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Programs,  Life Cycles, and Laws of 
Software  Evolution 

Absfmcr-By clppsitying programs according to their relationship to 
the environment m which they ne executed, the paper identities the 
sources of evolutionary pressure on computer rpplicitim and  pro- 
grams and shows why this results in a process of never ending mainte- 
nance activity. The resultant Life cyde processes ne then briefly dis- 
cussed. The paper  then introduces laws of Rognm Evdution that have 
been formulated fdlowing quantitative studies of the evolution of a 
number of different systems. Finally an example is pravided of the 
application of Evdution Dynamics models to program release plnnning. 

I. BACKGROUND 

T 
A.  The  Nature of the  Problem 

HE TOTAL U.S. expenditure  on  programming  in  1977 is 
estimated  to have exceeded $50 billion,  and  may  have 
been as high as $100  billion. This figure,  which repre- 

sents  more  than 3 percent of the U.S. GNP for  that  year, is 
already an awesome  figure.  It has increased ever since in real 
terms  and will continue  to  do so as the  microprocessor  finds 
ever wider application.  Programming effectiveness is clearly a 
significant component of national  economic  health. Even 
small percentage improvements  in  productivity  can make sig- 
nificant  financial impact.  The  potential  for saving is large. 

Economic  considerations  are,  however,  not necessarily the 
main  cause of widespread concern. As computers play an ever 
larger  role  in society  and  the life of the  individual,  it  becomes 
more  and  more  critical to be able to  create  and  maintain  effec- 
tive,  cost-effective,  and  timely  software.  For  more  than  two 
decades,  however, the  programming  fraternity,  and  through 
them  the  computer-user  community,  has faced serious  prob- 
lems  in achieving this [ 11. As the  application of microproces- 
sors extends ever deeper  into  the  fabric of society  the  problems 
will be  compounded unless very basic solutions  are  found  and 
developed. 

B. Programming 
The early  1950's  had been a  pioneering period  in  program- 

ming. The  sheer ecstasy of instructing  a  machine  step  by  step 
to achieve automatic  computation  at speeds previously un- 
dreamed  of,  completely hid the  intellectually  unsatisfying 
aspects of programming;  the  lack of a guiding theory and dis- 
cipline; the largely hit or miss nature  of  the process through 
which  an acceptable  program was finally achieved;  the ever 
present  uncertainty  about  the accuracy, even the validity, of 
the  final  result. 

More immediately,  the  gradual  penetration  of  the  computer 
into  the  academic,  industrial,  and  commercial  worlds led to  
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serious  problems in the provision and  upkeep of satisfactory 
programs.  It also yielded  new  insights. Rogramming as then 
practiced  required  the  breakdown of the  problem  to  be solved 
into  steps  far  more  detailed  than  those  in  terms of which 
people  thought  about  it  and  its  solution.  The  manual genera- 
tion of programs  at this low level was tedious  and  error  prone 
for  those whose primary  concern was the  result;  for  whom 
programming was a  means to an  end  and  not  an  end  in  itself. 
This could  not be the basis for  widespread  computer  application. 

Thus  there was born  the  concept  of high-level, problem- 
oriented, languages created to  simplify the  development of 
computer  applications.  These languages did not  just raise the 
level of detail to which  programmers  had to develop  their 
view  of the  automated  problem-solving process. They also 
removed  at least  some of the  burdens of procedural organiza- 
tion,  resource  allocation  and  scheduling,  burdens which were 
further  reduced  through  the  development of operating  systems 
and  their  associated job-control languages. Above all, however, 
the high-level language trend  permitted a fundamental  shift  in 
attitude.  To  the discerning, at  least,  it  became clear that  it 
was not  the  programmer's  main  responsibility  to  instruct  a 
machine by defining a  step-by-step  computational process. 
His task was to  state  an  algorithm  that  correctly  and  unambig- 
uously  defines  a  mechanical  procedure  for  obtaining a solution 
to  a given problem [ 21 , [ 31 . The  transformation  of  this  into 
executable  and  efficient  code  sequences  could  be  more safely 
entrusted to  automatic  mechanisms.  The  objective of language 
design was to  facilitate  that  task. 

Languages had  become  a  major  tool in the  hands of the 
programmer. Like all tools,  they  sought to  reduce  the  manual 
effort  of the worker  and at  the  same  time  improve  the  quality 
of his work.  They  permitted  and  encouraged  concentration  on 
the  intellectual  tasks which  are the real  province of the  human 
mind  and skill. Thus, ever since, the search for  better Ian- 
guages and for improving  methodologies  for  their use, has con- 
tinued [4] .  

There  are  those  who believe that  the  development of pro- 
gramming methodology , high-level languages and  associated 
concepts, is by far  the  most  important  step  for successful  com- 
puter usage. That may well be, but  it is by no means  sufficient. 
There  exists  a clear need  for  additional  methodologies  and  tools, 
a  need  that arises primarily from  program  maintenance. 

C. Program Maintenance 
The  sheer level of programming  and  programming-related 

activity  makes  its  disciplining  important.  But  a  second  statis- 
tic  carries an equally signifkant message. Of the  total U.S. 
expenditure  for  1977,  some 70 percent was spent  on  program 
maintenance and  only  about 30 percent  on  program develop- 
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Fig. 1 .  S-programs. 

ment. This ratio is generally accepted by the  software com- 
munity  as  characteristic of the  state of the  art. 

Some clarification is, however,  necessary. For  software  the 
term maintenance is generally  used to describe all changes 
made to a  program after  its first installation.  It  therefore dif- 
fers  significantly from  the  more general concept  that describes 
the -restoration of a  system or system component to its former 
state.  Deterioration  that has occurred as  a  result of usage or 
the passage of time, is corrected by  repair or  replacement. But 
software does not,  deteriorate  spontaneously  or by interaction 
with its  operational  environment. Programs do not suffer 
from wear, tear,  corrosion,  or  pollution.  They do  not change 
unless and  until people change them,  and  this is done when- 
ever the  current behavior of a  program  in execution is found 
to be  wrong, inappropriate,  or  too  restricted. Repair actually 
involves changes away from  the previous implementation. 
Faults being corrected during maintenance can originate  in any 
phase of the program life  cycle (Section 111). 

Moreover, in  hardware  systems,  major  changes to a product 
are achieved by redesign, retooling, and the  construction of a 
new model. With programs improvements and adaptations to 
a changing environment are achieved by  alterations,  deletions, 
and  extensions to existing  code. New capability,  often  not 
recognized during  the earlier  life of the system, is superim- 
posed on  an existing structure  without redesign of the system 
as a whole. 

Since the  term  software  maintenance covers such a wide 
range of activities, the very high ratio of maintenance to 
development cost  does not necessarily have to be deprecated. 
We shall,  in fact, argue that  the need for  continuing change is 
intrinsic to the  nature of computer usage. Thus  the  question 
raised by the high cost of maintenance is not exclusively how 
to  control  and  reduce  that cost  by  avoiding  errors or by 
detecting  them earlier in  the  development  and usage cycle. 
The unit  cost o f  change must initially be made as low as pos- 
sible and  its  growth, as the system ages, minimized. Programs 
must  be made  more alterable, and  the  alterability maintained 
throughout  their lifetime. The change  process  itself must be 
planned and controlled. Assessments of the  economic viability 
of a  program must include total  lifetime  costs and their life 
cycle distribution, and  not be based exclusively on  the  initial 
development costs. We must  be  concerned with the cost and 
effectiveness of the life-cycle  process itself and  not  just  that of 
its  product. 

The  opening paragraph  highlighted the high  cost of  software 
and  software maintenance. The  economic benefit and  poten- 
tial of the  application of computers is, however, so high that 
present expenditure levels may well be acceptable,  at least for 
certain classes of programs. But we must  be  concerned  with 
the  fact  that performance,  capability,  quality in general, can- 
not  at present be designed and built into a  program ab  initio. 
Rather  they are  gradually achieved by evolutionary change 
and  refinement. Moreover, when  desirable  changes are  identi- 
fied and  authorized  they can usually not be implemented  on a 
time scale fixed by external need. Responsiveness is poor. 
And as mankind relies more  and  more on  the software that 
controls  the  computers that in turn guide society,  it becomes 
crucial that people control  absolutely  the programs  and the 
processes by  which they  are  produced,  throughout  the useful 
life of the program. To achieve this  requires insight,  theory, 
models,  methodologies,  techniques,  tools: a discipline. That is 
what  software engineering is all about [SI-[ 81. 

11. PROGRAMS AS MODELS 
A.  Programs 

Program evolution  dynamics [9 and  its bibliography] and 
the laws [2] ,  [31, [ lo ] ,  [ l l ]  discussed in the  next  section, 
have always  been  associated with a concept of largeness, im- 
plying  a  classification into large and nonlarge  programs. Great 
difficulty has, however,  been  experienced  in  defining these 
classes. Recent discussions [ 121 have produced a  more  satis- 
fying  classification.  This is based on a  recognition of the  fact 
that,  at  the very least, any program is a  model o f  a  model 
within  a  theory o f  a  model o f  an abstraction o f  some  portion 
of  the  world or o f  some universe o f  discourse. The classifica- 
tion categorizes  programs into  three classes, S, P, and E.  Since 
programs  considered large by our previous definition will 
generally be of class P or E ,  the new classification  represents  a 
broadening and firming of the previous  viewpoint. 

