A SIGNAL PROCESSING SYSTEM-LEVEL DESIGN COURSE

Brian L. Evans and Guner Arslan

Dept. of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX, 78712-1084 USA
E-mail: bevans@ece.utexas.edu

ABSTRACT

We describe a first-year graduate course in embedded sys-
tem design. Embedded systems may contain a mixture of
signal processing, communication, and control algorithms
implemented by a variety of technologies such as digital
hardware, software, and analog circuits. The course focuses
on how modern design methods and tools handle the het-
erogeneity and complexity in embedded systems design and
covers block diagram modeling, algorithm specification, sys-
tem simulation, and system synthesis. Students gain hands-
on experience by using electronic design automation tools
to design and simulate systems. This paper proposes steps
to transition this course into the undergraduate curriculum.

1. INTRODUCTION

Embedded systems implement multiple styles of algorithms
(e.g., filtering, modulation/demodulation, and feedback con-
trol) using a variety of technologies (e.g., digital signal pro-
cessors or DSPs, field-programmable gate arrays, microcon-
trollers, application-specific integrated circuits, and operat-
ing systems). Teaching embedded systems, however, often
reduces to targeting one style of algorithm and/or one im-
plementation technology. For example, students in a real-
time digital signal processing laboratory [1, 2, 3] might de-
velop software for a particular DSP. A digital VLSI course
might focus on transistor-level layout (e.g., using Magic [4])
or high-level synthesis (e.g., using tools by [5, 6, 7]).

Using modern embedded system design methods and
tools, a designer manages heterogeneity by (1) decoupling
the system specification from its implementation, and (2)
decomposing the system specification into a hierarchical
combination of subsystems. This decoupling allows the
same system specification to be mapped onto many differ-
ent target implementations, e.g., for evaluating candidate
architectures, as shown in Fig. 1. Each subsystem in the
system specification consists of a declaration of components
and their connections (e.g., a block diagram) as well as a
meaning attached to the declaration (e.g., a formal model
of computation). A formal model consists of a set of math-
ematical rules with provable properties that govern the flow
of data and control. A schedule is an ordering on the execu-
tion of the components, and a valid schedule is a schedule

This research was supported by a US National Science Foun-
dation CAREER Award under grant MIP-9702707 and the US
Defense Advanced Research Projects Agency under DARPA
Grant DAABO07-97-C-J007.

system-level modeling

discrete
| dataflow | event |

|imperative| | FSMs |

synthegis \ /

i software ASIC logic
compiler synthesis synthesis synthesis
1 1 1 1
Y e ¥] v

execution ASIC logic
model model model

cosimulation

detail modeling and simulation

partitioning

model

execution |

Figure 1: Heterogeneity in the top-down design flow of com-
plex systems. Drawing is copyright © 1994 by Edward A.
Lee. Used by permission.

that obeys the mathematical rules of the model of computa-
tion. Scheduling is a necessary step for either simulating or
synthesizing a system. Table 1 lists models of computation
that could be used in image and video processing systems.

In Spring 1997, Prof. Evans introduced a first-year grad-
uate course, Embedded Software Systems, to present this
modern approach [8]. The course has been taught five times
to a total of 75 students. In the course, the student

e learns implementation-unbiased models of computation,
e composes these models to specify complex systems
e simulates complex heterogeneous systems, and

e synthesizes systems onto hardware/software technologies.

Students gain hands-on experience by modifying two system-
level design environments: Ptolemy Classic [9] from the
University of California at Berkeley and the Advanced De-
sign System [10] from Agilent EEsof. In Spring 2000, three
textbooks [11, 12, 13] were used. Based on student sug-
gestions to use only one textbook, the Spring 2002 offering
will use only [11]. All lectures, notes, assignments, and past
student projects for the class are available at

http://www.ece.utexas.edu/ bevans/courses/ee382c/

Table 2 lists the lectures in the course. Section 2 de-
scribes the first six lectures on system performance, design,

