Tune-Up Tuesday for September 25, 2018

```
Write the MATLAB code for the following:
```

```
(a) Generate a chirp signal x[n] = \cos(\pi (0.7 \times 10^{-4}) n^2) for n = 0, 1, ..., 24000.
```

n = 0: 24000; $x = cos(pi*(0.7*10^{-4}))*(n.^{2});$

(b) Plot the spectrogram x[n] with $f_s = 8000$ Hz. See slide 4-12.

fs = 8000;

blockSize = 1024; % Slide 4-12

shift = **512**;

spectrogram(x, blockSize, shift, blockSize, fs, 'yaxis');

(c) Play the audio signal using $f_s = 8000$ Hz.

soundsc(x, fs);

% In the spectrogram, the upward and downward slope of the triangle

% shape can be connected to sampling and aliasing. Initially, the sampling

% theorem is followed when the chirp has frequencies from 0 to fs/2,

% where fs = 8000, and the slope is upward. From fs/2 to fs, aliasing in the

% form of folding has occurred, and the slope is downward. From fs to 1.5 fs,

% aliasing not in the form of folding has occurred, and the slope is upward, etc.

(d) Using MATLAB comments, describe what you hear.

% The principal frequency of the sound increased from 0 to fs/2, then % decreased from fs/2 to 0, then increased from 0 to fs/2, etc.

This problem is from *Signal Processing First*, problem P-4.17, page 100.