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Solution Set for Homework #7
By Prof. Brian Evans
November 11, 2025

PROBLEM 1: TRANSFER FUNCTIONS IN THE 3 DOMAIN

For each of the following linear time-invariant (LTI) systems, derive the transfer function, compute
the poles and zeros, and plot the poles and zeros using zplane:

a) First-order unnormalized averaging filter (lowpass filter): y[n] = x[n] + x[n — 1] forn = 0
and the initial condition x[—1] = 0 to satisfy LTI properties.

b) First-order difference filter (highpass filter): y[n] = x[n] — x[n — 1] for n = 0 and the initial
condition x[—1] = 0 to satisfy LTI properties

¢) Second-order difference filter (highpass filter): y[n] = x[n] — 2 x[n — 1] + x[n — 2] forn >
0 and the initial condition x[—1] = 0 and x[—2] = 0 to satisfy LTI properties

Solution for part (a): y[n] = x[n] + x[n — 1] forn = 0 and x[—1] = 0 as a necessary
condition for the system to be at rest. The impulse response is:

hin] = 6[n] + &[n — 1]

By performing the z-transform of the impulse response, |
we can calculate the transfer function: 08f
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The pole (root of the denominator) is at z = 0, and the
zero (root of the nominator) is at z = -1.
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Using zplane, we can plot zeros and poles:
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zplane ([1 17])
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In the plot above, a pole is shown by x and a zero is depicted by o; e
hence, the system has one pole at z =0 and one zero at z = -1
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Solution for part (b): With
yn]=x{n]-x[n-1] il

0.6 [
the impulse response is 0at

h[n]=o[n]-9o[n—1].
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The transfer function is: 02t
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Therefore, system has one pole at z =0, ‘ ‘ , ‘ ‘
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and one zero at z = 1. Real Part

MATLAB code:
zplane ([1 -117)

Solution for part (c): With N
y[n] :x[n]—2X[n—l]+x[n_2] 08t
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the impulse response is il

H[n] = [n]—-28[n—1]+3[n—2]
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and the transfer function is: oal
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z2—-2z+1
H(Z)=1—ZZ_1+Z_2=Z—2 7
System has two poles at z = 0, and two zeros at

atz=1: -1 05 0 0.5 1
Real Part

zplane ([1 -2 117)

Epilogue: Armed with the z-transform, we’ll take another look at the connection between
convolution and polynomial multiplication mentioned in the Epilogue in Problem 2. From
Problem 2, let’s compute the convolution of hy[n] and h,[n] using z-domain techniques:

Z{hq[n] * hy[n]} = H,(2) H(2)
Hi(z) =Z{s[n]-6n—-1]}=1—-2z"1
Hy(z) = Z{6[n] +8[n—-2]}=1+2z"2
Hy(2) Hy(2) = (1—z7 (1 +272) =1-z"" +272 — 27
hi[n] * hy[n] = Z7' {H,(2) Hy(2)} =Z7 {1 —z7  + 272 = z73}
hy[n] * hy[n] = 6[n] — §[n — 1] + 6[n — 2] — §[n — 3]
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PROBLEM 2: DISCRETE-TIME AVERAGING FILTERS. 34 points.

For a discrete-time LTI system with input signal x[n] and impulse response h[n], the output
signal y[n] is the convolution of h[n] and x[n]:

ylnl = hln] +x[n] = )" hIk] xfn— k]

k:—(X)

(a) Compute the output y[n] when the input x[n] is a rectangular pulse of amplitude 1 for n =
0,1, ... N, — 1 and amplitude 0 otherwise, and x[n] is filtered by an LTI unnormalized averaging
filter whose impulse response h[n] is a rectangular pulse of amplitude 1 forn = 0,1,..N, — 1
and amplitude 0 otherwise. Assume N, # Nj,.

i.  Write the difference equation relating output y[n] and input x[n]. 3 points.

Solution: The impulse response h[n] has extentn = 0,1, .. N, — 1:
Np-1

y[n] = hin] * x[n] = z h[k] x[n — k] = z h[k] x[n — k]
k=0

k=—o0
y[n] = h[0] x[n] + h[1] x[n — 1] + -+ h[N, — 1] x[n— (N, — 1)]
Since h[n] =1forn= 0,1,..,N, — 1,
y[n] =x[n]+xn—-1] +x[n—-2]+ -+ x[n— (N, — 1)]
ii.  What are the initial conditions and what values should they be set to? 3 points.