Subsystem Model of Computation
audio processing 1-D dataflow

digital image processing 2-D dataflow
image/video resampling | m-D multirate dataflow
user interface synchronous/reactive
communication protocols | finite-state machine
digital control dataflow

image understanding knowledge-based control
scalable descriptions process networks

Table 1: Models of computation for describing the signal
processing, communications, and control aspects of image
and video processing systems.

and specification. Section 3 discusses models of computa-
tion. Section 4 describes algorithms for scheduling models
of computation. Section 5 overviews the system-level de-
sign environments used in the course. Section 6 proposes
steps to transition this new graduate course into the under-
graduate curriculum. Section 7 concludes the paper.

2. INTRODUCTORY LECTURES

The first lecture, “System Performance Measures,” defines
an embedded system as the “part of a product with which
the end user does not directly interact or control.” Design
constraints for embedded systems often include weight, vol-
ume, power consumption, and economic cost. Concerning
power consumption, the course surveys the performance of
the four major battery families in embedded systems (NiCd,
NiMH, Li*, and Zn Air). Tt also gives the power consump-
tion of two leading processors— Intel’s Pentium with MMX
and the Texas Instruments TMS320C62x VLIW DSP— to
show how power hungry those processors are. The first lec-
ture points out that it takes about 1 kg of Lithium Ion
batteries to power an 266 MHz Pentium Processor for 22
hours or a 120 MHz TMS320C62x processor for 96 hours.
Yet, both processors post nearly identical benchmarks on
digital signal processing algorithms. This raises the issue
that clock speed and MIPS are not particularly meaningful
measures of performance.

The “System Level Design” introductory lecture de-
scribes system-level design as a way to coordinate the exe-
cution of and communication between subsystems. System-
level design concerns cosimulation of a system specification
that may be a mixture of hardware components, software
components, and algorithms; cosynthesis of a system speci-
fication onto a specific hardware and software architecture,
possibly including the generation of operating systems; and
codesign of a hardware and software architecture best suited
for a class of systems (e.g., video compression). System-
level design seeks to meet global system-level constraints
on throughput and delay, while possibly minimizing area
and power: these are global optimizations. Next, these
global optimizations are contrasted with the local optimiza-
tion performed by compilers for software or manually in cell
designs in VLSI libraries. Optimization requires the forma-
tion of a cost function which in turn relies on measures.
Measures can be estimates of complexity or results of an
implementation generated by another electronic design au-
tomation (EDA) tool.

Topic Lectures

Introduction System Performance Measures
System-Level Design

Digital Signal Processors
Block Diagram Languages I
Block Diagram Languages II
Block Diagram Languages III
Synchronous Dataflow (SDF)
Boolean Dataflow

Dynamic Dataflow

Process Networks

Discrete Event

Timed SDF
Synchronous/Reactive

Finite State Machines (FSM)
Introduction to Graph Theory
Introduction to SDF Scheduling
SDF Looped Scheduling I
SDF Looped Scheduling II
Multiprocessor SDF Scheduling
Hybrid FSMs

Models of
Computation

Scheduling
Algorithms

Composition of

Models Mixing FSMs and Dataflow Models
Standalone Native Signal Processing
Topics Communication Systems

Rate Monotonic Analysis

1 Also introduces 1-D interpolation and decimation.
I Discusses basics of simulating and scheduling each model.

Table 2: Each lecture is 75 minutes long. Five additional
lecture periods are used for the two midterms and student
presentations.

The third lecture covers the architecture of traditional
digital signal processors. Traditional DSP processors, such
as the Texas Instruments TMS320C54x, the Analog Devices
SHARC, and the Motorola 56xxx families, have an equally
small amount of on-chip program and data memory. Hence,
when synthesizing code for these processors, a EDA tool
should generate software that uses a minimum but equal
amount of program and data memory. This turns out to be
an NP-complete problem, as addressed in Section 4.

