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&EXTREMES OF PROCESS variation, noise, soft errors,

and other nonidealities in nanometer process tech-

nologies threaten to nullify the intrinsic advantages of

scaling that the semiconductor industry has come to

expect.1 Materials and nanodevice research continue

to produce candidates for scaled-CMOS and post-

silicon-era design. These include devices such as

carbon nanotube field-effect transistors (CNFETs),

which are known for their excellent switching speeds.

An ideal CNFET technology enables the design of

digital circuits with a 133 energy-delay product (EDP)

advantage and a 53 speed advantage over 32-nm

silicon CMOS.2

However, these and other post-silicon device

candidates suffer from extreme amounts of statistical

variation in device behavior, leading to a lack of

robustness. Advances in manufacturing technology

alone cannot address the robustness problem cost-

effectively. Material and device advances must be

complemented by innovations in design, test, and

verification methodologies. For Moore’s law to remain

in effect, designers must address energy efficiency,

performance, and robustness issues jointly.

Current computational systems are

based on the legacy of Von Neumann,

Turing, and Boole. This legacy takes a

deterministic view of computation and

computational substrates, and has

served us well for the past five decades.

It is not clear that this deterministic

computational paradigm is well-suited

for the realities of the nanoscale and post-silicon eras,

where statistical behavior is the primary attribute of

device and circuit fabrics. In fact, assuming indepen-

dent and localized models of noisy and error-prone

logic gates, Von Neumann and Moore and Shannon

independently showed that arbitrarily reliable compu-

tation is possible with unreliable components.3,4

Although their approaches predicted the current state

of affairs, they had very high overhead, which would

nullify any benefits of scaling if these approaches were

applied today. Moreover, these approaches were

based on overly simple models of the circuit fabric.

This raises some important questions: Are there

alternative models of computation that can embrace

randomness and statistics, treating them as opportuni-

ties rather than problems? Can reliable systems be cost-

effectively designed using components exhibiting

statistical behavior? The semiconductor industry’s

future could depend on our ability to answer these

questions satisfactorily.

In this article, we hypothesize that a networked

computational paradigm supported by a device and

circuit fabric with an appropriate level of robustness
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Editor’s note:

With statistical behavior replacing deterministic behavior in integrated

systems, traditional thinking about computation may no longer apply. This

article explores new communication-based models for technologies at the

end of, and beyond, the CMOS roadmap.

—William H. Joyner Jr., Semiconductor Research Corp.
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can enable the right trade-offs between robustness and

energy efficiency in emerging process technologies.

Computation via dense networks
As noted by Shanbhag in 1997,5 and later by the

International Technology Roadmap for Semiconductors

in 2001, it is undeniable that SoCs in nanoscale process

technologies are beginning to resemble communica-

tion networks. This resemblance points to the potential

of employing communications-inspired, network-

based computational models to effectively trade off

energy efficiency, performance, and robustness. After

all, modern wireless and wire-line networks have been

playing the energy (low signal-to-noise ratio) and

reliability-robustness (low bit-error rate) game since

the publication of Shannon’s pioneering work in 1948.

Many of the same techniques used in the design of

robust communication networks can be used in the

design of robust, low-power SoCs.

Networked computation holds particular promise.

Networks come in various shapes and sizes, and in

domains ranging from electronics to biology to socio-

economics. Properly designed networks exhibit a

desired globally emergent behavior or functionality

as a result of local information exchange. One such

behavior is their intrinsic robustness to component

(node and link) failure; in other words, the network is

a reliable system designed with unreliable compo-

nents. In contrast, today’s SoCs achieve system

reliability mainly through component-level reliability.

Information exchange for reliability enhancement is

nonexistent. This situation gives us the opportunity to

investigate alternative computational models that can

provide orders-of-magnitude improvement in robust-

ness without compromising energy efficiency or

performance.

Figure 1 shows our vision of networked computa-

tion: a dense network of many (thousands, perhaps

millions) simple, ultra-energy-efficient, and (most

likely) highly unreliable computing nodes (analog,

digital, or mixed) using emerging nanodevices that

collaborate to produce reliable system-level behavior

with low-power operation. Robust device and circuit

design techniques will focus on bringing the robust-

ness and energy efficiency of the circuit fabric into the

‘‘comfort zone’’ of network dynamics. Such an

approach is expected to produce an improvement in

system-level reliability of several orders of magnitude,

similar to the effect that error-control coding has had

over noisy communication channels.

