
num_cascaded_filters = 2; 
total_delay = num_cascaded_filters*single_filter_delay; 
xrec = xrec(total_delay:end-total_delay-1); 
 
% verify that xrec is the same as x (accounting for small numerical error) 
assert( max(abs(x-xrec)) < 1e-10 ) 
 
% create spectrograms for original signal and components 
figure; spectrogram(x,1024,0,1024,'yaxis',fs); 
clim([-70,0]); title('Original signal') 
 
low_component = conv(upsample(L1,2),LS); 
figure; spectrogram(low_component,1024,0,1024,'yaxis',fs); 
clim([-70,0]); title('Low frequency component'); 
 
high_component = conv(upsample(H1,2),HS); 
figure; spectrogram(high_component,1024,0,1024,'yaxis',fs); 
clim([-70,0]); title('High frequency component'); 
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Appendix D: Matlab code for two_level_octave.m 

% Code accompanying fall 2025 mini project #2 to apply two level DWT 
% (discrete wavelet transform) and inverse 
% Originally written by Dan Jacobellis 10/24/2025 
 
% The coefficients below for a dyadic perfect reconstruction filterbank 
% are based on the Cohen–Daubechies–Feauveau wavelet (bior6.8) 
% If the wavelet toolbox is installed, you can also use the following code: 
% [LA, HA, LS, HS] = wfilters('bior6.8'); 
% LA = LA(2:end)/sqrt(2); HA(2:end) = HA/sqrt(2); 
% LS= sqrt(2)*LS(2:end); HS = sqrt(2)*HS(2:end); 
coeffs = [ 
       0.00134974786501001                         0                         0      -0.00269949573002003 
      -0.00135360470301001                         0                         0      -0.00270720940602003 
       -0.0120141966670801        0.0102009221870399        0.0204018443740798        0.0240283933341602 
       0.00843901203981008       -0.0102300708193699        0.0204601416387398        0.0168780240796202 
        0.0351664733065404       -0.0556648607799594        -0.111329721559919       -0.0703329466130807 
       -0.0546333136825205        0.0285444717151497       -0.0570889434302994        -0.109266627365041 
       -0.0665099006248407         0.295463938592917         0.590927877185834         0.133019801249681 
         0.297547906345713        -0.536628801791565          1.07325760358313         0.595095812691426 
         0.584015752240756         0.295463938592917         0.590927877185834         -1.16803150448151 
         0.297547906345713        0.0285444717151497       -0.0570889434302994         0.595095812691426 
       -0.0665099006248407       -0.0556648607799594        -0.111329721559919         0.133019801249681 
       -0.0546333136825205       -0.0102300708193699        0.0204601416387398        -0.109266627365041 
        0.0351664733065404        0.0102009221870399        0.0204018443740798       -0.0703329466130807 
       0.00843901203981008                         0                         0        0.0168780240796202 
       -0.0120141966670801                         0                         0        0.0240283933341602 
      -0.00135360470301001                         0                         0      -0.00270720940602003 
       0.00134974786501001                         0                         0      -0.00269949573002003 
]; 
LA = coeffs(:,1); % Lowpass Analysis 
HA = coeffs(:,2); % Highpass Analysis 
LS = coeffs(:,3); % Lowpass Synthesis 
HS = coeffs(:,4); % Highpass Synthesis 
 
% Example audio file built into matlab. 
audiodata = load('handel.mat'); 
x = audiodata.y(1:end-1); fs = audiodata.Fs; 
 
% Analysis (level 1) 
L1 = downsample(conv(x,LA),2); 
H1 = downsample(conv(x,HA),2); 
 
% Analysis (level 2) 
L1L2 = downsample(conv(L1,LA),2); 
L1H2 = downsample(conv(L1,HA),2); 
 
% Synthesis 
delay = length(coeffs)-1; 
 
L1rec = conv(upsample(L1L2,2),LS) + conv(upsample(L1H2,2),HS); 
L1rec = L1rec(delay:end-delay-1); 
 
xrec = conv(upsample(L1rec,2),LS) + conv(upsample(H1,2),HS); 
xrec = xrec(delay:end-delay-1); 
 
% verify that xrec is the same as x (accounting for small numerical error) 
assert( max(abs(x-xrec)) < 1e-10 ) 
 
% create spectrograms for original signal and components 
figure; spectrogram(x,1024,0,1024,'yaxis',fs); 
clim([-70,0]); title('Original signal') 
 
highest_octave = conv(upsample(H1,2),HS); 
figure; spectrogram(highest_octave,1024,0,1024,'yaxis',fs); 
clim([-70,0]); title('Highest octave component'); 
 
middle_octave = conv(upsample(L1H2,2),HS); 
middle_octave = conv(upsample(middle_octave,2),LS); 
figure; spectrogram(middle_octave,1024,0,1024,'yaxis',fs); 
clim([-70,0]); title('Middle octave component'); 
 
low_component = conv(upsample(L1,2),LS); 
figure; spectrogram(low_component,1024,0,1024,'yaxis',fs); 
clim([-70,0]); title('Low frequency component'); 