The next three lectures concern the use of block dia-
grams in engineering— circuit schematics, instruction set
architecture, control theory, and signal processing. Block
diagrams enable a designer to divide large complex designs
into smaller simpler designs using a visual syntax. The in-
teraction between blocks in any subsystem is determined
by a model of computation. Several models of computation
are described in more detail in the subsequent lectures.

3. MODELS OF COMPUTATION

This course discusses dataflow, discrete event, synchronous,
reactive, process network, and finite-state machine models
of computation. This class evaluates each model, as well
as gives applications and the model’s mathematical basis.
These particular models of computation do not make any
assumptions about the linearity, time-invariance, or mem-
ory usage of composite blocks in the block diagram. The
following sections summarize these models.

3.1. Dataflow

In the dataflow model, a signal is a sequence of tokens and
an actor maps input tokens onto output tokens. A set of fir-
ing rules specify when an actor can fire which means a con-
sumption of an input token and a production of an output
token. A sequence of firings is called a Dataflow Process.
The strengths of this model follow:

e well-suited for data-intensive (signal processing) al-
gorithms,

e loose synchronization,
e determinate under simple conditions, and
e maps well to hardware and software.
The model has one weakness:
e inappropriate for control-intensive systems.

Many flavors of dataflow graphs exist. The course discusses
the following three: Synchronous, Boolean, and Dynamic.

3.1.1. Synchronous Dataflow

In Synchronous Dataflow (SDF), all computation and com-
munication can be scheduled statically. An SDF graph can
always be implemented in finite time using finite memory.
Thus, an SDF graph can be executed over and over again
in a periodic fashion without requiring additional resources
as it runs. This type of operation is well-suited to digital
signal processing and communications systems which often
process an endless supply of data.

An SDF graph consists of nodes and arcs. Nodes rep-
resent operations which are called actors. Arcs represent
data values called tokens which stored in first-in first-out
(FIFO) queues. The word token is used because each data
value can represent any data type (e.g., integer or real) or
any data structure (e.g., matrix or image).

SDF graphs obey the following rules:

1. An actor is enabled for execution when enough tokens
are available at all of the inputs.

2. When an actor executes, it always produces and con-
sumes the same fixed amount of tokens.

3. The flow of data through the graph may not depend
on values of the data.

Because of the second rule, the data that an actor consumes
is removed from the buffers on the input arcs and not re-
stored. The consequence of the last rule is that an SDF
graph may not contain data-dependent switch statements
such as an if-then-else construct and data-dependent itera-
tions such as a for-loop. However, the actors may contain
these constructs because the scheduling of an SDF graph is
independent of the what tasks the actors do.

3.1.2. Boolean Dataflow

Unlike Synchronous Dataflow, Boolean Dataflow allows con-
ditional flow of data in a graph. Boolean Dataflow is essen-
tially Synchronous Dataflow with addition of conditional
switch (demultiplex) and select (multiplex) actors. Bool-
ean Dataflow is Turing equivalent, so not every Boolean
Dataflow graph can be executed in finite time using finite

memory. Heuristics can be used to cluster some Boolean
Dataflow graphs into clusters whose input/output behavior
obey Synchronous Dataflow semantics. Clusters are stat-
ically scheduled much like Synchronous Dataflow graphs,
and unclustered actors are dynamically scheduled.

3.1.8. Dynamic Dataflow

Dynamic Dataflow is a combination of Synchronous and
Boolean Dataflow plus its own actors which have a wait
port. Enough data must be present on the wait port to
be enabled. The minimum amount can change from firing
to firing. Other ports obey Synchronous Dataflow seman-
tics. The Boolean input for the Switch and Select Boolean
Dataflow actors is a wait port of one token. Dynamic
Dataflow requires run-time scheduling.