Solution: Initial conditions can be discovered by computing the first several values
of y[n] for n>0: y[0] = x[0] + x[-1] + x[-2] + - + x[-(N, — D)].

The initial conditions are x[—1], x[—2], ..., x[— (N, — 1)]. They must be set to zero
as necessary conditions for LTI system properties to hold.

iii.  Develop a formula for y[n] = h[n] * x[n] using the convolution definition in terms of
N, and Nj,. Show the intermediate steps in computing the convolution. 6 points.

Solution: First, we’ll define N,,,;;, = min(Ny, N,) and N,,,,,, = max(N, N,) and the
length of the convolution result N, = Nj, + N, — 1. As we flip and slide x[n — k]

across h[k], where the shift » is with respect to the convolution variable &, the extent
of h[k]is 0 < k < Nj, — 1 and the extent of x[n — k]isn— (N, — 1) <k <n.

hlK] X[n-K]
J“T T ML\ mfk"
-3 2-10 12 N,, n+2

N n~(N,- n1 n+1
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There are five cases to consider:
1. No overlap. n < 0. Amplitude is 0.

2. Partial overlap. 0 < n < N,;, — 1. Amplitudeis (n + 1).
Initial overlap of one sample at n = 0 with a product of one. Each shift by one
in n adds one more overlapping sample with product of one.

y[n]=2h[k]x[n—k]=21=(n+1)
k=0 k=0

3. Complete overlap. Nin —1 < n < Npor — 1. Amplitude is N,
Here, N,,;,, samples overlap, and each sample has a value of one.

4. Partial overlap. Ny < n < N, —1. Amplitude is N, — n.
Amplitude reduces by one each time » is incremented.
Np-1
y[n] = z 1=(Np—-1D+Wy—1)+1-n=N,—n
k=n—(Ny-1)
5. Nooverlap. n = N,. Amplitude is 0.

iv.  Validate the formula for y[n] by using Matlab to compute the convolution for N,, =
9 samples and N, = 4 samples. 3 points.

Solution: Using Matlab:

h = ones (1, 4); ’
x = ones (1, 9); s
y = conv(h, x); .

n 0 : 11;

stem(n, vy);

xlim([-0.2 11.2]);

ylim([-0.2, 4.2]1); o

xlabel('n'"); 0

ylabel ('y[n]l'); ¢ : ¢ 2 ¢ m

v.  Use the z-transform to find y[n] = h[n] * x[n]. Track region of convergence. 3 points.

Solution: Convolution in the discrete-time domain becomes a product in the z-
transform domain: Y(z) = H(z)X(z). Here,

H(z) = Z hinlz"=1+z14+z2+-+z O Dijfz+0

No-1
X(2) = Z xnlzt=1+z14+z2++z W Dijfz£0
n=0

Convolution in the time domain has become polynomial multiplication in the z-
transform domain. The polynomial multiplication will produce a polynomial whose
coefficients will fit a trapezoidal pattern because N, # Nj,.

X@=14+2z"143z22++22 M D47 W Djfz20
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(a) An LTI system outputs the weighted average of the previous output value y[n — 1] and
current input value x[n] using difference equation y[n] = 0.9 y[n — 1] + 0.1 x[n] forn = 0

1. What are the initial conditions and what value should they be set to? 3 points.

Solution: Initial conditions can be discovered by computing the first values of y[n] for
n>0: y[0] = 0.9 y[—1] + 0.1 x[0]. Initial condition y[—1] = O for LTI to hold.

ii. Compute a formula for the impulse response h[n] for the system. 3 points.

Solution: To compute the impulse response h[n], we let the input be an impulse &[n]:
h[n] = 0.9 hin — 1] + 0.1 §[n] for n > 0 with h[—1] = 0. We’ll compute the output
values and infer the impulse response as in LTI Example #2 on Lecture Slide 11-4:
h[0] = 0.9 h[—1] + 0.1 [0] = 0.1
h[1] = 0.9 h[0] + 0.1 §[1] = 0.1 (0.9)
h(2] = 0.9 h[1] = 0.1 (0.9) ...
Inferring the pattern gives h[n] = 0.1 (0.9)™ u[n].