B. S- Programs 
S-programs  are  programs  whose function is formally  defined 

by and derivable from a specification. It is the programming 
form  from which most advanced  programming methodology 
and  related  techniques derive, and  to which they directly relate. 
We shall suggest that as programming methodology evolves 
still further, all large programs (software systems) will be  con- 
structed as structures of S-programs. 

A specific  problem is stated: lowest common  multiple oP 
two integers; function evaluation in a  specified domain; eight 
queens; dining  philosophers;  generation of a  rectangle of a 
size within given limits on a specific type of visual display 
unit (VDU). Each such  problem relates to its universe of 
discourse. It may also relate directly  and primarily to the 
external world, but be completely  defined, e.g., the classical 
travelling salesman problem. 

As suggested by Fig. 1 the  specification, as  a formal defini- 
tion of the  problem, directs and  controls  the programmer in 
his creation of the program that defines the desired solution. 
Correct solution of the problem as stated, in  terms of the  pro- 
gramming language being used,  becomes the programmer’s 
sole concern. At most,  questions of elegance or efficiency 
may also creep in. 

The problem statement,  the program and  the  solution when 
obtained may relate to an  external world. But it is a casual, 
noncausal relationship. Even, when it exists we are  free to 
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change our  interest by  redefining the problem.  But  then  it has 
a new program for  its  solution.  It may be possible and  time- 
saving to  derive the new  program  from the old.  But it is a dif- 
ferent program that defines  a solution to  a different problem. 

When this view can be legitimately  taken  the  resultant  pro- 
gram is conceptually  static.  One  may  change it  to improve  its 
clarity  or  its elegance, t o  decrease  resource usage when the 
program is executed, even to  increase  confidence  in  its  correct- 
ness. But any  such changes  must not effect  the  mapping be- 
tween  input  and  output  that  the program  defines and  that  it 
achieves in  execution. Whenever program text has been 
changed or  transformed [ 131, 1141 it  must be shown  that 
either  the  input-output  relationship remains  unchanged, or 
that  the  new program satisfies a  new  specification  defining  a 
solution  to  a new  problem. We return to  the problem of cor- 
rectness  proving in Section 11-E. 

C. P-Programs 
Consider  a  program to play  chess. The program is completely 

specified  by the rules  of  chess  plus  procedure rules. The  latter 
must  indicate  how  the  program is to  analyze the  state of the 
game  and  determine  possible  moves. It  must also provide  a 
decision  rule to  select a  next move. The  procedure  might, 
for  example, be to  form  the  tree of all games that may  develop 
from  any  current  state  and  adopt  a  minimax  evaluation  strategy 
to  select the  next move.  Such  a  definition,  while complete, 
is naive,  since it is not implementable  as  an  executing  program. 
The  tree  structure  at  any given stage is simply too large, by 
many  orders of magnitude, to  be  developed or t o  be  scanned 
in feasible  time. Thus  the chess  program  must introduce 
approximation to  achieve practicality,  judged as it  begins to  
be  used,  by its performance in actual games. 

A further  example  of  a  problem  that  can be precisely formu- 
lated  but whose solution  must  inevitably  reflect  an  approxima- 
tion of the real world is found  in  weather  prediction. In theory, 
global  weather  can  be  modeled as accurately as desired by  a  set 
of hydrodynamic  equations. In the  actual world  of  weather 
prediction,  approximate  solutions of modified  equations  are 
compared  with  the  weather  patterns  that  occur.  The  results 
of such  comparisons  are  interpreted  and  used to improve the 
technology  of  prediction, t o  yield  ever  more  usable  programs, 
whose outputs, however,  always retain  some degree  of  uncer- 
tainty. 

Finally  consider the travelling  salesman  problem as it arises 
in  practice,  for  example  from  a  desire to  optimize  continuously 
in some vaguely defined  fashion, the travel schedule of sales- 
men  picking up  goods  from  warehouses  and visiting clients. 
The  required  solution can  be  based on known  approaches  and 
solutions to  the classical problem.  But  it  must also involve 
considerations of cost,  time,  work  schedules,  timetables,  value 
judgments,  and even salesmens’  idiosyncracies. 

The  problem  statement  can  now,  in general, no longer  be 
precise. It is a  model  of  an  abstraction  of  a  real-world  situa- 
tion,  containing  uncertainties,  unknowns,  arbitrary  criteria, 
continuous variables. To some  extent  it  must  reflect  the per- 
sonal  viewpoint of the  analyst.  Both  the  problem  statement 
and  its  solution  approximate  the  real-world  situation. 

Programs such as these  are  termed  P-programs  (real  world 
problem solution).  The process  of  creating  such  programs is 
modeled  by Fig. 2 which  shows the  intrinsic  feedback  loop 
that is present in the  P-situation. Despite the  fact  that  the 
problem to be solved  can  be  precisely  defined, the acceptability 
of a  solution is determined  by the environment in which it is 

w 
L 

I 
I , , 

I 

Fig. 2. P-programs. 

embedded.  The  solution  obtained will  be evaluated  by  com- 
parison  with the real environment.  That is, the critical dif- 
ference  between S and  P-programs is expressed  by the com- 
parison  cloud  in Fig. 2. In S-programs,  judgments  about  the 
correctness,  and  therefore the value,  of the programs  relate by 
definition only  to  its  specification, the problem  statement  that 
the  latter  reflects. In P-programs, the concern is not centered 
on  the problem  statement  but on the value and validity of the 
solution  obtained in its  real-world  context. Differences  be- 
tween  data derived from  observation  and  from  computation 
may  cause  changes  in  the  world  view, the problem  perception, 
its  formulation,  the  model,  the program  specification  and/or 
the program implementation. Whatever the source of the dif- 
ference,  ultimately  it  causes the program,  its  documentation 
or  both  to be changed.  And the  effect  or  impact of such 
change  cannot be eliminated  by  declaring the problem  a new 
problem,  for  the real problem has always  been as now per- 
ceived. It is the  perception of users,  analysts  and/or  program- 
mers that has  changed. 

There is also another  fact of life  that needs to  be considered. 
Dissatisfaction will arise not  only because information received 
from  the program is incomplete  or  incorrect,  or because the 
original  model was less than  perfect. These  are imperfections 
that can be overcome given time  and care. But the  world too 
changes and  such  changes  result  in  additional  pressure  for 
change. Thus  P-programs  are  very likely to  undergo  never- 
ending  change or  to become  steadily less and less effective  and 
cost effective. 

D. E-Programs 
The  third class, E-programs,  are  inherently  even  more  change 

prone.  They  are  programs that mechanize  a  human  or  societal 
activity . 

Consider  again the travelling  salesman  problem but  in  a  situ- 
ation where  several  persons  are  continuously en  route,  carrying 
products  that change  rapidly in value  as  a function  of  both 
time  and  location,  and  with  the  pattern of  demand  also  chang- 
ing  continuously.  One will inevitably be tempted  to see this 
situation as an  application  in which the  system is to  act as a 
continuous  dispatcher,  dynamically  controlling the  journeys 
and calls of  each  individual. The  objective will be to  maximize 
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Fig. 3. E-programs-The basic cycle. 

profit, minimize  loss, expedite deliveries, maintain  customer 
satisfaction  or achieve some optimum  combination of the fac- 
tors  that are accepted as the criteria for success. How does  this 
situation differ from  that discussed in  the previous  sections? 

The  installation of the program together  with  its associated 
system-radio links to  the salesmen, for example-change the 
very nature of the  problem  to be solved. The program has 
become  a  part o f  the world  it  models, it is embedded in it. 
Conceptually at least the program  as  a model  contains elements 
that  model itself, the consequences of its  execution. 

The  situation is depicted  in Figs. 3 and 4. Even without con- 
sidering  program execution  and evaluation of its  output in the 
operational  environment,  the  E-situation  contains  an intrinsic 
feedback  loop as in Fig. 3. Analysis of  the  application  to  deter- 
mine requirements, specification, design, implementation  now 
all involve extrapolation  and  prediction of the consequences of 
system introduction  and  the  resultant  potential  for  application 
and system evolution. This prediction  must inevitably involve 
opinion  and  judgment.  In general, several views of the  situation 
will be combined to yield the model, the system specifica- 
tion  and,  ultimately, a program.  Once the program is com- 
pleted  and begins to be used,  questions of correctness, appro- 
priateness and  satisfaction arise as in Fig. 4 and inevitably  lead 
to  additional pressure for change. 

Examples of E-programs  abound:  computer  operating sys- 
tems,  air-traffic control,  stock  control.  In all cases, the behavior 
of the  application system, the  demands  on  the user, and  the 
support  required will depend  on program  characteristics as 
experienced by  the users. As they  become familiar with a sys- 
tem whose design and  attributes  depend  at least in  part  on user 
attitudes  and practice  before  system installation, users wiU 
modify  their behavior to minimize effort  or maximize  effec- 
tiveness. Inevitably this leads to pressure for system  change. 
In  addition, system exogenous pressures will also cause  changes 
in  the  application  environment within  which the system oper- 
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Fig. 4. E-programs. 

ates  and  the program  executes. New hardware will be intro- 
duced,  traffic  patterns  and  demand change,  technology  ad- 
vance and  society itself evolve. Moreover the  nature  and  rate 
of this  evolution will be markedly  influenced  by program 
characteristics,  with  a new release at intervals ranging from  one 
month  to  two years, say. Unlike other artificial  systems [ 151 
where,  relative to  the life  cycle of process participants, change 
is occasional, here  it  appears  continually.  The pressure for 
change is built in. It is intrinsic to  the  nature of computing 
systems and  the way they  are developed and used. P and E 
programs  are clearly closely related.  They differ from S- 
programs in  that  they  represent a computer upplication in the 
real world. We shall refer to members of the  union of the 
P and E classes as A-type programs. 