3.2. Discrete Event Models

In discrete event systems, changes in system behavior are
marked by discrete occurrences or events, e.g., VHDL, Spice,
OpNet, Bones, SimuLink, and the Discrete Event (DE) do-
main in Ptolemy Classic. Events consist of a token and a
time stamp. A token can be a scalar value, a matrix, a data
structure, and so forth. The time stamp might be a single
floating-point number (Spice, Ptolemy DE domain) or con-
sist of an ordered pair of integers (VHDL). The scheduler
runs the simulation by maintaining a sorted record of all of
the time stamps of the events in the system, and advances
time to the next time stamp. Thus, there is a total order-
ing between all events— given any two events, we can tell
if they occur simultaneously or after one another.

The firing rule for when a block is active is that (new)
data must be present on at least one of the inputs. Accord-
ing to these rules, source blocks are never fired. Instead,
source blocks must put the events they produce in the global
record of all of the time stamps maintained by the sched-
uler. This will be the first of many cases in which discrete
event blocks must interact directly with the scheduler— un-
like Synchronous Dataflow, the blocks and the scheduler are
no longer independent.

The strengths of the Discrete Event model follow:

natural description of asynchronous digital hardware,

global synchronization,
e determinate under simple conditions, and
e may be simulated under simple conditions.
The weaknesses follow:
e expensive to implement in software, and

e may over-specify or over-model systems

3.3. Synchronous/Reactive Models

Reactive systems must run at the speed of their environ-
ment, and when something happens in these systems is of-
ten as important as what happens. For this reason, the
synchronous approach has also been developed to allow con-
trol over system timing to be as precise as control over sys-
tem function. This approach relies on the synchrony hy-
pothesis, which assumes a system runs infinitely fast. A

synchronous/reactive model breaks time into a sequence of
discrete instants and provides global synchronization. This
model aids in the design of real-time embedded controllers
using concurrently-executing communicating blocks.

A heterogeneous synchronous/reactive model would al-
low the blocks to be specified in any language, provided
that their interface conforms to the model [14]. This allows
subsystems to be written in the most suitable language,
which simplifies the designer’s task. Edwards’ presents a
heterogeneous synchronous/reactive model in [14]. He for-
mally presents the semantics, which are complicated by the
possibility of zero-delay feedback loops. He also presents
an efficient, predictable execution method based on chaotic
iteration toward a least-fixed point solution, along with re-
sults that show it practical for medium-sized examples.

The major strengths of Edward’s model follow:

e appropriate for control intensive systems,

tightly synchronized,
e determinate in most cases, and
e maps well to hardware and software.
The weaknesses follow:
e overspecifies computationally-intensive systems,
e causality loops are possible, and

e causality loops are hard to detect.

3.4. Process Networks

Process networks is a model of computation in which mul-
tiple parallel processes can execute simultaneously. The
model uses a directed graph notation, where each node rep-
resents a process and each edge represents a one-way FIFO
queue of data words. A producer node inserts data into the
queue, while a consumer node removes them. This model is
natural for describing the streams of data samples in a sig-
nal processing system. Consumers are blocked when they
attempt to get data from an empty input channel. However,
queues are of infinite length, so producers are not blocked.
This can cause unbounded accumulation of data on a given
queue. This model is determinate: the results of the compu-
tation (the data produced on the queues) does not depend
on the firing order of the processes. The problems of deter-
mining whether a process network will terminate, or can be
scheduled with bounded memory are undecidable.
The major strengths of this model can be listed as

e Maps easily to threads, but much easier to use

e Loose synchronization

e It is determinate under simple conditions

e Implementable under simple conditions

e It is Turing complete in the sense of being expressive
and the weaknesses are

e Control intensive systems are hard to specify

e Deadlock and bounded memory are undecidable

e Costly to dynamically schedule

3.5. Finite State Machines

Finite state machines (FSMs) are describe the transitional
behavior of sequential circuits. Finite state machines have
two primary representations: state transition graphs and
state transition tables. Both representations are very sim-
ilar in that they show the output and the new state for
every possible input and previous state. Specifying FSMs
is important in formalizing the design of network proto-
cols, embedded controllers, transceivers, and source coders.
Traditional (flat) FSMs are very close in abstraction to the
implementation, and suffer from many weaknesses:

e An exponential explosion in the number of states
when composing substates;

¢ Difficult to modify complex designs since hierarchy is
not present;

e Does not easily handle global control signals such as
reset and halt; and

e Computation occurs in a single path, so there is no
support for concurrency.