The taxonomy of networked computation is

extremely diverse. Networks consist of computational

nodes and communicating links. Nodes and links can

be analog or digital, discrete-time or continuous, and

synchronous or asynchronous, and they can incorpo-

rate linear or nonlinear transformations. This panoply

of possibilities is both exciting and intimidating.

For one thing, relying on networks to achieve

computational robustness can lead to increased

communication costs. Determining the energy-opti-

mum balance between computation and communi-

cation and then operating at this optimum are

challenging. This optimum depends on the relative

energy efficiency and robustness of the communica-

tions and computational fabrics. An ultra-efficient but

potentially unreliable communications fabric will be

necessary for densely networked computational sys-

tems to win out over conventional systems in terms of
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Figure 1. Computation via dense networks: robustness and efficiency via information sharing (a), and relationship

between circuit fabric and system design (b). (The round cylinders represent analog nodes; the square boxes are

digital nodes.)
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energy efficiency and system-level robustness. The

diversity of networks necessitates a corresponding

diversity in the mathematical techniques used for

modeling, analyzing, predicting, and optimizing net-

work behavior. Tools that could provide strong

theoretical underpinnings for the dense network

paradigm include nonlinear partial-differential equa-

tions, statistical estimation and detection, and infer-

ence techniques. Formulating meaningful test and

verification metrics and algorithms is another impor-

tant aspect of this problem. Finally, designers will need

a good understanding and appreciation of nanodevice

and nanocircuit fabric properties embodied in simple

but accurate models and metrics that capture the

statistical nature of delay, power, robustness, and

behavior.

The following are some of the promising dense-

network-based computational models being explored

today.

Coupled-oscillator network

The well-known phenomenon of injection locking

occurs when two or more oscillators in close proximity

start to frequency-lock (operate at the same frequen-

cy) and then eventually phase-lock due to coupling.

The coupling occurs because of the presence of

unintended coupling mechanisms in the supply grid

and substrate. Scientists have proposed such mecha-

nisms, for example, to explain the formation of

biological patterns such as animal fur patterns, human

fingerprints, heart muscle contraction patterns, and

others.6

Figure 2a shows the phase space (a

2D map of the phase relationship) of a

200 3 200 oscillator array, obtained

through simulation of the oscillator array

dynamics. The image indicates coopera-

tive behavior among the oscillators as a

result of the coupling strength exceeding

a threshold. The specific phase pattern is

also a function of the initial phase

relationship between oscillator elements.

A coupled oscillator array’s phase space

is very robust to large variations in

component parameters and coupling

strengths and thus represents a potential-

ly attractive computational model in

nanoscale technologies.

Because of its analog nature, such a

network’s most obvious and immediate

application is in the design of robust, low-power RF

front ends for wireless communications. As Figure 2b

shows, the proposed RF front end’s architecture is

conceptually organized as a four-layer design. The

topmost layer is an array of patch antennas organized

in a phased-array pattern for beam forming. The

second layer consists of a 2D robust network of

coupled oscillators that generate appropriate phase

patterns to drive the patch antennas. Modulation/

demodulation drivers in the third layer drive the

oscillator network. The lowest layer, composed of

DSPs and logic, produces and receives information

symbols for the front end.

The coupled-oscillator framework includes several

interesting research topics. One is fast simulation

techniques for predicting the behavior of such

complex nonlinearly coupled networks. Another topic

is driving these networks into predictable states from

known initial states. Characterizing the network’s

robustness to parameter variations in the oscillators

and the coupling mechanisms is yet another interest-

ing topic. Low-quality oscillators in nanoscale process-

es and new applications of such an array are exciting

avenues for further exploration.