E. Program Correctness 
The f i t  consequence of the SPE program  classification is a 

clarification of the  concepts of program  correctness and  pro- 
gram proving. The meaning, reality,  and significance of these 
concepts have recently been examined  at great length [ 161, 
[ 171. Many of the viewpoints and differences  expressed by 
the  participants in that discussion become  reconcilable or ir- 
relevant under  an  adequate program  classification  scheme. 

For  the SPE scheme,  the  concept of verification  takes on 
significantly different meanings for  the S and the A classes. If 
a completely specified problem is computable,  its specification 
may be taken as the  starting  point  for  the  creation of an S- 
program. In principle  a logically connected sequence of state- 
ments can  always  be found,  that  demonstrates  the validity of 
the program as a solution  of  the specified  problem.  Detailed 
inspection of and reasoning about  the  code may itself produce 
the conviction that  the program satisfies the specification 
completely. A true proof must satisfy the  accepted  standards 
of mathematics. Even when the correctness  argument is 
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expressed in  mathematical terms,  a lengthy  or  complex chain 
of reasoning  may be difficult to understand,  the proof  sequence 
may even contain  an error. But this does not invalidate the 
concept of program  correctness proving, merely this instance 
of its application. 

We cannot discuss here the range of S-programs for  which 
proving is a  practical or a  valuable technique,  the range of ap- 
plicability of constructive  methods  for  simultaneous  construc- 
tion of a program and  its proof [ 181 , [ 191 ; whether  confidence 
in  the validity of an  S-program can  always be increased  by  a 
proof. We simply note  that since, by definition,  the sole 
criterion of correctness of an S-program is the  satisfaction of 
its specification, (correct)  S-programs are always provably 
correct. 

This is not purely  a  philosophical  observation. Many impor- 
tant  components of a large program, mathematical procedures 
for example,  in conjunction  with specified interface rules (call- 
ing and output), are certainly  S-type.  It becomes part of the 
design process to recognize such  potential  constituents  during 
the  partitioning process and to specify  and  implement them 
accordingly. In fact it will be postulated in the  next  section 
that an A-program may always be  partitioned  and  structured 
so that all its  elements  are S-programs. If this is indeed  true, 
no individual programmer  should ever be  permitted to begin 
programming until his task has been de f i ed  and delimited by 
a complete specification against which his completed program 
can be  validated. 

For  an E-program as an  entity  on  the  other  hand, validity 
depends  on  human assessment of its effectiveness  in the  in- 
tended  application.  correctness  and proof of correctness of 
the program as a  whole are,  in general,  irrelevant  in that a 
program  may  be  formally correct  but useless, or  incorrect  in 
that  it does not satisfy some stated specification, yet  quite 
usable, even satisfactory.  Formal  techniques of representation 
and proof have a place in  the universe of A-programs but  their 
role changes. It is the detailed behavior of the program under 
operational  conditions that is of concern. 

Parts of the program that can be  completely  specified  should 
be demonstrably  correct. But 'the environment cannot be 
completely described without  abstraction  and,  therefore, 
approximation. Hence absolute correctness of the program 
as a  whole is not  the real  issue. It is the usability of the pro- 
gram and  the relevance of its  output in  a  changing  world that 
must be the main concern. 

F. Program Structures and Structural  Elements 
The classification created above  relates to program entities. 

Any such program will, in  general, consist of many  parts 
variously referred to as subsystems, components, modules, 
procedures,  routines.  The  terms  are, of course, not used 
synonymously  but carry imputations  of  functional  identity, 
level, size, and so on. 

The  literature discusses criteria [ 201 and  techniques [211- 
[23] for  partitioning  systems  into  such elements.  Related 
design methodologies and  techniques seek to achieve optimum 
assignment, in  some sense, of element  content  and overall 
system structure. In the present context we consider only  one 
aspect of partitioning using the term module  for convenience. 
The discussion completes  the  presentation of the SPE classifi- 
cation  and provides a link to  other  current methodological 
thinking 1241. 

Consider the  end result of the design process for  an  A-pro- 

The analysis and partitioning process will identify some func- 
tional  elements  that can  be  fully  specified  and therefore devel- 
oped as S-program modules.  Any  specification  may of course 
be less than fully  satisfactory. It may even prove to  be wrong 
in  relation to what the system  purpose  demands, in itself or  in 
relation to the remainder of the design. For  example  the spec- 
ification may not  mention  input validity  checks, the specified 
output accuracy may be  insufficient or  the specified  range of 
an  input variable may  be  wrong.  But  each of these represents 
an omission from  or  an  error in the specification. Thus it 
is rectified  by first correcting  the specification and  then crest- 
ing, by  one means or  another, a  new  program that satisfies the 
new specification. 

The  remainder of the  system is required to implement  func- 
tions  that  are  at least partly  heuristic  or behavioral in  nature 
and  therefore define  A-elements. Nevertheless, we suggest 
that it is always possible to  continue  the system partitioning 
process until all modules are  implementable as S-programs. 
That is, any imprecision or  uncertainty  emanating  from  model 
reflections of incomplete world views will be  implicit or, if 
recognized when the specification is formulated, explicit in 
the specification statement.  The final modules will all be de- 
rived from  and associated with precise specifications,  which 
for  the  moment, may be  treated as complete  and  correct. 

The design may now be viewed and  constructed as  a  data- 
flow structure with the  inputs of one  module being the  outputs 
of others (unless emanating  from  outside  the  system). Each 
module will be  defined as an  abstract  data  type [251-[271 
defining, in  turn,  one  or  more  input-to-output  transformations. 
Module specifications include  those of the individual interfaces, 
but  for  the system  as  a  whole, the  latter should,  in some sense 
be  standardized [281. Moreover, given appropriate system and 
interface  architecture  and  module design, each module could 
be  implemented as a program running  on  its  own microproces- 
sor  and  the system implemented as a distributed system [9], 
[ 241, [ 281, [ 921. The  potential advantages for  both  execution 
(parallelism)  and maintainability (localization of change) can- 
not be discussed here. 

Many problems in  connection  with  the design and  construc- 
tion of such systems  need st i l l  to be solved. Adequate  solutions 
will represent a major advance in the development of a  process 
methodology  (Section 111-C). We observe,  however, that  the 
concepts  presented follow  directly from  our brief analysis 
and classification of program types. Interestingly, the conclu- 
sions are completely compatible  with  those of the programming 
methodologists [ 24 I , [ 29 1 , [ 30 1 . 

III. THE LIFE CYCLE 
A. The General Case 

The  dynamic  evolutionary  nature of computer applications, 
of the  software  that  implements  them  and of the process that 
produces  both,  has  in  recent  years given rise to a concept of 
a  program life  cycle and to techniques  for life-cycle manage- 
ment. The  need  for  such management  has, in  fact, been recog- 
nized in  far wider spheres,  particularly by  national defense 
agencies and  other organizations concerned  with  the manage- 
ment of complex artificial  systems. In pursuing their respon- 
sibilities, these  must  ensure  continuing effectiveness of systems 
whose elements may involve many  different  and fast  developing 
technologies. Often  they  must  guarantee  utterly reliable opera- 
tion  under harsh, hostile,  and unforgiving conditions.  The  out- 
come is an ever increasing  financial commitment. Only  life- 

gram to be constructed of primitive elements we term modules.  time-orientated  management techniques applied from  project 
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initiation can permit  the  attainment of lifetime effectiveness 
and cost  effectiveness. 

The  problems  in  the  more general situation are essentially 
those we have already explored,  except  that  the  time interval 
between  generations is perhaps  an  order of magnitude greater 
than  in  the case of pure  software systems. In briefly examin- 
ing the  nature of the life  cycle and  its management in  this sec- 
tion, we use the terminology of programming and  software 
engineering. The reader will be able to generalize and to 
interpret  the  remarks  in his own area of interest. 

B. Software  Life  Cycles 
In studying program evolution, repetitive phenomena  that 

define a  life  cycle  can be observed on  different  time scales 
representing  various levels of abstraction.  The highest level 
concerns successive generations of system  sequences. Each 
generation is represented by  a  sequence of system releases. 
This level corresponds  most closely to  that  found in the  more 
general systems  situation,  with each generation having a life 
span of from,  say, five to  twenty years. Because of the rela- 
tively slow rate of change it is difficult for  any individual to 
observe this  evolution  phenomenon, measure its dynamics and 
model it as a  life-cycle  process  since in  the relevant portion of 
his professional  career he will not observe more  than  two  or 
three generations. It might therefore be  argued that this 
level should  not be treated as an instance of the life-cycle 
phenomenon.  The present author has,  however, had  at least 
one  opportunity  to  examine program  evolution at this level 
and to make meaningful and significant observations [ 3  11. 
These indicated  that  much could be gained in cost  effective- 
ness in  the  software  industry if more  attention were paid to 
the earlier creation of replacement  generations,  something  that 
can be achieved effectively only if the  appropriate predictive 
models are available. 