iii. Develop a formula for y[n] = h[n] * x[n] using the convolution definition when the
input signal is x[n] = 0.8™ u[n]. 6 points.
Solution: With h[n] = 0.1 (0.9)" u[n] and x[n] = 0.8™ u[n].

y[n] = Z h[k] x[n — k] = Z (0.1 (0.9)* u[k]) ((0.8)"* u[n — k])
k=—c k=—
ulk]is 1 for k > 0 and 0 otherwise. u[n—k]is1 whenn—k >0or k <n,and 0
otherwise. Limits of summation become k = 0 and k = nand n > 0 because k > 0:
n

y[n]l=u[n] ) 0.1(0.9)% (0.8)"*=0.1(0.8)"u[n] ) (0.9)* (0.8)7*
2, >

k=0
n 0.9\"*1
0.9\* 1-(g=a
y[n] = 0.1 (0.8)" u[n] Z (ﬁ) 0.1 (0.8)"(0—'53_2)u[n]
k=0 1-— (ﬁ)
n+l _ n+1
y[n]=0.1 (0.8) 0.8 _((;).';) u[n] = —(0.8)"*1 u[n] + (0.9)"*1 u[n]

For more info, see Handout F Convolution of Two Causal Exponential Sequences.
iv. Use the z-transform to find y[n] = h[n] * x[n]. Track region of convergence. 4 points.

Solution: Convolution in the discrete-time domain becomes a product in the z-
transform domain: Y(z) = H(z)X(z). Here,

0.1 1
H(Z) = m for |Z| > 0.9 and X(Z) = m for |Z| >0.8
0.1 1
Y(z) = (1—0.9 z—l) (1_0,3 Z—1) for |z| > max(0.8,0.9)

We’ll use partial fractions decomposition to express the transfer function as a sum

of two first-order terms and apply the inverse z-transform. See Ex. 8-10 on p. 219.
¥(z) = 0.1 (5= + o) Which gives y[n] = 4 (0.9)" u[n] + B(0.8)" u[n]

Using the method from Ex. 8-10 on p. 219, 4 = - ! -=0.9and B = ﬁ =-0.8.

08 —

0.9 o8


http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20F%20Convolution%20Exp%20Sequences.pdf
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PROBLEM 3: TRANSFER FUNCTION & FREQUENCY RESPONSE CONNECTIONS. 16 points.

Signal Processing First, problem P-8.16, page 242.
In addition, for each of the four filters,
1. give a formula for the transfer function in the z-domain including the region of convergence,

ii. give a formula for the frequency response from the transfer function in the z-domain in part i.
why can we convert from the transfer function in the z-domain to a frequency response directly?

iii. plot the magnitude response in the frequency domain

iv. indicate the frequency selectivity as lowpass, highpass, bandpass, or bandstop.

Connecting filter poles/zeros to its frequency selectivity: Please see lecture slides 11-6 through 11-
11 and watch the recording from our lecture on Oct. 31, 2023, from 1:42 to 39:03, which is available
on Canvas. [ have another recording of the same demos on YouTube video in spring 2014 for the
Real-Time Digital Signal Processing Lab course from the 1:29 to 22:25 and from 43:01 to the end
(50:51). Takeaways from either videorecording:

e When poles and zeros are separated in angle, the angles of the poles near the unit circle
indicate the frequencies in the passband(s) and the angles of the zeros near or on the unit
circle indicate the frequencies in the stopband(s). Please see lecture slide 11-7.

e Poles must be inside the unit circle for bounded-input bounded-output (BIBO) stability.
Please see lecture slides 11-12 and 11-13.

Solution: Pole-Zero Plot #1
H(z) = ¢ ==

Z—Po

for |z| > |po| where zy = 1 and py = —0.9 and C is given in Matlab code.