Stochastic sensor NoC

Recently, researchers have studied sensor networks

extensively. These networks are robust to the loss of a

few nodes. A stochastic sensor network on a chip

seeks to exploit the robustness of sensor networks to

enhance on-chip computation. Figure 3a illustrates the

SSNoC concept.7 Traditionally, a main computational
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Figure 2. Coupled oscillator network: spatial phase distribution (phase

space) of a 200 3 200 oscillator array obtained after 100 oscillation cycles

(a), and an application of the network in an RF front-end design (b).
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block generates a desired output y[n].

Because of its centralized nature, this

form of computation is vulnerable to

localized sources of nonidealities, such

as particle hits, hot spots, and across-die

process variations, and hence can result

in hardware errors.

In an SSNoC, the main or original

computation is decomposed into M

lower-complexity sensors with complex-

ity ratio R, where R is the complexity

ratio of one sensor to that of the main

computation. The sensor outputs yi[n]

(i5 1, …,M) are statistically similar; that

is, for 1 # i # M,

yi n½ � ~ y n½ � z gi n½ �
E yi n½ �f g ~ y n½ �
E gi n½ �f g ~ 0

The gray shading around some of the

black dots in Figure 3a represents the

fact that instantaneous sensor outputs

yi[n] might not equal the correct output.

Thus, an SSNoC is characterized by the

two key parameters, complexity ratio R

and decomposition factor M (the num-

ber of sensors), as well as the fusion

block functionality and implementation.

We can make several observations:

& If R 5 1 and the fusion block is a

majority voter, the SSNoC becomes

equivalent to N-modular redundan-

cy (NMR)—that is, NMR falls out as

a special case of SSNoC.

& If R 5 1/M, the only hardware

overhead in SSNoC is the fusion

block.

& R andM can be chosen more or less

independently, resulting in a family

of SSNoC architectures.

& The sensor error gi[n] consists of

two error sources: estimation errors

(ge_i[n]) from the use of low-com-

plexity sensors, and hardware er-

rors (gh_i[n]) due to the nonideal-

ities in the circuit and process; that

is, gi[n] 5 ge_i[n] + gh_i[n].
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Figure 3. Stochastic sensor network on a chip (SSNoC): statistically similar

decomposition (a), and application to pseudonoise (PN) code acquisition

for wireless communications (b).
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& As R decreases, ge_i[n] increases and gh_i[n]

usually decreases. SSNoC complexity is CSSNoC 5

RMCorig + Cfusion, where Corig and Cfusion are the

complexity of the original or main computation

and the fusion block, respectively.

Figure 3b illustrates an application of the SSNoC

concept to a pseudonoise (PN) code-acquisition

matched filter typically employed in code division

multiple-access (CDMA) wireless systems. The

matched filter correlates received samples with a

known PN sequence. It flags a detection event if the

correlation is greater than a specified threshold. A

polyphase (M-phase) decomposition of the matched

filter generates an SSNoC. Each sensor in the SSNoC

correlates subsampled versions of the input and PN

sequence. A simple addition of theM sensor outputs in

the fusion block gives the same result as the

conventional architecture.

The key to designing an SSNoC is determining a

simple yet effective, potentially nonlinear processing

of sensor outputs to generate the final SSNoC output

yf[n], which is statistically close to correct output y[n].

Thus, a key question is how to combine sensor outputs

yi[n] to achieve a robust estimate of y[n]. Sensor

output error gi[n] can be modeled as a random

variable drawn from a Gaussian distribution with

probability (1 2 e) and some unknown distribution

with probability e for some 0 , e , 1; that is, an e-

contaminated distribution f(x). The Gaussian distribu-

tion represents the estimation error ge_i[n], and the

unknown distribution represents hardware errors due

to nanometer nonidealities. Huber identifies the class

of estimators known as M-

estimators that can be used

to compute a theoretically

optimum robust estimate.8

For M 5 8, the SSNoC-

based PN code acquisition

system in Figure 3b can

improve detection proba-

bility Pdet by close to three

orders of magnitude under

the same process and volt-

age conditions. It can also

reduce variation in Pdet by

two orders of magnitude

and save 31% power over a

conventional architecture.

These results clearly show

the promise of an SSNoC-based computational para-

digm. However, numerous interesting problems re-

main. These include investigating statistically similar

decompositions for media kernels and other general-

ized computations, obtaining improved fusion algo-

rithms, exploring SSNoCs based on intersensor infor-

mation exchange, and characterizing power and

performance trends over various technology nodes,

including post-silicon devices.