The second level is concerned with  a sequence of releases. 
The  latter  term is also appropriate when  a concept of contin- 
uous release is followed,  that is when  each change is made, 
validated, and  immediately installed in user instances of the 
system. 

Fig. 5 shows one view [ 6 ]  of the sequence of activities or 
life-cycle phases that  constitute  the lowest level, the develop- 
ment of an individual release, if it is assumed that “mainte- 
nance”  in the  seventh  box refers to  onsite fixes and repairs 

implemented as the system is used. If maintenance is taken  to 
refer to permanent changes, effected  through new releases by 
the system originator,  then  the  structure becomes recursive 
with each maintenance phase comprised of all seven indicated 
phases. With this  interpretation  the single recursive model re- 
flects  the  composite life-cycle structure of all the above levels. 

The remainder of this paper is chiefly  concerned with  the 
intermediate level, the life  cycle of a  generation as represented 
by  a  sequence of releases. It is at this level that analysis in 
terms of the S and A classification is particularly  relevant and 
enlightening. 

C. Assembly Line  Processes 
An assembly line manufacturing process is possible when  a 

system can be partitioned  into subsystems that  are simply 
coupled and  without invisible l inks.  Moreover, the process 
must  be divisible into separate phases without significant  feed- 
back control over phases and  with relatively little  opportunity 
for tradeoff  between them. 

Unfortunately, present  day  programming is not like that.  It 
is constituted of tightly  coupled activities that  interact in 
many ways. For  example,  at least  some  aspects of the specifi- 
cation  and design processes are left over, usually implicitly, 
to the  implementation  (coding) phase. Fault  detection  through 
inspection [90] is not  yet universal practice and by default is 
often delayed till a  system integration  or system testing phase. 
One of the main concerns of life-cycle process methodology 
research  must  be to develop techniques,  tools, new  system 
architectures  (Section 11-F) and programming support environ- 
ments  [32] -[  341 that  permit  partitioning of the program 
development and  maintenance process into  separated activities. 

D. The  Significance o f  the  Life-Cycle  Concept 
For assembly line processes the life-cycle concept is not, 

generally, of prime  importance.  For  software  and  other highly 
complex systems it becomes  critical if effectiveness,  cost  effec- 
tiveness, and  long life are to be  achieved. At each moment  in 
time, a manager’s concern  concentrates  on  the successful com- 
pletion of his current assignment. His success will be assessed 
by immediately observable product  attributes,  quality,  cost, 
timeliness, and so on.  It is his success in areas such as these 
that  determine  the  furtherance of his career. Managerial strat- 
egy  will inevitably  be dominated  by a desire to achieve maxi- 
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mum local payoff with visible short-term benefit. It will not 
often  take  into  account long-term  penalties, that  cannot be 
precisely predicted and whose cost cannot be assessed. Top- 
level managerial pressure to apply life-cycle  evaluation is there- 
fore essential if a development  and maintenance process is to 
be  attained  that  continuously achieves, say, desired overall 
balance between  the  short- and long-term objectives of the 
organization. Neglect will inevitably result in  a  lifetime  ex- 
penditure on the system that  exceeds  many  times  the assessed 
development  cost on  the basis of which the system or project 
was initially authorized. 

To overcome  long time lags and  the high cost of software, 
one may also seek to  extend  the useful lifetime of a  system. 
The decision to replace  a system is taken when maintenance 
has become too expensive, reliability too  low, change respon- 
siveness too sluggish, performance  unacceptable,  functionality 
too limiting; in short, when it is economically more  satisfactory 
to replace the system than  to maintain it. But its  expected 
life time to that  point is determined primarily  in its concep- 
tion, design and initial implementation stages. Hence manage- 
ment planning  and control during the formative  period of sys- 
tem  life, based on lifetime projections and  assessment,  can  be 
critical  in achieving long  life software  and  lifetime cost effec- 
tiveness [ 1 1 .  

E. Life-Cycle Phases 
1 )  The Major Activity Classes: At its grossest level a  life 

cycle consists of three phases: definition,  implementation  and 
maintenance. As indicated  in Fig. 5 ,  these three phases corre- 
spond  approximately to  the activities described in the   f i i t  
three,  the second three  and  the seventh box respectively of 
Boehm’s model. In practice, however, many of these activities 
are overlapped, interwoven,  and  repeated iteratively. 

2) System  Definition: For E-class  systems  in particular,  the 
development process begins with a  pragmatic analysis leading 
into a systematic systems analysis t o  determine  total system 
and program requirements [35]-[38]. The analysis must  first 
establish the real need and objectives  and may examine the 
manual  techniques whereby the same purpose is currently 
achieved. Where appropriate, it may be based on mathematical 
or  other  formal analysis. Whatever the  approach,  it has  now 
been recognized that  the analysis must  be disciplined and 
structured [291, [ 301, the  term structured analysis now being 
widely used [91,  [411,  [421. 

By their very nature initial requirements, being an expression 
of the user’s  view of his needs, are likely to include incom- 
patibilities or even contradictions.  Thus  the analysis and  the 
negotiation process by and between analysts  and potential 
users that produces  the  final requirements  specification, must 
identify a balanced set  that, in  some  sense,  provides the  opti- 
mum compromise between conflicting desires. 

The  requirements  set will be  expressed  in the  concepts  and 
language of the  application  and  its users. It must then be 
transformed  into a technical specification. The specification 
process [431,  [44] must  aim to produce a correct  technical 
statement, complete in  its coverage of the  requirements  and 
consistent in its defiiition of the  implementation. It  may in- 
clude  additional  determinations  or  constraints  that follow 
from a  technical  evaluation of the  requirements  in  relation to 
what is feasible, available and  appropriate  in  the  judgment of 
the analyst and designer in  agreement  with the user. 

It  has long  been the aim of computer scientists to provide 
formal languages for  the expression of specifications so as to 
permit mechanical  checking of completeness and consistency 

[45 1 - [49], [ 9 1 1 ,  but a widely accepted language does not  yet 
exist. Given a  machinable  specification it is conceptually 
possible to reduce  it mechanically to  executable [ 501 and even 
efficient [ 141 code  but  these technologies too are not  yet 
ready for general exploitation. 

Thus,  for  the  time being, the specification process will be 
followed  by  a design phase [49],  [51] . The  prime objective 
of this  activity is to  identify  and  structure  data,  data  transfor- 
mation  and  data flow [23] .  It  must also achieve, in some 
defined  sense, optimal  partitioning of system function [ 201, 
select computational  algorithms  and procedures, and  identify 
system components, afld the relationships between  them. It 
is now generally accepted  that iterative t o p d o w n  [52] analy- 
sis and  partitioning processes are  required to achieve successive 
refinement [ 21 1 of the system design to  the  point where the 
identified  objects, procedures, and  transformations can be 
directly implemented. 

3) Implementation: Following the  completion of the design, 
system implementation may begin. In practice,  however, 
design and  implementation overlap.  Thus, as the hierarchical 
partitioning process  proceeds,  analysis of certain aspects of the 
system may be  considered sufficient  for  implementation, while 
others  require  further analysis. In a software  project,  time 
always  appears to be at a  premium.  A work force comprising 
many  different abilities is available and  must  be  kept busy. 
Thus, regrettably, implementation of subsystems, components, 
procedures, or  modules will be initiated  despite the fact  that 
the overall, or even the local design, is not  yet  complete. 

As the  implementation  proceeds  code  must be validated 
[ 531, [ 5 4 1 .  Present day  procedures  concentrate primarily 
on testing [551, though in recent years  increasing  use has been 
made of design walkthrough and  code inspection [go]. These 
latter  procedures are intended to disclose both design and im- 
plementation  errors  before  their consequences become  hidden 
in  the program  code. The  ratio  of  costs of removing a fault 
discovered in usage as against the  cost of removing the  same 
fault if discovered during  the design or f i t  implementation 
phase is sometimes  two  or  three  orders of magnitude. Clearly, 
it pays to frnd faults early in the process. 

In  any case, testing  by  means of program execution is carried 
out, generally bottom  up, first at the unit  (module  or proce- 
dural) level, then  functionally,  component by component. As 
tested  components  become available they  are  then assembled 
into a system in an integration process and system  test is initi- 
ated. Finally, after  some degree of  independent  certification 
of system function  and  performance,  the system is designated 
ready  for release. 

The above  very brief summary has identified  some of the 
activities that are typically  undertaken  in a  system creation 
process. Individual  activities as described may overlap, be 
iterated, merged, or  not  undertaken  at all. Design of an ele- 
ment, for example, may be followed immediately by  a test 
implementation  and preliminary performance evaluation to 
ensure  feasibility of a design before  its  implications spread to 
other  parts of the system.  Clearly, there  should  be a set of 
overall controlled  procedures to take a concept  from  the f i t  
pragmatic  evaluation of  the  potential of an  application  for 
mechanization to the final program product  executing  in de- 
fined hardware or  software  and  hardware  environment(s). 

