Tune-Up Tuesday for September 18,2018

(a) Using the Matlab code below that generates a cosine signal x4(t) = cos(2 & fa t) with
fa =440 Hz for 3 seconds at a sampling rate of fs = 8000 Hz:

fs =8000; % sampling rate
Ts = 1/fs; % sampling time
t=0:Ts:3; % 3 sec

fA = 440;

XA = cos(2*pi*fA*t);

add to the above code to create and play an A major chord of A, C# and E
X(t) = xa(t) + Xxcx(t) + x5(t)

where fc# = 554 Hz and fr = 660 Hz. Comment on what you hear.

(b) Plot the spectrogram of the A major chord and comment on what you see:

spectrogram(x, hamming(1024), 512, 1024, fs, 'yaxis');
(c) Copy and paste your code for parts (a) and (b) into the Tune-up #3 page on Canvas.

Solution

% (a) Generate the notes for an A major chord
fs =8000; % sampling rate

Ts = 1/fs; % sampling time
t=0:Ts:3; % 3 second duration

fA = 440;

XA = cos(2*pi*fA*t);

fCsharp = 544; % ‘#’ is not a valid character for a Matlab variable
xCsharp = cos(2*pi*fCsharp*t);

fE = 660;

XE = cos(2*pi*fE*t);

X = XA + xCsharp + xE;

sound(x, fs);

pause(4);

soundsc(x, fs);

% I hear three notes being played.

% The sound command will clip any amplitude value greater than 1 to 1, and
% will clip any amplitude value less than -1 to -1. This clipping sounds like
% distortion/noise. The clipping affects 41% of the samples (see the

% Optional part for (a) at the end of this file).

% The soundsc command will make sure that amplitude values are not clipped

% when played out. The soundsc command will map the range of amplitude

% values [a, b] to the range [-1, 1] before sending the signal to the audio playback

% system. Playback using the soundsc command sounds like three principal frequencies
% without much distortion/noise.

% The A major chord played as a sum of three note frequencies does not sound

% very pleasant. When a musical instrument plays a note, the frequency for that

% note is played along with harmonics of that note and noise/distortion characteristic
% of the instrument.

% (b) Plot the time-frequency components of x(t) using the spectrogram command.
% Optional: Zoom the frequency axis using ylim.

spectrogram(x, hamming(1024), 512, 1024, fs, 'yaxis');

ylim([0 1]);

% The above code generates the spectrogram on the left.

-0
N 0
2 o: -80
§
E]
: -100
-120
X -140
05 1 15 2 25

Time (secs) Time (‘secs)

8 8
8

A
3

3

g 8 &
Power/frequency (dBHz)
Power/trequency (dBiHz)

8 &

% The spectrogram contains three vertical lines across the time axis. These correspond
% to the principal frequencies of 440 Hz (A4), 544 Hz (C#) and 660 Hz (E). Each vertical
% line represents a small range of frequencies centered at a principal frequency.

% Optional for (b). Increasing the number of samples in a segment will increase the
% frequency resolution, and decreasing the shift from one segment to the next will
% give us more time resolution. The code below plots the spectrogram on the right.
figure;

spectrogram(x, hamming(8000), 128, 8000, fs, 'yaxis');

ylim([0 1]);

% Optional for (a): The Matlab command x > 1 will return a vector that is the same
% length of x with a 1 entry if that component of x is greater than 1 and 0 otherwise.

% We can then sum up the elements of Os and 1s using the sum command:

sum(x>1)

% returns the number of samples in x whose amplitudes are greater than 1.

sum(x < -1)

% The following returns the number of samples in x whose amplitudes are less than -1.
sum(x>1)+sum(x<-1)

% gives 9949 samples out of the 24000 samples of x.

