o

Tune-Up #5 October 14, 2025
The tuneup is to solve homework problem 5.1.

o©

oo

Intro. A step function u[n] is a function
that turns at the origin and stays on. This
can model turning on a switch and leaving it
on indefinitely. Mathematically, u[n] is
1 when n >= 0
0 otherwise.
In Matlab, one can implement u[n] as (n >= 0).
The logical operator >= returns 1 if true and
0 1if false.

oC o® o° o o o o

o©

o

Part (a). Make a plot of u[n] for -5 <= n <= 10.
Describe what you see.

oo

n=-5:10;
unitstep = (n >= 0);
figure;

stem(n, unitstep);

xlabel('n');

ylabel ("ulnl'");

ylim([-0.5 1.5]1);

In the plot, the signal is zero/off when

n < 0 and one/on when n >= 0. This is a
step function -- the signal takes a step up
at n = 0 from amplitude 0 to amplitude 1.

o o0 oo

o

% Part (b). We can use the unit-step sequence
% to represent other sequences that are zero

% for n < 0. Plot x[n] = (0.5)"n uln]

% for -5 <= n <= 10. Describe what you see.

n = -5:10;

unitstep = ((n >= 0);

x = (0.5 .~ n) .* unitstep;

figure;

stem(n, Xx);

xlabel('n');

ylabel ('0.5%n uln]");

ylim([-0.5 1.51);

In the plot, signal is zero when n < 0 and a
a decaying exponential sequence when n >= 0.

oo

o

o

Part (c). Apply a four-point averaging
filter to x[n] and plot the result

oo

% Solution #1: Using the filter command
averagingFilterCoeffs = [1/4, 1/4, 1/4, 1/4 1;

y = filter (averagingFilterCoeffs, 1, x);

figure;

stem(n, y);

xlabel ('n');

ylabel ('Output signal using the filter command');
ylim([-0.5 1.5]1);

In the plot, the output signal is zero when

n < 0. The output signal for 0 <= n <= 2
corresponds to a partial response by the filter
to the change in the input signal at the origin
Once we reach n = 3, the sliding window of input
samples would be filled.

o o0 o o o

oe

o\

Solution #2: Using the convolution command, conv.
When the input signal and the impulse response
are finite length, convolution will produce a signal

oe

o\

05

0.5" uln]

filter output signal
o
&

-05

o

whose length is the length of the input signal plus
the length of the impulse response minus one.
averagingFilterCoeffs = [1/4, 1/4, 1/4, 1/4 1;

y = conv (averagingFilterCoeffs, x);

o©

stem(n, vy);

xlabel('n');

ylabel ('Convolution of x[n] and h[n]'):;
ylim([-0.5 1.51);

% In the plot, the output signal is zero when n < 0. The os
output ' n
% signal for 0 <= n <= 2 corresponds to a partial

response by the

filter to the change in the input signal at the origin. Once

we reach n = 3, the sliding window of input samples would be

filled. We also see the trailing response from convolution.

numberExtraSamples = length (averagingFilterCoeffs) - 1; £
n =-51: 10 + numberExtraSamples; £
figure; S
]
g

o° oo

o

% Solution #3: Using filter command to perform convolution *
averagingFilterCoeffs = [1/4, 1/4, 1/4, 1/4 1; o
numberExtraSamples = length(averagingFilterCoeffs) - 1; §»

xZeroPadded = [x zeros(l, numberExtraSamples)]; g

y = filter (averagingFilterCoeffs, 1, xZeroPadded); g

n =-5: 10 + numberExtraSamples; 3 o8|

figure; §

stem(n, y); g

xlabel('n'"); §

ylabel ('Using the filter command to mimic the conv °

comand') ; esl
ylim([-0.5 1.51); "

oo

In the plot, the output signal is zero when n < 0. The output
signal for 0 <= n <= 2 corresponds to a partial response by the
filter to the change in the input signal at the origin. Once
we reach n = 3, the sliding window of input samples would be
filled. We also see the trailing response from convolution.

o0 o o°

oo