4) Maintenance: once the system has been released, the 
maintenance process begins. Faults will be  observed, reported, 
and  corrected. If user progress is blocked because of a fault, 
a temporary bypass of  the  faulty  code  may be authorized.  In 
other  circumstances a temporary  or  permanent fix may be 
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applied in some or all user locations.  The  permanent repair or 
change to  the program  can then  be held over for a new release 
of the system. In other cases, a permanent change will be pre- 
pared for  immediate  installation by all those running the sys- 
tem.  The particular  strategy adopted in  any  instance will 
depend on  the  nature  and severity of the  fault,  the size and 
difficulty of the change required,  the  number and nature of 
program  installations  and user organizations, and so on.  The 
aggregate strategy will have a profound  impact  on  the  rate of 
system complexity  growth,  on its life-cycle costs, and  on  its 
life expectancy. 

The  faults  that  are  fixed  in  the  maintenance process may be 
due to changes external to the  system,  incorrect  or  incomplete 
specification, design or  implementation errors, hardware 
changes or to some  combination of these.  Since  each user 
exposes  the  system  in  different ways, all installations  do  not 
experience all faults, nor  do  they  automatically  apply all 
manufacturer-supplied fvres or changes. On  the  other  hand, 
installations having their  own programming staff may very well 
develop and install  localized  changes or system modifications 
to suit  their specific  needs.  These  patches,  insertions, or dele- 
tions  may  in  turn cause  new  difficulties  when further incre- 
mental changes are received from  the  manufacturer, or at a 
later  date  when a  new release is received. The inevitable  con- 
sequences of the  maintenance process  applied to systems 
installed for  more  than  one user, is that  the system drifts  apart. 
Multiple versions of system elements develop to encompass the 
variations and  combinations [ 561 . System configuration 
management  becomes  a major task. Support  environments 
[331-[35] that  automatically collect and  maintain total activ- 
ity records become  an essential tool in programming  process 
management. 

F. Life-Cycle Planning and Management 
The preceding discussion, while presenting a  simplified view 

of the life  cycle, will have made clear the  difficulty associated 
with cycle planning. In  recent years this problem  has received 
much  attention [ 571, [ 581 . A variety of techniques have been 
developed to improve estimation of cost,  time,  and  other re- 
sources  required  for  software  development  and  maintenance 
[59]-[64]. These techniques are based on extrapolation of 
past  experience and  tend to  produce results  in the  nature of 
self-fulfilling prophecies. In general, it has not  yet proved 
possible to  develop techniques  that  estimate project  require- 
ments  on  the basis of objective  measurement of such  attrib- 
utes as application complexity  and size and  the work  required 
to create a satisfactory system.  Techniques such as software 
science 1651, [661 seek to  do  just  this  but  to  date lack  sub- 
stantiation (671 and  interpretation. Major research and  ad- 
vances are  required if software engineering is to become as 
manageable as are other engineering disciplines, though  funda- 
mentally the peculiar nature of software systems [28] will 
always leave software engineering in  a class of its  own. 

Iv. LAWS OF PROGRAM EVOLUTION 
A .  Evolution 

The analysis of Section I1 associated with  the life-cycle 
description of Section III, has  indicated  that  evolution is an 
intrinsic, feedback driven, property of software. The  meta- 
system  within  which  a  program evolves contains  many  more 
feedback relationships than those identified above. Primitive 
instincts of survival and  growth result in the  evolution of stabi- 
lizing  mechanisms in response to needs,  events and changing 

objectives. The resulting  pseudohierarchical structure of self- 
stabilizing  systems  includes the  products,  the processes, the 
environments  and  the organizations involved. The  interactions 
between  and within the various constituents,  and  the overall 
pattern of behavior must be understood if a  program product 
and  its usage are to be  effectively  planned and maintained. 

The organizational and  environmental  feedback, links, 
focuses, and  transmits  the  evolutionary pressure to yield the 
continuing change process. A similar situation holds, of course, 
for  any  human organized activity,  any artificial  system. But 
some significant  differences  are  operative in  the case of soft- 
ware. In  the f m t  instance  there is no  room in programming 
for imprecision, no malleability to accommodate  uncertainty 
or  error. Programming is a mathematical discipline. In rela- 
tion to a specific objective,  a  program is either right or wrong. 
Once an instruction  sequence  has been  fixed and unless and 
until it is manually  changed, its behavior in execution  on a 
given machine is determined solely by  its  inputs. 

Secondly,  a software system is soft. Changes can be im- 
plemented using  a  pencil, paper,  and/or a keyboard. Moreover, 
once a  change has been designed and  implemented  on a devel- 
opment system it can be applied  mechanically to  any  number 
of instances of the  same system without  further significant 
physical or  intellectual  effort using only  computing resources. 
Thus  the  temptation is to implement changes in  the existing 
system, change upon change upon change, rather  than  to col- 
lect changes into groups and  implement  them  in a totally new 
instance. As the  number of superimposed changes increases, 
the system and  the  metasystem become more  complex, stiffer, 
more  resistant to change. The  cost,  the  time  required,  and  the 
probability of an erroneous  or  unsatisfactory change all increase. 

Thirdly,  the  rate  at which  a  program  executes, the  frequency 
of usage, usage interaction  with  the  operating  environment, 
economic  and social dependence of external process on pro- 
gram execution, all cause deficiencies to be exposed.  The 
resultant pressure for  correction  and  improvement leads to a 
system rate of change with a time scale measured in days and 
months  rather  than  in  the years and decades that  separate 
hardware generations. 

B. Dynamics and Laws o f  Program Evolution 
The  resultant  evolution of software  appears to be driven and 

controlled by human decision,  managerial edict,  and program- 
mer judgment. Yet as shown  by  extended  studies [68]-[76], 
measures of its  evolution display patterns, regularity and 
trends  that suggest an underlying  dynamics that may be 
modeled  and used for planning, for process control,  and  for 
process improvement. 

Once observed the reasons for this unexpected regularity is 
easily understood. Individual  decisions in the life  cycle of a 
software system generally appear localized in  the system and 
in  time.  The considerations on which they are based appear 
independent. Managerial decisions are largely taken in relative 
isolation, concerned to achieve local control  and  optimization, 
concentrated  on  some aspect of the process, some phase of 
system  evolution. But  their aggregation, moderated  by  the 
many  feedback relationships, produces overall systems  response 
which is regular and  often normally distributed. 

In its early stages of development  a  system is more  or less 
under  the  control of those involved in its analysis, design, and 
implementation. As it ages, those working on or with  the sys- 
tem  become increasingly constrained  by earlier decisions, by 
existing code, by  established  practices  and habits of users and 
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TABLE I 
LAWS OF P R f f i R f i  EVOLUTION 

I. 

II. 

III. 

Iv. 

V. 

Continuing  Change 
A program that  is  used  and  that as an implementation of its speci- 
fication reflects some other reality, undergoes  continual  change  or 
becomes progressively less useful. The  change or decay process 
continues until it is judged  more cost  effective to replace the sys- 
tem  with a recreated  version. 

Increosing Complexity 
As an evolving program is continually changed, its  complexity, 
reflecting deteriorating  structure,  increases unless work is done to 
maintain  or  reduce it. 

The  Fundamental k w  of Rogrom Evolution 
Program evolution is .subject to a dynamics which makes the pro- 
gramming  process,  and hence measures of global project and system 
attributes, self-regulating  with statistically determinable  trends and 
invariances. 

Conservotion of Orgonizotionol Stobility (Invorirmt  Work Rate) 
During the  active  life of a program the global activity rate in a pro- 
gramming  project is statistidy invariant. 

Conservotion of Fomiliority (Perceived  Complexity) 
During the active life of a program the release content (changes, 
additions, deletions) of the successive  releases of an evolving pro- 
gram is statistically invariant. 

implementors alike. Local control  remains  with  people. But 
process and  system-internal links, dependencies,  and  interac- 
tions cause the global  characteristics of system  evolution to  be 
determined by organization, process  and  system  parameters. 
At  the global level the  metasystem  dynamics have largely 
taken over. 

Since the original observation [63] ,  studies of program evo- 
lution have continued, based on measurements  obtained  from 
a  variety of systems.  Typical  examples of the  resultant  models 
have been  reported [ 691 - [ 721, [ 741, [ 761 including also one 
detailed  example of their  application to  release planning [ 771. 

It was repeated  observation of phenomenologically  similar 
behavior  and  the  common  interpretation of independent 
phenomena,  that led to  a  set of five laws, that have themselves 
evolved as insight and  understanding have increased.  The laws, 
as currently  formulated  to  include  the new viewpoint  emerging 
from  the SPE classification,  are given in Table I. Their  early 
development  can be followed  in  [91, [ 101,  [721. We note 
that  the laws are abstractions of observed  behavior based on 
statistical models. They have no meaning  until  a  system,  a 
project  and  the  organizational  metasystem  are well established. 
More detailed discussion of their  nature and of their  technical 
and  managerial  implications will  be found in [ 111,  [77], 
[781  and  [771,  [791,[801, respectively. 

The fmt law, continuing  change, originally [3] ,   [ lo ] ,   [79]  
expressed  the universally  observed  fact that large programs  are 
never completed.  They  just  continue to  evolve. Following  our 
new  insight,  however,  reference to  largeness is now  replaced  by 
the phrase . . . “that  reflect  some  other  reality . . .” 