Traditional FSMs do not support concurrency or hierarchy.
Hierarchy is key for managing design complexity and pre-
venting a state space explosion when composing substates.

Models of computation for FSMs may have graphical
and textual syntax. Some finite state machines are easier
to describe textually and some are easier to describe graphi-
cally. Graphical specification languages include Statecharts
and Argos, and textual programming languages include Es-
terel [11]. Statecharts, Argos, and Esterel support hierar-
chy, concurrency, and various communication models. All
three frameworks are used to specify reactive systems (sys-
tems that respond to the environment at the speed of the
environment). All three are based on the synchrony hypoth-
esis (all communication and computation is instantaneous).

4. SCHEDULING ALGORITHMS

After a lecture on introducing graph theory, we introduce
the scheduling problem. The firing rules for dataflow graphs,
synchronous/reactive systems, and finite state machines im-
pose partial ordering constraints on the actor firings. Schedul-
ing algorithms constrain the partial ordering in order to
meet the following practical objectives:

e scheduling cost: Scheduling decisions should be made
as much as possible at compile time.

e bounded memory: The total number of unconsumed
tokens should be bounded throughout the execution
if this is possible for the given graph.

At the same time, we want to avoid artificial deadlock:

e deadlock: The graph should not halt if there are en-
abled tasks.

For many models of computation, the optimal scheduling
problem is NP-complete— no algorithm can schedule a graph
in polynomial time in the size of the graph. In the Syn-
chronous/Reactive model, however, optimal scheduling in
the sense of minimum number of block evaluations can al-
ways be performed quadratic time. In practice, electronic

design automation tools use polynomial-time heuristics to
find good but suboptimal schedules.

For SDF, every valid SDF graph can be executed for in-
finite time in bounded memory, and all scheduling decisions
can be made at compile time. Compile-time scheduling is
NP-complete. That is, there is no known algorithm that
can schedule every possible SDF graph in polynomial time
in the size of the graph (number of functional nodes plus
the number of arcs connecting the nodes). In fact, class-S
uniprocessor schedulers and multiprocessor schedulers that
first have to convert the SDF graph into a directed acyclic
graph (DAG) of precedences require exponential time in
the worst case. This course discusses two heuristics for op-
timizing uniprocessor schedules and one heuristic for opti-
mizing multiprocessor schedules. The uniprocessor heuris-
tic will always find the optimal schedule for a large subset of
SDF graphs. The multiprocessor heuristic clusters an SDF
graph into a two-level hierarchy, schedules each child onto
one processor using one of the two uniprocessor heuristics,
and schedules the parent using a traditional multiprocessor
scheduler based on DAG.

5. SOFTWARE TOOLS

The students use two system-level EDA tools: Ptolemy
from UC Berkeley and Advanced Design System (ADS)
from Agilent EEsof. In 1990, Ptolemy was initiated as
a combination of the Synchronous Dataflow and Discrete
Event models of computation. More models of computation
can be added to Ptolemy by simply defining how the model
passes data and control to a universal interface. Hence,
the interaction between every possible pair of models does
not have to be defined. Ptolemy 0.7.1 can cosimulate 11
models of computation, including those described above.
Ptolemy can synthesize Synchronous Dataflow graphs onto
multiple technologies, but it is relatively weak at synthesiz-
ing complex systems onto multiple technologies. Students
use Ptolemy to explore the seven models of computation
listed above and their interaction. They also use Ptolemy
to synthesize C code, Motorola 56000 DSP assembly code,
and multiple styles of VHDL, as well as mixed implemen-
tations, all from Synchronous Dataflow Graphs.