Perturbation-based computing

Perturbation-based computing performs real-time

computational tasks on time-varying input streams,

using the transient perturbations they induce on a

high-dimensional dynamic system.9 Specifically, the

user excites a high-dimensional dynamic system such

as a complex recurrent network with time-varying

stimuli to be processed. This creates a rich pool of

dynamics containing several nonlinear combinations

of components of the (past) stream. With the

nonlinear projections of the original input stream to

a high-dimensional space, the user can then train

simple, or memoryless, linear readout elements, which

produce the desired (task-specific) output stream in

real time. Figure 4 shows the elements of this

computational framework.

In principle, such systems have universal compu-

tational power on time-varying inputs because they

can approximate any time-invariant I/O map with

fading memory to any degree of precision.9 This

concept has been proposed as a plausible model for

the operating principles of biological neural networks.

However, information-encoding and computational
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Figure 4. Perturbation-based computing. The computational core is a high-dimensional

dynamic system. The readout is a linear function of the states of the

computational core.
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methods for neural systems are largely open problems.

Moreover, this approach diverges from standard

computational models underlying state-of-the-art com-

puters and processing engines that require the system

to maintain or converge to stable internal states or

attractors. This is true of Turing machines, finite-state

machines and automata, and attractor neural net-

works.

Potentially, perturbation-based computing can

overcome its challenges by synergistically addressing

the two sides of the complex system design equation:

technology and applications. Three features of pertur-

bation-based computing address technology issues.

First, it is inherently resilient to noise and, therefore, to

soft faults and performance variability or fluctuations.

Second, in principle, the computational core, a

complex dynamic network, can be randomly assem-

bled, taking full advantage of the formidable densities

achieved by nanoelectronics technology, while relax-

ing manufacturing precision and stability require-

ments. This circumvents the need for design and

fabrication of complex structured circuits. As a result,

we have the third feature, an inherent tolerance to

manufacturing defects or hard faults; these simply

become part of the computational core’s (desirable)

structural randomness. Clearly, these three features

make perturbation-based computing almost ideal for

technologies exhibiting high defect densities and

susceptibility to the soft faults projected for emerging

nanoscale processes.

Three additional characteristics make perturbation-

based computing suitable for addressing application

needs in next-generation IT systems. First, it has an

inherent high degree of parallelism. Second, it reduces

the required design effort because the same compu-

tational core can be used for myriad tasks. Finally, it

has the potential of delivering very high energy-delay

efficiency. In the future, it’s conceivable that very

inexpensive perturbation-based computing cores will

target specific applications that perform dedicated

complex tasks such as voice recognition, videomotion

compensation, sensing and surveillance, and control.

Stochastic communication

SoCs have evolved into complex networks of

dozens or even hundreds of predesigned IP cores

assembled to provide complex functionality. These

are distributed, nanoscale, multicore systems in which

concurrency and communication play central roles.

Such systems must be supported by a high-throughput,

robust, and energy-efficient communication fabric to

reap the benefits of distributed or networked compu-

tational models. Stochastic forms of on-chip commu-

nication can prove particularly effective.

Stochastic communication uses a probabilistic

broadcast scheme for internode communication—a

scheme similar to randomized gossip protocols in

distributed databases or sensor networks.10 We can

illustrate stochastic communication with a regular

array of tiles wrapped in a unified communication

interface with input and output buffers, as in NoCs. A

node in a tile transmits a packet to a randomly

selected subset of its neighbors, which then select only

those messages that have their own IDs as the

destination. Error detection determines whether the

received data is correct. There are no retransmission

requests, because multiple copies of the data diffuse

through the network, thus making the likelihood very

high that a correct version will arrive at its destination.

This probabilistic approach is robust to link and node

failures but needs additional communication over-

head to support redundant communications.

The fundamental equations governing data trans-

mission in stochastic communication have their

origins in biology and statistical physics. Figure 5a

shows a biologically inspired version based on the

dynamics of epidemics spreading in natural popula-

tions. Nodes are classified as spreaders (nodes that

disseminate packets), ignorants (nodes outside the

communication area), and stiflers (nodes that termi-

nate packet dissemination). We can describe the

system formally with a probabilistic framework that

explicitly captures the interaction between the three

types of nodes.
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Figure 5. Stochastic communications: biologically inspired

network (a), and statistical-physics-inspired virtual random

growing network (b).