The  second  law, increasing complexity, could  be seen as an 
instance of the  second law of thermodynamics.  It  would seem 
more  reasonable to  regard both as instances  of  some  more 
fundamental  natural  truth. But from  either  viewpoint  its 
message is clear. 

The  third  law,  the fundamental law of program  evolution, is 
in  the  nature of an  existence  rule.  It  abstracts  the  observed 
fact  that  the  number of decisions  driving the process of evolu- 
tion,  the  many  feedback  paths,  the  checks  and balances of 

organizations,  human  interactions  in  the process, reactions  to 
usage, the rigidity of program  code, all combine to  yield 
statistically  regular  behavior  such as that  observed  and  measured 
in  the  systems  studied. 

The  fourth law, conservation of organizational  stability, and 
the  fifth, conservation of familiarity, represent  instances of 
the  observations  whose  generalization led to  the third law. 
The  fourth  reflects  the  steadiness of multiloop self-stabilizing 
systems.  It is believed to  arise from  organizational striving  for 
stability.  The  managements  of  well-established  organizations 
avoid dramatic  change  and  particularly  discontinuities in 
growth rates. Moreover, the  number of people  and  the invest- 
ments involved, the unions, the  time delays in  implementing 
decisions, all operate  together to  prevent  sudden  or  drastic 
change. Wide fluctuations  may  in  fact lead to instability  and 
the  breakup  of  an  organization. 

The  reader  may  fmd it difficult to  accept  the  implication 
that  the work  output  of  a  project is independent of the  amount 
of resources employed,  though  the  same  observation has also 
been recorded  by  others [ 811.  The  underlying  truth is that 
activities of the  type  considered,  though  initiated  with mini- 
mal  resources, rapidly  attract  more  and  more as commitment 
to  the project,  and  therefore  the  consequences of success or 
failure,  increase. Our  observations as formalized in the  fourth 
law imply  that  the  resources  that  can be productively applied 
becomes  limited as a  software  project ages. The  magnitude of 
the limit depends  on  many  factors  including  attributes of the 
total  environment.  But  the pressure for success leads to  invest- 
ment to  the  point where it is exceeded.  The  project reaches 
the stage of resource  saturation  and  further  changes have no 
visible effect  on  real overall output. 

While the  fourth  law s p r i n ~  from  a  pattern  of  organizational 
behavior, the  fifth  reflects  the collective consequences of 
the characteristics of the  many individuals within  the organiza- 
tion.  It is discussed at  len@ in 111 . Suffice  it  to say here 
that  the  law arises from  the  nonlinear  relationship  between  the 
magnitude  of  a  system  change  and  the  intellectual  effort  and 
time  required to  absorb  that  change. 
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TABLE I1 
SYSTEM X STATISTICS 

Release I9 Statistics 
Size 4800 Modules 

Incremental  growth 410 Modules 
Modules  changed0 2650 Modules 
Fraction of modules  changed 0.55 
Release  interval 275 Days 

1.3 Assembly  M-statements 

System Statistics 
Age 4.3 Years 
Change  rate 10.7 Modules/day 
Average  incremental  growth 200 Modules/release 
Maximum safe  growth  rate 400 Modules/release 

Most  Recent  Releases 

Release 15  16 17 18 19 

Incrementalgrowth(A Mod) 135 171 183 354 410 
Fraction changed 0.33 0.43 0.48 0.50 0.56 
Change rate 12.5 0.12 9.6 9.9 9.6 
Interval  (Days) 96 137 201 221 275 
Old  mods,Changed/  Mod 7.9 8.6 10.0 5.1 5.4 

% x " s  that are  changed  in  any way in release i + 1 relative to re- 
lease i are  counted  as one changed  module,  independently of the num- 
ber of changes or of their  magnitude. 

V.  APPLIED DYNAMICS 
A.  Introduction 

The previous sections have emphasized the phenomenological 
basis for  the laws of program evolution, indicating  how they 
are  rooted in phenomena underlying the activity of program- 
ming itself. 

The origin of the laws in  individual and societal behavior 
makes their  impact  on  the  construction  and  maintenance of 
software more than  just descriptions of the evolutionary 
process. The laws represent principles in  software engineering. 
They  are, however, clearly not  immutable, as for  example,  are 
the laws of physics or chemistry. Since they arise from  the 
habits  and practices of people  and  organizations, their modifi- 
cation  or change requires  one to go outside  the discipline of 
computer science into  the realms of sociology,  economics and 
management.  The laws therefore  form  an  environment within 
which the effectiveness of programming  methodologies and 
management  strategies  and techniques can be evaluated, a 
backdrop against which better  methodologies and techniques 
can be developed. 

Their implications,  technical  and managerial, have been  pre- 
viously discussed in the  literature [3],   [9],   [ l l] ,   [79],   [80].  
In the  present paper, we restrict  the discussion to outlining 
an  example of the  application of evolution dynamics  models 
to release planning. 

B. A Case Study-System X 
1 )  The  System and its Characteristics: System X is a  general 

purpose  batch  operating system running  on a range of ma- 
chines. The  eighteenth release (R18) of the system is opera- 
tional in some  tens of installations running a variety of work 
loads. The  nineteenth release (R19) is about to be  shipped. 

Table I1 and Fig. 6(a)-(g) present the system and release 
data  and  models available for  the purposes of the present 
exercise. We cannot, however,  provide here  the  details of sta- 
tistical analysis and model validation [ 761, based on this data 

and that  from  other systems that gives us confidence in our 
conclusions and predictions. 

Examining the system  dynamics  as  implied by models  de- 
rived from  the  data  and as illustrated  by the figures, Fig. 6(a) 
shows the  continuing  growth of the system  (first  law)  albeit  at 
a declining rate  (demonstrably  due to increasing difficulty of 
change, growing complexity-second  law). 

Fig. 6(b) indicates that as a function of release sequence 
number (RSN) the system growth (measured  in  modules)  has 
been linear but  with a  superimposed  ripple  (a strong  indicator 
of feedback stabilization). 

Fig. 6(c) shows the  net  incremental  growth per release (fifth 
law). 

For system architectures  such as that of system X, the frac- 
tion of system modules  that are changed during  a release may 
be taken as a gross indicator of system complexity. Fig. 6(d) 
shows that system X complexity, as measured in this way, 
shows an increasing trend (second  law). 

Fig. 6(e) is an  example of the repeatedly observed constant 
average work rate  (fourth law). 

Fig. 6(f) illustrates  how the average work rate achieved in 
individual releases, as measured by  the  rate of module change 
(changed  modules per release interval  day (m/d) oscillates,  a 
period of high rate activity being followed  by one  or more  in 
which the activity rate is much lower (third law). 

Finally, Fig. 6(g) plots  the release interval against release 
sequence number. It  has  been argued that release interval de- 
pends  purely on management decision that is itself based on 
market considerations and technical  aspects of the release 
content and environment. Data such as that of Fig. 6(g) indi- 
cates,  however, that  the  feedback mechanisms that, amongst 
other process attributes, also control  the release interval, while 
including human decision  taking processes, are apparently  not 
dominated  by  them. As a  consequence, the release interval 
pattern is sufficiently regular to be  modelable,  and is statisti- 
cally predictable once enough data  points have been  established. 

2) The  Problem: Already prior to the  completion (and re- 
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TABLE I11 
RELEASE 20 PLANNED CONTENT 

Functional  Enhancement 

OldMods Mods 
New  Mods  Chgd  Chgd OMC/NM 

No.  Description (NM) (OMC) (NM + OMC) (IR) 
~ 

1. 

2. 

3. 

4. 

5.  
6. 
7. 

8. 
9. 

10. 

Identifed faults 
@RE. u s .  19) 

Expected  faults 
(RLS. 19) 

Interactive  terminal 
support  (ITS) 

Dynamic  storage 
management (DSM) 

Remote job entry  (RJE) 
New disk support (NDS) 
Batch  scheduler 

improvements (BSI) 
File  access  system (FAS) 
Paper  tape  support (PTS) 
Performance  improvements 

2 

0 

750 

170 
57 
17 

3 
8 

12 
2 

380 

600 

1783 

1500 
462 
124 

29 
74 
80 

157 

382 

600 

25 33 

1670 
5 19 
141 

32 
82 
92 

159 

- 

- 

2.4 

8.8 
8.1 
7.3 

9.7 
9.3 
6.7 - 

1021  5189  6210 

Detail of  Interactive Terminal Support (ITS) 

No.  Description  New  Mods  Old  Mods Chgd OMC/NM 

3A Terminal  support 444 1032  2.3 
3B Scheduling 127 293  2.3 
3C Telecom  support 5 8  232  4.0 
3D Misc. 121  226  1.9 

750 1783 

lease) of R19, work  has begun on a further version R20, whose 
main component  is  to be the  addition of interactive access to 
complement  current  batch facilities. This new facility  “ITS” 
together  with  other changes and  additions summarized in 
Table 111, are to be made available eighteen months  after first 
customer installation of R19. 

For  each  major planned functional change, the  table lists the 
number of new modules to be added (NM), the  number of R19 
modules that are to be  changed  in the course of creating R20 
(OMC), the  total  number of modules changed (NM + OMC), 
and  the  ratio of OMC to NM (the  interconnectivity  ratio (IR), 
an  indicator of complexity). No modules  are  planned for re- 
moval in the  creation of R20 hence  the planned net system 
growth is 1021 modules. 