Agilent EEsof ADS is a integrated, end-to-end signal
path design solution for communications products. Agilent
EEsof ADS products include digital signal processing de-
sign and synthesis, RF and high-frequency circuit, electro-
magnetic, and system simulators, schematic capture, layout
tools, libraries, and device modeling systems. Students use
this tool to design, simulate, and synthesis end-to-end sys-
tems. Among the circuit simulation modules, system sim-
ulation modules, and other simulation modules, the course
focuses on the system simulation modules.

Agilent EEsof ADS has two system simulation modules:

1. HP Ptolemy
2. RF Systems

The HP Ptolemy Simulator is a system level design tool
based on a hybrid of dataflow and timed-synchronous dataflow
models. This tool allows simulation and design of combined
DSP, RF, and analog systems. For example, it is possible
to simulate RF mixers, analog filters, and amplifiers of a

! I P[RS e 4 | FALROF S Ted, S Crermaiiel]]
p F ..lll Vew Biew Cwpesl Oelise T e Diis F- E

=!_-|L'.1|ll Il WA DA B A TR F

= I lmﬂnnhmﬁmuﬁx
=i S
| S iils s
: .':.w.: . — — e e e e _
| =t Cya Dengyram
el "
==
E)
| ':-:q'ﬂ 1 gl

fee | % By
. B G-

|| -1 r.-ummull:m
Lfls e

ladwinior Constallabon

|
| SR T T TR 'ﬁ"

| [TerTY | [|
|
|
T il
1 AN T L " s =1 [FL R] -

Figure 2: A snapshot of a 7/4 DQPSK modulator simula-
tion in Agilent EEsof Advanced Design System.

communication system in the same environment with the
digital signal processing of the baseband signal.

In order to support the cosimulation of RF and DSP
modules, HP Ptolemy uses an extensive set of models. The
models are divided into three groups:

1. numeric models simulate DSP and digital algorithms
and models for baseband designs.

2. timed models are for analog and RF models including
RF effects.

3. synthesizable models are used in code generation.

In addition to the models a simulation engine and signal
representations are major building blocks of a simulation
environment. In the case of a cosimulation environment
a collection of these components are required. For exam-
ple, the Agilent EEsof ADS circuit simulator uses models
of computation such as linear, harmonic balance, circuit
envelope, and convolution. In order to handle transient be-
havior a high frequency SPICE simulator is used. For DSP
algorithms dataflow models are effective. Dataflow models
such as SDF, BDF, and DF are ideal for high level abstrac-
tion of a possibly complex DSP algorithm. The simulation
engine fires each block of computation based on the model
of computation and the schedule generated by the scheduler
statically or dynamically.

The cosimulation is implemented in a hierarchical man-
ner. Circuits are designed on the circuit schematic which
are simulated and tested using RF/analog simulation en-
gines. After adding appropriate interfacing port to the ver-
ified circuit it can be used as a building block in the DSP
schematic. Every time the DSP simulator fires this building
block the circuit simulator runs the RF/analog simulator

and returns the results based on the current inputs to the
DSP simulator.

Every time data is passed from one domain to the other
the signal being exchanged needs to be modified according
to the new domain’s data type. Both the DSP simulator
and the RF/analog simulator have a notion of time. Time
is discrete in the DSP simulators, whereas time has various
levels of resolution in the RF/analog simulator. Timed-
synchronous dataflow model are required in order to keep
the time stamp information in the DSP level.

6. TRANSITION TO THE SENIOR LEVEL

The course is currently geared for a first-year graduate stu-
dent who has taken courses in signals and systems, em-
bedded processor programming, data structures and algo-
rithms, and object-oriented programming. At UT Austin,
UC Berkeley, Georgia Tech, and possibly many other uni-
versities, a senior electrical engineering student could have
taken these pre-requisite courses. Nonetheless, as an un-
dergraduate course, less time should be spent on the math-
ematical framework underlying the models of computation
and more time should be devoted to a wider selection of
topics. Hence, the textbook on Languages for Embedded
Systems would be appropriate, but the other two previously
used textbooks [12, 13] would not be appropriate.