July/August 2008

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 7, 2008 at 04:03 from IEEE Xplore.  Restrictions apply.



Figure 5b shows a statistical-physics-oriented ap-

proach that views the network of nodes as an

interconnected ensemble of buckets known as a

virtual random growing network (VRGN). Each bucket

contains balls representing packets at a particular

point in time. Each bucket or node is assigned an

energy level. The VRGN captures the movement of

packets as particle transitions among different energy

levels in a thermodynamic gas. Mean field analysis

shows that the buffer occupancy, as well as the in and

out degree of the VRGN nodes, follows a power law.

This observation can lead to a fundamentally new

approach for on-chip buffer sizing that will provide

increased performance and robustness at far lower

area overhead and power cost.

Stochastic communication is a major departure

from classical (deterministic) bus-based communica-

tion. In practice, designers could combine stochastic

and conventional communication structures to extract

their best features. For example, stochastically com-

municating islands could be connected to a traditional

bus or assembled in a hierarchy, depending on

application requirements.

Nanofabric technologies
Exploration of alternative computational models

must go hand-in-hand with an understanding of the

properties of promising nanoscale device and circuit

fabrics. As mentioned earlier, 1D nanodevices such as

CNFETs are promising post- or extended-silicon

devices. However, much remains to be done to

harness the science into practical design techniques

competitive with CMOS. These techniques can help

bring the level of robustness into the comfort zone of

the networked computational models described here.

Transforming materials and device-level innova-

tions into practical technologies for gigascale digital

ICs requires overcoming some fundamental barriers:

misaligned carbon nanotubes (CNTs); metallic CNTs

in CNFETs; and device integration with high CNT

density. Of these, the third is a processing challenge

that device and materials researchers are addressing.

Overcoming the first two requires radical approaches

to CNFET-based digital design.

As Figure 6a shows, chemical self-assembly that

produces mostly aligned CNTs can partially alleviate

the problem of misaligned CNTs. As Figure 6b and

Figure 6c show, the remnants of misaligned CNTs

cause shorts and incorrect logic functions.11 Similarly,

no known CNT growth technique guarantees the total

absence of metallic CNTs. Semiconducting CNTs are

required for CNFETs; metallic CNTs create source-

drain shorts resulting in excessive leakage and severely

degraded noise margins. Post-growth metallic CNT
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Figure 6. Carbon nanotube (CNT) issues: largely aligned CNTs with misaligned CNTs (a), layout of misaligned-CNT-

vulnerable NAND gate (b), scanning electron microscope (SEM) image of CNFET overlaid with gates (c), and

misaligned-CNT-immune CNFET-based NAND gate (d).
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removal techniques, although promising, cannot

guarantee removal of all metallic CNTs. To be feasible,

defect and fault tolerance techniques must be low

cost. Furthermore, if possible, the design of robust CNT

circuit fabrics should impose minimal changes on

design methodologies.

An imperfection-immune design paradigm can

help overcome these barriers. For example, the

technique for designing misaligned-CNT-immune cir-

cuits guarantees correct logic functions even in the

presence of several misaligned CNTs.11 Figure 6d

shows a misaligned-CNT-immune NAND gate. Its

layout guarantees that any CNT not passing under

any gate in the pull-up circuit has at least one region

either intrinsic (undoped) or etched out. This

constraint guarantees that such CNTs cannot cause

shorts or incorrect functions. Furthermore, this tech-

nique can be generalized and automated for any

arbitrary logic function; and, for many misaligned

CNTs, correctness can be formally proved. The

technique is compatible with standard design flows

and has low (10% to 15%) area, delay, and power

penalties at the cell level. Metallic CNTs require joint

optimization of circuit design techniques and process-

ing techniques such as metallic-CNT removal.

We can also use logic-level techniques to control

the robustness of these post-silicon circuit fabrics.