Management has also accepted that a further release R21, 
will follow twelve months  after R20, to include any leftovers 
from R20. It may also include additional changes for which a 
demand develops over the  next  two years. The  current exer- 
cise is to endorse  the overall plan,  or if it can be  shown to be 
defective, to prepare an alternative recommendation. 

3)  Process  Dynamics: 
a )  Work  rate: From Fig. 6(e)  the work rate has averaged 

10.4 m/dl over the  lifetime of the system. Fig. 6(f) indicates 
that  the maximum rate achieved so far  has  been 27 m/d. Evi- 
dence that  cannot be  detailed  here reveals, however, that  that 
data  point is misleading and that a  peak rate of about 20 m/d 
is a better  indicator of the maximum achievable with current 
methodology  and tools. Moreover, there is strong circum- 

Modules per day = 
number of modules changed in release 

release interval in days 

stantial evidence that releases achieved with  such high work 
rates were extremely  troublesome  and had to be  followed by 
considerable clean-up in  a  follow-up  release, as also implied 
by Fig. 6(c).  Thus, if R20 is planned so as to require  a  work 
rate in the region of 20 m/d,  it would be wise to limit R21 to 
at most 1 0  m/d,  the system average. If on  the  other  hand,  the 
process is further stabilized by  working on R20 at near average 
rate,  one could then,  with a high degree of confidence, ap- 
proach R21 with  a higher work rate plan. 

b )  Incremental  growth: The maintained average incremen- 
tal growth for system X has been around 200 modules/release. 
Once again circumstantial  evidence  indicates that releases (for 
which, in this case, the  growth  rate  (incremental growth per 
release) has  exceeded  twice the average) have slipped delivery 
dates, a poor  quality record and a subsequent need for drastic 
corrective activity. Fig. 6(c) and  Table I1 indicate that R19 
will  lie in this region and that R18 had high incremental 
growth.  That is, R19, once released, is likely to prove a poor 
quality base. The first evidence emerges that maybe R20 
should be a clean-up release. 

c)  Growth rate in modules for  release: The same indica- 
tion follows from Figs. 6(a)  and  (b) where the ripple  periods 
are seen to  be three,  four, and five intervals, respectively over 
the first three cycles. In  the  fourth cycle,  six  intervals of in- 
creasing growth  rate have passed with  the R18-Rl9 growth 
the largest ever. Without even considering the planned growth 
to R20 (Point X), it seems apparent  that a clean-up release is 
due. 

4 )  R20 Plan Analysis: 
a )  Initial  analysis: The first observation on  the plan as 

summarized  by  Table 111 stems  from  the column (6) of IR 
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factors.  It has not been  calculated for  items 1 , 2 ,  and 10 since 
these  represent  activities that  only rarely  require the provision 
of entirely new (nonreplacement) modules. For  items 4-9 the 
ratio lies in the range 8.2 f 1.5 ,  a  remarkably small range for 
widely varying functional changes. Yet the predicted ratio  for 
ITS is only 2.4. One must ask whether  it is reasonable to sup- 
pose that  the  code  implementing an interactive  facility is far 
more loosely  coupled to  the remaining  system than,  for exam- 
ple,  a specialist facility such as paper  tape  support? Is it  not 
far more  likely that ITS  has  been  inadequately  designed; 
viewed perhaps as an independent facility that requires only 
loose  coupling into  the existing system?  Thus, when it is inte- 
grated with  the remainder of the system to form R20, will it 
not require many  more changes to  obtain  correct and adequate 
performance?  From  the evidence  before us, the  question is 
undecidable.  Experience based intuition, however, suggests 
that it is rather likely that  the  number of changes required 
elsewhere in the  system has  been underestimated.  Thus a high- 
priority design reappraisal is appropriate. If the suspicion of 
incomplete planning proves to be correct, it would suggest 
delaying R20, so that  the planning and design processes may 
be completed. An alternative  strategy of delaying  at  least  ITS 
to R21 should also be evaluated. 

b )  Number of modules  to  be changed: The  situation may 
of course not be quite as bad as direct  comparison of the 
present estimate of the ITS interconnection  ratio (IR) with 
that of the  other  items, suggests. In  view  of the 750 new 
modules involved, its IR factor could not exceed 6.4 even if 
all 4800 modules of R19 were effected by the ITS addition. 
Such  a 100 percent change is, in fact, very unlikely, but  the 
IR factor of 2.4 remains very suspect. 

Moreover, even with the low ratio  for ITS the sum of the 
individual OMC estimates  for  the  entire plan exceeds the 
number of modules in R19. This suggests a new situation 
Multiple changes applied to  the same module  must have become 
a significant occurrence. Even ignoring the fact that even in- 
dependent changes applied in the same release to  the same 
module generally demand significantly more  effort  than 
similar changes applied to independent  modules,  the  total 
effort and time required  must clearly increase with both  the 
number of changes implemented and the  number of modules 
changed. The presently defined measure “modules changed” 
is inadequate.  The new situation demands  consideration of 
more sensitive measures such as “number of module changes” 
and “average number of changes  per  module.” 

‘These  cannot be derived from  the available data. We may, 
however,  proceed  by  considering  a  model based on  the  data 
of Fig. 6(d).  Extrapolating  the  fraction changed trend, reveals 
that R20 may be expected to require a change of,  say, 64 per- 
cent,  or 3725 changed modules.2  Comparing this  estimate 
with  the  total of 621 0 obtained if the estimates for individual 
items are summed,  it  appears  that  the average number of 
changes to be  applied to R19 modules according to  the present 
plan is at least of order  two. We have already observed that 
multiple changes cause additional complications. Hence any 
prognosis made under  the implied  assumption of single changes 
(or of a  somewhat  lower interconnection  ratio) will lead to an 
optimistic assessment. 

release including the interactive facility  ultimately involved some  58 
’HistoricaZNote: In the  system on which  this  example is based the 

percent of modules changed. Moreover the first release was significantly 
delayed, and was of limited quality and performance. More than 70  per- 
cent of its  modules had subsequently to  be changed again to  attain an 
acceptable  product. Our estimate is clearly good. 

c)  Rate of work: The  current plan calls for R20 with  its 
3725 module changes to be available in 18 months,  that is 548 
days.  This  implies  a change rate of less than 6.8 m/d. This 
relatively low rate, following  a  period of average rate activity 
suggests that work rate pressures are unlikely to prove a  source 
of trouble, even with multiple changes to many of the modules. 

d )  Growth rate: In Figs. 6(a)  and  (b), we have indicated 
the position of R20 as  per plan,  with  an X. Both modules in- 
dicate that  the planned growth  represents a  major  deviation 
from  the previous history. Thus confirmation  that  the plan is 
realistic  requires  a demonstration  that  the special nature of the 
release, or changes in  methodology, makes it reasonable to  ex- 
pect a significant change in the system  dynamics. In the  ab- 
sence of such a demonstration,  the suspicion that all is not 
well is strengthened. 

e )  Incremental growth: The  current R20 plan calls for 
system growth of over 1000 modules.  This  figure  which is 
five times  the average and  two  and a half times the  recom- 
mended maximum, must  be interpreted as a danger signal. 

We have already suggested that  the low interconnection  ratio 
for ITS suggests that  the planners saw the new component as a 
stand alone mechanism that interfaces with  the remainder of 
the system via a narrow  and  restricted  interface. If this view 
proves justified,  the large incremental growth need not be dis- 
turbing.  But it seems  reasonable to question  it. With the 
architecture  and  structure  that system X is known to have, 
such a relatively narrow  interface is unlikely to be  able to pro- 
vide the  communication  and  control  bandwidth  that safe, 
effective, and high capacity  operation must demand. This 
is apparent  from comparisons with,  say,  the paper tape  or 
disk support changes or  the RJE addition.  The  onus must be 
put  onto  the ITS designers to demonstrate  the completeness 
of their analysis, design, and implementation. 

Without such a demonstration  one must  conclude that  the 
present plan is not technically viable. Marketing or  other 
considerations may, of course,  make  it desirable to stay  with 
the present  plan even if this implies  slipped delivery dates, 
poor  and unreliable performance  of  the new release, limited 
facilities,  and so on. But if such considerations  force adoption 
of the  plan,  the  implications must  be noted, and  corrective 
action planned. Ways and means will have to be  created to 
enable users to cope  with  the  resultant system and usage prob- 
lems and  the inevitable  need for a  major clean-up release. It 
might, for  example,  be wise to set up specialized customer  sup- 
port  teams to assist in the  installation, local adaptation and 
tuning of the system. 

f) Release  interval: Fig. 6(g) indicates two possible models 
for  the  prediction of the most likely (desirable.!) release inter- 
val for R20 and R21. Linear extrapolation suggests a release 
period of under  one  year  for  each of the  two releases. If this 
is valid, the  apparent desire for a release after  the 18 months 
is of itself unlikely to  prove a source of problems. On the 
basis of evidence not  reproduced  here, however, the  exponen- 
tial  extrapolation is likely to be  more realistic and  this yields 
an R20 release interval  forecast of about 15 months and an 
R21 interval of some 3 years. 

g )  Recommendation-Summary: On the basis of the avail- 
able data we have concluded that 

1) to proceed with  the plan  as it  stands is courting delivery 

2) a clean-up release appears  due in any case; 
3) failure to provide it will leave ‘a weak base for  the  next 

and  quality  problems  for R20; 
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TABLE IV 
MODIFIED RELEASE 20 CONTENT 

TABLE V 
MODIFIED RELEASE 20 STATISTICS (FROM TABLE III) 

IN ORDER OF PRIORITY 

ClaSS Reason  Items 

Fault Repair 
Hardware Support 
Performance 

Improvement 

Clean-up  of base 1, 2. 
Revenue  Producing 6, 9. 
Install-but do not 7, 10. 

announce. Will be 
available to counter- 
act ITS performance 
deterioration in R21’ 

ITS Related  Components  To  receive  early  user 3c, 5 ,  8. 
exposure 

release; at  the very least the  number of expected  faults 
(Table 111, item 2) is likely to prove an  underestimate; 

4)  the  absolute size of the ITS component  and  the related 
incremental system growth would represent  a major 
challenge even on a clean base; 

5 )  there are indications  that  the ITS aspect of the release 
design is incomplete; 

6) change rate  needs  for R20 are not likely to prove a 
source of problems; 

7) nor is the  demand  for  attainment of a next release in 
eighteen months. 

