Tune-Up Tuesday for October 24, 2017

The sinc pulse is commonly used in interpolation:

$$x(t) = \operatorname{sinc}(2f_0 t) = \frac{\sin(2\pi f_0 t)}{2\pi f_0 t}$$

We sample the sinc pulse to create (plot on right)

$$x[n] = x(nT_s) = x\left(\frac{n}{f_s}\right) = \operatorname{sinc}\left(2\frac{f_0}{f_s}n\right) = \frac{\sin{(\widehat{\omega}_0 n)}}{\widehat{\omega}_0 n}$$

Define x[n] on the right and evaluate freqz(x):

- (a) Lowpass, highpass, bandpass, bandstop, allpass?
- (b) What is the bandwidth in discrete-time frequency as a function of f_0 and f_s ? Try different values of f_0 .
- (c) Bandwidth in continuous-time frequency as a function of f_0 ?

The command freqz (\mathbf{x}) plots the magnitude and phase of the frequency response of a signal x[n].

$$\widehat{\omega}_0 = 2\pi \frac{f_0}{f_s} = 2\pi \frac{50}{400} = \frac{\pi}{4}$$

```
% Code for above plot
stem(n, x);
hold on;
t = -nmax : 0.01 : nmax;
y = sinc(fnorm*t);
plot(t, y);
hold off;
```