Communications-inspired techniques such as coding

can enhance the robustness of circuit fabrics, but the

transformative nature of logic operations makes

extending coding for circuits very difficult.

Figure 7 shows an effective functional-coding

approach that provides low-level protection of indi-

vidual Boolean functions.12 This approach exploits the

functional structure of Boolean functions combined

with a lookup table (LUT)-based implementation (for

example, a ROM) of the Boolean function to produce

better codes. Specifically, Boolean functions, and

hence their LUT implementations, contain several

don’t-care values. An efficient algorithm based on a

conjunctive normal form satisfiability (CNF-SAT)

formulation can exploit these don’t-care values to

reduce the number of coded bits and hence the

number of redundant columns.

Simulations showed that the functional-coding

strategy increases the yield from 10% to 90% at a 1%

defect probability. By utilizing don’t-care values, the

technique reduced the number of redundant columns

from 3 to 2 for 80% of the LUTs, corresponding to an

average area savings of 23%. These results are promising

because they show that the coding can greatly increase

the yields of circuit blocks even in the presence of

extremely high defect densities. This approach enables

the use of heterogeneous CMOS-CNT fabrics in which

the decoders consist of reliable but inefficient CMOS

devices, and the rest of the components consist of

unreliable but efficient CNT devices.

THE REALITIES OF THE nanoscale regime are forcing

the semiconductor and EDA industries to make a

transition from the deterministic to the statistical realm.

This transition could require a complete overhaul of

how we view on-chip computation, communication,

and storage. Successful solutions will necessarily

involve probabilistic and statistical techniques for

analysis and design at the circuit, logic, architectural,

and system levels. By its nature, the problem of

designing robust, energy-efficient, high-performance

systems in nanoscale process technologies is multidi-

mensional; hence, it is difficult but solvable. Collabo-

ration between communication and information theo-

rists, biologists, architects, circuit designers, CAD

researchers, and device physicists is essential. A new

generation of engineers must be comfortable with the

statistical mode of thinking. This transition, though

painful, is also exciting and necessary for the continued

progress of post-silicon-era design. &
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Variability and New Design Paradigms
Leon Stok, IBM

In the late- and post-silicon eras, variation of all

nanometer processes will continue to increase signif-

icantly. All electrical parameters—such as timing,

power, and noise—are already becoming increasingly

more affected by these variations. In addition, several

effects that can render circuits not only variable, but

even unreliable, are becoming more costly to avoid.

Up until the 65-nm technology generation, most

variability had been hidden from the designers and had

been dealt with in the process of characterizing the

technology and generating the device models. Analog

and memory designers would run statistical simulations

of their designs, but most digital designers were

shielded from this. This practice no longer holds for

current technology nodes. The extraordinary amount of

guard-banding required to sustain this model renders

new technologies ineffective.

The industry is gradually addressing this situation

and exposing more variability information to the

designer. Design tools will attempt to make this

information as accurate and actionable as possible,

and designers will react with new designs that are more

robust and less sensitive to the variations that the

analysis tools tell them about. The first statistical

analysis tools are being successfully deployed to more

designers, and semiconductor fabs are becoming

increasingly sophisticated in providing statistical mod-

els for their technologies.

It is refreshing to see a university research program

like the Gigascale Systems Research Center (GSRC)

start at the other end of the spectrum—declaring that

the deterministic era will be over for most on-chip

applications and that alternatives must be found. The

search for these alternative computational models

cannot start early enough. For, even if they are found,

the paradigm shift to use them effectively could take a

long time to implement.

A critical point in the search for these new

paradigms is their effect on the power, performance,

and cost of design. If too much overhead must be

added such that a new design, even with the

advantages of the new technology node, is not

competitive along these dimensions, there will be no

incentive to move to a new, and therefore risky,

paradigm. To be viable, new paradigms will need to

give at least a 103 advantage over existing paradigms

in the current technology node.

I am looking forward to the time when the two will

meet: when more revolutionary design techniques will

find their way into practical designs, and when one of

the computational paradigms will suddenly be needed

to cope with an unexpected surge in variability or

reliability in a particular design or technology. This

moment might be closer than we think.

Leon Stok is director of electronic design automation for IBM.

Contact him at leonstok@us.ibm.com.
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