In the course, students analyze material by completing
homework assignments and studying for tests. They synthe-
size material by completing a literature survey, a computer
implementation, and a final report. The literature survey
and final report are presented orally. The final grade is
based on two midterms (20% each), homework (10%), lit-
erature survey (25%), and final report (25%). There is no
final exam. This format could work for a senior elective.
The 50% project would still be the catalyst for the stu-
dents to gain extra hands-on experience with system-level
EDA tools, but the scope of the implementation should be
reduced to an appropriate level.

7. CONCLUSION

In some courses, students learn how to model, design, and
optimize specific systems such as signal processing, com-
munication and control. Since today’s embedded systems
may combine all of these subsystems, a system-level design
approach is needed in order to control system-level con-
straints and achieve global optimization. This course sur-
veys modern methods for specifying algorithms, simulating
systems, and mapping specifications onto embedded sys-
tems. The specification is decoupled from the implementa-
tion so that alternative implementations can be considered
for the same specification. Specification is by a hierarchical
combination of implementation-unbiased models of compu-
tation. The models of computation are formal in that they
have a solid mathematical basis; they support heterogene-
ity in that they can be composed to characterize heteroge-
neous systems; and they are general in that both hardware
and software can be synthesized from them. The course
introduces the technologies used in the design and imple-
mentation of programmable embedded systems, including
electronic devices such as programmable processors, cores,

memories, and dedicated and configurable hardware, and
software tools such as compilers, schedulers, code genera-
tors, and system-level design tools.

Dataflow models receive the most attention as they are
well-suited for describing data-intensive signal processing
algorithms. Finite state machines and synchronous/reactive
models, primarily used for control, are also covered. The
students use Ptolemy from the University of California and
the Advanced Design System from Agilent EEsof to evalu-
ate models of computation and scheduling algorithms. Many
also use these environments to implement their projects.

8. ACKNOWLEDGMENTS

The Embedded Software Systems course draws material
from the Fall 1996 course at UC Berkeley by Prof. Edward
A. Lee entitled Specification and Modeling of Reactive Real-
Time Systems:

http://ptolemy.eecs.berkeley.edu/ “eal/ee290n/

REFERENCES

[1] H. J. Reekie, Realtime DSP: The TMS32030 Course.
ptolemy.eecs.berkeley.edu/~johnr/tutorials/c30.html,
1994.

[2] S. A. Tretter, Communication system design using
DSP algorithms: with laboratory experiments for the
TMS320C30. Plenum Press, 1995.

[3] S- M. Kuo and G. D. Miller, “An innovative course
emphasizing real-time digital signal processing appli-
cations,” IEEFE Trans. on Education, vol. 39, pp. 109—
113, May 1996.

[4] Magic, http://research.compaq.com/wrl/projects/
magic.
5] Synopsys, http://www.synopsys.com/.

Mentor Graphics, http://www.mentorgraphics.com/.
Cadence, http://www.cadence.com/.

B. L. Evans and G. Arslan, “Raising the level of ab-
straction: A signal processing system design course,”
in Proc. IEEE-EURASIP Int. Work. on Nonlinear Sig-
nal and Image Proc., vol. 2, pp. 569-573, June 1999.

[9] Ptolemy Classic, http://ptolemy.eecs.berkeley.edu.

[10] Agilent Advanced Design System, http://contact.
tm.agilent.com/tmo/hpeesof/products/ads/.

[11] S. A. Edwards, Languages for Digital Embedded Sys-
tems. Kluwer Academic Press, 2000.

[12] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,
Software Synthesis from Dataflow Graphs. Norwell,
Massachusetts: Kluwer Academics Publishers, 1996.

[13] B. Davey and H. Priestley, Introduction to Lattices and
Order. Cambridge, United Kingdom: Cambridge Uni-
versity Press, 1990.

[14] S. A. Edwards, The Specification and Ezecution of Syn-

chronous Reactive Systems. PhD thesis, University of
California, Berkeley, 1997.

