
% Tune-Up #5                 October 14, 2025 

% The tuneup is to solve homework problem 5.1. 

 

% Intro.  A step function u[n] is a function 

% that turns at the origin and stays on.  This 

% can model turning on a switch and leaving it 

% on indefinitely.  Mathematically, u[n] is 

%       1 when n >= 0 

%       0 otherwise. 

% In Matlab, one can implement u[n] as ( n >= 0 ). 

% The logical operator >= returns 1 if true and 

% 0 if false. 

  

% Part (a). Make a plot of u[n] for -5 <= n <= 10. 

% Describe what you see. 

n = -5 : 10; 

unitstep = ( n >= 0 ); 

figure; 

stem(n, unitstep); 

xlabel('n'); 

ylabel('u[n]'); 

ylim([-0.5 1.5]); 

% In the plot, the signal is zero/off when 

% n < 0 and one/on when n >= 0.  This is a 

% step function -- the signal takes a step up 

% at n = 0 from amplitude 0 to amplitude 1. 

  

% Part (b).  We can use the unit-step sequence 

% to represent other sequences that are zero 

% for n < 0.  Plot x[n] = (0.5)^n u[n] 

% for -5 <= n <= 10. Describe what you see. 

n = -5:10; 

unitstep = ( n >= 0 );  

x = (0.5 .^ n ) .* unitstep; 

figure; 

stem(n, x); 

xlabel('n'); 

ylabel('0.5^n u[n]'); 

ylim([-0.5 1.5]); 

% In the plot, signal is zero when n < 0 and a 

% a decaying exponential sequence when n >= 0. 

  

% Part (c).  Apply a four-point averaging 

% filter to x[n] and plot the result 

 

% Solution #1: Using the filter command 

averagingFilterCoeffs = [ 1/4, 1/4, 1/4, 1/4 ]; 

y = filter(averagingFilterCoeffs, 1, x); 

figure; 

stem(n, y); 

xlabel('n'); 

ylabel('Output signal using the filter command'); 

ylim([-0.5 1.5]); 

% In the plot, the output signal is zero when 

% n < 0.  The output signal for 0 <= n <= 2 

% corresponds to a partial response by the filter 

% to the change in the input signal at the origin 

% Once we reach n = 3, the sliding window of input 

% samples would be filled. 

  
% Solution #2: Using the convolution command, conv. 

% When the input signal and the impulse response 

% are finite length, convolution will produce a signal 



% whose length is the length of the input signal plus 

% the length of the impulse response minus one. 

averagingFilterCoeffs = [ 1/4, 1/4, 1/4, 1/4 ]; 

y = conv(averagingFilterCoeffs, x); 

numberExtraSamples = length(averagingFilterCoeffs) - 1; 

n = -5 : 10 + numberExtraSamples; 

figure; 

stem(n, y); 

xlabel('n'); 

ylabel('Convolution of x[n] and h[n]'); 

ylim([-0.5 1.5]); 

% In the plot, the output signal is zero when n < 0.  The 

output 

% signal for 0 <= n <= 2 corresponds to a partial 

response by the 

% filter to the change in the input signal at the origin.  Once 

% we reach n = 3, the sliding window of input samples would be 

% filled.  We also see the trailing response from convolution. 

  
% Solution #3: Using filter command to perform convolution 
averagingFilterCoeffs = [ 1/4, 1/4, 1/4, 1/4 ]; 

numberExtraSamples = length(averagingFilterCoeffs) - 1; 

xZeroPadded = [x zeros(1, numberExtraSamples)]; 

y = filter(averagingFilterCoeffs, 1, xZeroPadded); 

n = -5 : 10 + numberExtraSamples; 

figure; 

stem(n, y); 

xlabel('n'); 

ylabel('Using the filter command to mimic the conv 

comand'); 

ylim([-0.5 1.5]); 

% In the plot, the output signal is zero when n < 0.  The output 

% signal for 0 <= n <= 2 corresponds to a partial response by the 

% filter to the change in the input signal at the origin.  Once 

% we reach n = 3, the sliding window of input samples would be 

% filled.  We also see the trailing response from convolution. 

 
 