Because the region of convergence |z| > 0.9 includes the unit circle e/¢,

e""—zo
Hfreq(w) = H(Z)]zzeiw =C o —po for |z| > |po|
%%% Specify the filter 12
z0 = 1;
p0O = -0.9; 0
cC =0.5; %% to match (D)

%$%% Plot the magnitude response

Magnitude Response

w = -pi : (2*pi/10000) : pi; 6
Hnumer = (1 - zO0*exp (-J*w));
Hdenom = (1 - pO*exp (-Jj*w)); 4

H = C * Hnumer ./ Hdenom;
plot(w, abs(H)); :

xlim( [-pi pi] )7
xlabel ('w [rad/sample]'); obs : - - ; :
ylabel ('"Magnitude Response'); w frac/aampl)

Filter has a highpass selectivity and matches (D).


https://www.youtube.com/watch?v=WWEKNvvJBvs&list=PLaJppqXMef2ZHIKM4vpwHIAWyRmw3TtSf
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Solution: Pole-Zero Plot #2
H(z)=C =

- ;0 for |z| > |po| where z; = 0 and py = 0.5 and C is given in Matlab code.
—Po

Because the region of convergence |z| > 0.5 includes the unit circle elo,

w

-z
Hfreq(w) = H(Z)]zzeiw =C ei“’—pz for IZI > |p0|
Specify the filter e

0;

QT N o
O O o°
Il o
[
(]
. (@)
Ul .
~e U
~.
o
H

%% to match (B)

o
=

e

%%% Plot the magnitude response

Magnituds Responss

w -pi : (2*pi/10000) : pi;

Hnumer = (1 - zO0*exp(-j*w)); e

Hdenom = (1 - pO*exp(-j*w)); 08

H = C * Hnumer ./ Hdenom;

plot (w, abs(H)); o

xlim( [-pi pi] );

xlabel ('w [rad/sample]'); s 2 1 it 2 3
ylabel ('Magnitude Response');

Filter has a lowpass selectivity and matches (B).

Solution: Pole-Zero Plot #3
H(z)=C?*

Z_;O for |z| > |po| where zy = —1 and py = 0.9 and C is given in Matlab code.
—Po
Because the region of convergence |z| > 0.9 includes the unit circle e/¢,

efo

Hfreq(w) = H(Z)]zzeiw =C elw::(:, for |z| > |po|

12

oe
oe
oe

Specify the filter

z0 = -1;
p0 = 0.9; b
C = 0.5; %% to match (A)

]
%$%% Plot the magnitude response g
w = -pi : (2*pi/10000) : pi; §°
Hnumer = (1 - z0*exp(-j*w)); E
Hdenom = (1 - pO*exp(-j*w)); ‘
H = C * Hnumer ./ Hdenom;
plot (w, abs (H)); ’
xlim( [-pi pi] )7
xlabel ('w [rad/sample]'); °S 2 T ey 2 3
ylabel ('Magnitude Response');

Filter has a lowpass selectivity and matches (A).
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Solution: Pole-Zero Plot #4

H(iz)=C ez @) g |z| > max{ |pol, |p1|} where zo =0, z; = 0, py =0.9€’s , p; =
(z—po)(z—p1)

0.9 e /6 and Cis given in the Matlab code below.

Because the region of convergence |z| > 0.9 includes the unit circle ele,

_ _ p (f0-z9)(0-21)
Hfreq(w) - H(Z)]Z=e]w =C (ejw_po)(ejw_pl) for |Z| > |p0|

We can expand the numerator and denominator of the transfer function H(z) :

H@) = C (z—2¢)(z— 2y 2> — (29 +2¢) Z + 2924 boz*> + byz + b,
(z-po)(z—p1) z2 — (po + P1) 2 + PoP1 apz> + a 1z + a,
%%% Specify the filter 12
%$%% Zeros and numerator coefficients
z0 = 0; 10
z1l = 0;
b0 = 1; g ®
bl = - (z0+z1); g
b2 = z0%z1; -
numerCoeffs = [b0 bl b2]; £
2

%$%% Poles and denominator coefficients

p0 = 0.9*%exp (j*pi/6); 2

pl = 0.9*%exp(-j*pi/6);

a0 = 1; ol .

al = - (p0+pl) H ! * ! W\-auﬁzammsl ' : !
a2 = pO0*pl;

denomCoeffs = [a0 al a2];

’

$%% Gain for the filter
=1

%$%% Plot the magnitude response

w -pi : (2*pi/10000) : pi;

Hnumer = (b0 + bl*exp(-j*w) + b2*exp(-J*2*w));
Hdenom = (a0 + al*exp(-j*w) + al2*exp(-3*2*w));
H = C * Hnumer ./ Hdenom;

plot(w, abs(H));

xlim( [-pi pi] )7
xlabel ('w [rad/sample]');
ylabel ('Magnitude Response');

Filter has a bandpass selectivity and matches (E).