 



Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans 

Appendix E: Matlab code for four_level_octave.m 

% Fall 2025 mini project #2 solution to apply four level DWT 

% Originally written by Dan Jacobellis 11/3/2025 

coeffs = [ 

       0.00134974786501001                         0                         0      -0.00269949573002003 

      -0.00135360470301001                         0                         0      -0.00270720940602003 

       -0.0120141966670801        0.0102009221870399        0.0204018443740798        0.0240283933341602 

       0.00843901203981008       -0.0102300708193699        0.0204601416387398        0.0168780240796202 

        0.0351664733065404       -0.0556648607799594        -0.111329721559919       -0.0703329466130807 

       -0.0546333136825205        0.0285444717151497       -0.0570889434302994        -0.109266627365041 

       -0.0665099006248407         0.295463938592917         0.590927877185834         0.133019801249681 

         0.297547906345713        -0.536628801791565          1.07325760358313         0.595095812691426 

         0.584015752240756         0.295463938592917         0.590927877185834         -1.16803150448151 

         0.297547906345713        0.0285444717151497       -0.0570889434302994         0.595095812691426 

       -0.0665099006248407       -0.0556648607799594        -0.111329721559919         0.133019801249681 

       -0.0546333136825205       -0.0102300708193699        0.0204601416387398        -0.109266627365041 

        0.0351664733065404        0.0102009221870399        0.0204018443740798       -0.0703329466130807 

       0.00843901203981008                         0                         0        0.0168780240796202 

       -0.0120141966670801                         0                         0        0.0240283933341602 

      -0.00135360470301001                         0                         0      -0.00270720940602003 

       0.00134974786501001                         0                         0      -0.00269949573002003 

]; 

LA = coeffs(:,1); HA = coeffs(:,2); LS = coeffs(:,3); HS = coeffs(:,4); 

 

%% Loading audio data 

% for the violin clip (fs=11.05 kHz) in part 4, the resample by 166/225 

% The signal is truncated to a multiple of 16 samples 

x = audioread('violin-C4.wav'); x = resample(x,166,226); fs=8134; x = x(1:28272); 

% for 44.1kHz audio in part 5, the resampling factor is 83/450 

x = mean(audioread('sm_cello.mp3'),2); x = resample(x,83,450); fs=8134; x = x(1:130144); 

 

%% Analysis transform 

analysis_transform = @(x,h) downsample(conv(x,h),2); 

low_freq = x; 

y1 = analysis_transform(low_freq, HA); % 4-line octave 

low_freq = analysis_transform(low_freq, LA); 

y2 = analysis_transform(low_freq, HA);  % 3-line octave 

low_freq = analysis_transform(low_freq, LA);  

y3 = analysis_transform(low_freq, HA);  % 2-line octave 

low_freq = analysis_transform(low_freq, LA); 

y4 = analysis_transform(low_freq, HA);  % 1-line octave 

low_freq = analysis_transform(low_freq, LA);   

 

%% Synthesis transform 

delay = length(coeffs)-1; % combined delay of analyis and synthesis 

account_for_delay = @(x) x(delay:end-delay-1); 

synthesis_transform = @(x,h) account_for_delay(conv(upsample(x,2),h)); 

 

y1_rec = synthesis_transform(y1, HS); % 4-line octave 

y2_hs = synthesis_transform(y2, HS); % 3-line octave 

y2_rec = synthesis_transform(y2_hs, LS); 

y3_hs = synthesis_transform(y3, HS); % 2-line octave 

y3_up1 = synthesis_transform(y3_hs, LS); 

y3_rec = synthesis_transform(y3_up1, LS); 

y4_hs = synthesis_transform(y4, HS); % 1-line octave branch 

y4_up1 = synthesis_transform(y4_hs, LS); 

y4_up2 = synthesis_transform(y4_up1, LS); 

y4_rec = synthesis_transform(y4_up2, LS); 

low_up1 = synthesis_transform(low_freq, LS); % Low frequency branch  

low_up2 = synthesis_transform(low_up1, LS); 

low_up3 = synthesis_transform(low_up2, LS); 

low_rec = synthesis_transform(low_up3, LS); 

 

% Full reconstruction  

xrec = low_rec + y4_rec + y3_rec + y2_rec + y1_rec; 

assert( max(abs(x-xrec)) < 1e-10 ) 


