
Tune-Up	Tuesday	for	September	18,	2018	

(a)	Using	the	Matlab	code	below	that	generates	a	cosine	signal	xA(t)	=	cos(2	π fA	t)	with	
fA	=	440	Hz	for	3	seconds	at	a	sampling	rate	of	fs	=	8000	Hz:	

fs	=	8000;													%	sampling	rate	
Ts	=	1/fs;														%	sampling	time	
t	=	0	:	Ts	:	3;									%	3	sec	
fA	=	440;		
xA	=	cos(2*pi*fA*t);	

add	to	the	above	code	to	create	and	play	an	A	major	chord	of	A,	C#	and	E	
x(t)	=	xA(t)	+	xC#(t)	+	xE(t)	

where	fC#	=	554	Hz	and	fE	=	660	Hz.			Comment	on	what	you	hear.	

(b)	Plot	the	spectrogram	of	the	A	major	chord	and	comment	on	what	you	see:	
spectrogram(x,	hamming(1024),	512,	1024,	fs,	'yaxis');	

	(c)		Copy	and	paste	your	code	for	parts	(a)	and	(b)	into	the	Tune-up	#3	page	on	Canvas.	
Solution	
%	(a)	Generate	the	notes	for	an	A	major	chord	
fs	=	8000;													%	sampling	rate	
Ts	=	1/fs;														%	sampling	time	
t	=	0	:	Ts	:	3;									%	3	second	duration	
fA	=	440;		
xA	=	cos(2*pi*fA*t);	
fCsharp	=	544;				%	‘#’	is	not	a	valid	character	for	a	Matlab	variable	
xCsharp	=	cos(2*pi*fCsharp*t);	
fE	=	660;	
xE	=	cos(2*pi*fE*t);	
x	=	xA	+	xCsharp	+	xE;	
sound(x,	fs);	
pause(4);	
soundsc(x,	fs);	
	
%	I	hear	three	notes	being	played.	
	
%	The	sound	command	will	clip	any	amplitude	value	greater	than	1	to	1,	and	
%	will	clip	any	amplitude	value	less	than	-1	to	-1.		This	clipping	sounds	like	
%	distortion/noise.		The	clipping	affects	41%	of	the	samples	(see	the	
%	Optional	part	for	(a)	at	the	end	of	this	file).	
	
%	The	soundsc	command	will	make	sure	that	amplitude	values	are	not	clipped	
%	when	played	out.		The	soundsc	command	will	map	the	range	of	amplitude	
%	values	[a,	b]	to	the	range	[-1,	1]	before	sending	the	signal	to	the	audio	playback	
%	system.		Playback	using	the		soundsc	command	sounds	like	three	principal	frequencies	
%	without	much	distortion/noise.	



	
%	The	A	major	chord	played	as	a	sum	of	three	note	frequencies	does	not	sound	
%	very	pleasant.		When	a	musical	instrument	plays	a	note,	the	frequency	for	that	
%	note	is	played	along	with	harmonics	of	that	note	and	noise/distortion	characteristic	
%	of	the	instrument.	
	
%	(b)	Plot	the	time-frequency	components	of	x(t)	using	the	spectrogram	command.			
%	Optional:		Zoom	the	frequency	axis	using	ylim.	
spectrogram(x,	hamming(1024),	512,	1024,	fs,	'yaxis');	
ylim(	[0	1]	);	
	
%	The	above	code	generates	the	spectrogram	on	the	left.	
	

	
%	The	spectrogram	contains	three	vertical	lines	across	the	time	axis.		These	correspond	
%	to	the	principal	frequencies	of	440	Hz	(A4),	544	Hz	(C#)	and	660	Hz	(E).		Each	vertical	
%	line	represents	a	small	range	of	frequencies	centered	at	a	principal	frequency.	
	
%	Optional	for	(b).		Increasing	the	number	of	samples	in	a	segment	will	increase	the	
%	frequency	resolution,	and	decreasing	the	shift	from	one	segment	to	the	next	will	
%	give	us	more	time	resolution.		The	code	below	plots	the	spectrogram	on	the	right.	
figure;	
spectrogram(x,	hamming(8000),	128,	8000,	fs,	'yaxis');	
ylim(	[0	1]	);	
	
%	Optional	for	(a):		The	Matlab	command	x	>	1	will	return	a		vector	that	is	the	same	
%	length	of	x	with	a	1	entry	if	that	component	of	x	is	greater	than	1	and	0	otherwise.	
%	We	can	then	sum	up	the	elements	of	0s	and	1s	using	the	sum	command:	
sum(	x	>	1)	
%	returns	the	number	of	samples	in	x	whose	amplitudes	are	greater	than	1.	
sum(x	<	-1)	
%	The	following	returns	the	number	of	samples	in	x	whose	amplitudes	are	less	than	-1.	
sum(	x	>	1)	+	sum(	x	<	-1)	
%	gives	9949	samples	out	of	the	24000	samples	of	x.	


