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Instructor

Sarfraz Khurshid
ACES 5.120
(512)-471-8244
khurshid@ece.utexas.edu

Time and Location

All lectures will be 5:00–06:30pm in ENS 116.

Prerequisites
The students are expected to have basic knowledge of data structures and object-oriented
programming, and considerable programming experience.

Catalog entry

Advanced concepts and techniques for checking the correctness of programs and specifica-
tions. Topics include state-of-the-art research in systematic software testing, state-space ex-
ploration techniques, including symbolic techniques, for software model checking, heuristics-
based approaches, as well as static program analyses, including those based on automated
theorem proving, and behavioral specification languages.

Description

The process of software validation includes reasoning about (the correctness of) programs,
whether formally—a process that is termed verification—or informally, and testing programs.
This course focuses on verification and testing. A NIST report from 2002 estimates that
software failures cost the US economy $59.5 billion dollars annually and over a third of this
cost could be saved using a better infrastructure for testing. It is widely accepted that testing
currently accounts for more than one half of the cost of software development. Learning the
techniques and tools presented in this course is likely to significantly increase the students’



productivity as software developers and testers and improve the quality of the code they
develop.

The course is organized as a series of research/tool paper presentations and discussions.
The selected papers will cover traditional and state-of-the-art techniques for software vali-
dation. (See the References Section for a list of candidate papers. Different papers may be
selected in view of class preferences.) The course content will cover both techniques for dy-
namic analysis, such as glass box and black box testing, equivalence partitioning, boundary
value analysis, test strategy and automation, regression testing and debugging, and tech-
niques for static analysis, such as shape analysis, and also techniques for software model
checking including those that employ artificial intelligence based heuristics.

Grading

The grade will be based on class participation (10%), homeworks and quizzes (40%) and a
final group project (50%). Students must participate actively in the class. The final project
will be done in a group of three or four students. A typical project would involve performing a
case study using some tool(s) studied in the class. With instructor’s permission, the students
may choose to work on a suitable idea of their own. Good projects will result in work that is
of a quality expected for conference/workshop publication. At the end of the course, students
will present their projects to the class.

Textbooks

The following texts provide some basic material that would help students understand the
more advanced material in the papers:

1. Software Abstractions: Logic, Language, and Analysis by Daniel Jackson. ISBN:
0262101149

2. Model Checking by Edmund M. Clarke, Orna Grumberg and Doron A. Peled. ISBN:
0262032708

3. Introduction to Software Testing by Paul Amman and Jeff Offutt. ISBN: 0521880386
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