The following recommendations  follow: 

8) initiate  immediately an intensive and detailed  reexami- 
nation of the ITS design and its  interaction  with  the 
remainder of System X; 

9) from  the  integration records of R19 and by comparison 
with the records of earlier releases, make  quality and 
error  rate models  and obtain a  prognosis for R19 and 
an improved estimate  for R20 correction  activity; inte- 
gration and error  rate models have not been  considered 
in the present  paper but have been  extensively studied 
by the present author  and  by  others [85]; 

10) assess the business consequences of,  on  the  one  hand, a 
slippage of one  or  two years  in the release of ITS and  on 
the  other, a poor  quality,  poor  performance release with 
a slippage of,  say, some months  (due  to acceptable  work 
rate  but excessive growth); 

1 1 )  in the absence of positive indication of a potential  for 
major  deviations from previous dynamic characteristics 
or  the  existence of a  genuine business need that is more 
pressing than  the losses that could arise from a poor 
quality  product,  abandon  the present plan; 

12) instead redesign release 20 to yield R20‘; a  clean, well- 
structured, base on which to build an ITS release, R21‘; 

13) tentatively release intervals of 9 months  and 15 months 
are proposed for R20’ and R21’, respectively; 

14) R21’ should  be  a  restricted release for installation  in 
selected sites; 

15) it would be  followed after 1 year by  a general release 
R22’. 

h )  Recommendations-Details: Assuming that  the  further 
investigation as per  paragraphs 8 to 10 of Section V-B4g rein- 
forces the conclusions reached,  three releases would have to  be 
defined. We outline here  proposals for R20‘ and R21 ’. The 
third, R22‘ will be  a clean-up but  its  content  cannot be identi- 
fied in  detail  until a  feel for  the  performance  and general 

Running Running 
Item New  Mods. Total Changes  Total 

1  2 
2 0 
6 17 
9  12 
7  3 

10  2 
8  8 
5 57 
3c 58 

2 
2 

19 
31 
34 
36 
44 

101 
159 

382  382 
600  982 
141  1123 
92 1215 
32  1247 

159  1406 
82 1488 

519 2007 
522  2529 

quality of R21’ has  developed. The detailed analysis is left as 
an exercise to the reader. 

The  inherent problem  in the design of the ITS release is the 
fact that  the  component has  a size almost  twice the maximum 
recommended  incremental  growth. Moreover, with  the possi- 
ble exception of its  telecommunications  support (Table 111, 
item  3c),  none of the  component subsystems would receive 
usage exposure  in the absence of the  others. Thus  a clean ITS 
release cannot be achieved except  by releasing the  component 
in one fell swoop.  Similarly, dynamic storage  management 
(DSM) is exposed to user testing only when the ITS  facility 
is operational. We may, however, investigate whether the tele- 
communication facility (3c) will be usable in conjunction with 
the RJE facility,  item 5 .  If it is, there will be  some  advantage 
to be gained by releasing 3c  and 5 before  the remainder of ITS 
and DSM. 

Strictly  speaking, Fig. 6(c) suggests that R20’ should be a 
very low content release dedicated to system clean-up and re- 
structuring. But the six preceding releases were achieved with 
average change rates  and,  from  that  point of view, did not 
stress the process. Thus, if R20’ is also an average rate release, 
it should not cause problems, and  it would seem a  low risk 
strategy to include R20’ in all those  items as in Table IV, that 
will simplify the  subsequent  creation and integration of the 
excessively large ITS release. 

The  list, in priority  order, of the new proposal shows a maxi- 
mum incremental  growth (159) well under average. It is a 
matter of some judgment and  experience whether  it would be 
wiser to delay item 3c  with 58 new modules  and item 5 with 
57  to R21’ thereby achieving the very low content release 
mentioned above. With the  information before the reader it 
is not possible to resolve this  question since additional  infor- 
mation,  at  the very least answers to  the  questions raised in 
Section V-B4g, would be  required. However, the desire to 
minimize R21’ problems suggests the  adoption of the com- 
plete plan as in Tables IV and V. 

In assessing achievable release intervals for these releases, we 
base our  estimates  only  on  the module change count and 
change rate.  The  constraints  on  the present  example do  not 
permit  the full analysis which  would  consider  models based 
on Fig. 6(g),  and  take  into  account  additional  data. At 10 
m/d change rate,  implementation of the  complete plan appears 
to require 253 days, say 9 months, whereas exclusion of 3c 
and 5 would reduce  the predicted time required to some seven 
months. This recommendation  cannot be taken  further with- 
out more information of both a  technical and a  marketing 
nature,  and  an  examination of other interval models. But 
the need for a clean base for R21’ suggests adoption of the 
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maximum  acceptable release interval.  R21’ will now include, 
at  the very least, ITS (except 3c) and DSM. This involves at 
least 920 new modules, an excessive growth  that  cannot use- 
fully be further split  between two  or  more releases. Assum- 
ing a change fraction of, say,  70 percent  (Fig. 6(d)), of a sys- 
tem  that is expected to contain  5911 modules, we estimate 
a total of 4200 changed modules in the release, many with 
multiple changes. Since there will now have been seven near 
average change-rate releases, it seems possible to plan for a 
change rate of 15-20 m/d, yielding  a potential release interval 
of under 9 months.  That is, it would appear  that,  by  adopting 
the new strategy, all of the original changes and  additions 
could  be achieved in  about  the same time,  but  much more 
reliably. More complete analysis, however, based on addi- 
tional  data,  other models and taking into  account  the special 
nature of the releases might well lead to a recommendation to 
increase the combined release interval to,  say,  two years. 

A further qualification  must also be added. As proposed  in 
the revised plan,  R21‘ will still  be  a release with excessive in- 
cremental  growth and is therefore likely to yield significant 
problems. The  additional  fact  that  the evidence indicates in- 
complete planning,  reinforces concern  and  expectation of 
trouble  ahead.  It is therefore also recommended  that R21’  be 
announced as an experimental release for  exposure to usage by 
selected users in  a  variety of environments. It would be fol- 
lowed after  an interval of perhaps  one year by an R22’, a 
cleaned up  system, suitable for  further evolution. 

i )  Final comments: The preceding  section has presented  a 
critique of a plan, and outlined  an alternative which is believed 
technically more  sound.  The case considered is based on a  real 
situation,  though in the absence of complete  information de- 
tails have had to be invented. But the details  are not  important 
since the objective  has  been to demonstrate a methodology. 
Software planning can and should  be based on process  and 
system measures and  models, obtained  and maintained  as  a 
continuing process activity. Plans must  be  related to dynamic 
characteristics of the process and  system, and to  the  statistics 
of change. By rooting  the planning process in facts,  figures 
and models, alternatives can be quantitatively  compared, 
decisions can be related to reality  and risks can be evaluated. 
Software planning must no longer  be based solely on  apparent 
business needs and  market  considerations;  on management’s 
local perspective and  intuition. 

V I .  CONCLUSION 
This  paper  rationalizes the widely held view, first  expressed 

in Garmisch [82],  that  there is an urgent need for a discipline 
of software engineering. This  should  facilitate the cost- 
effective  planning, design, construction,  and  maintenance of 
effective  programs that provide, and  then  continue  to provide, 
valid solutions to  stated (possibly changing) problems, or 
satisfactory  implementations of (possibly changing) computer 
applications. 

Following  a brief discussion of the  nature of computer usage 
and of the programs, the paper introduced  the new SPE classi- 
fication  that addresses the essential  evolutionary nature  of 
various types of programs  and  establishes the existence of a 
determining  specification as the criterion for  nonevolution. 

In the  subsequent discussion of the  concepts, significance 
and phases of the program  life cycle, no details of lifecycle 
planning  and  management  models, as such, have been in- 
cluded. In particular, we have not here discussed cost, re- 

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980 

source,  and reliability models  [83]-[85]. Approaches to 
process  modeling based on  continuous models [73],  [75] have 
also not been included,  nor has the vital topic of software 
complexity 1861-[891. 

Recognizing the intrinsic nature of program  change, the 
laws that  appear to govern the  dynamics of the  evolution pro- 
cess were introduced. Among their  other  implications,  the 
laws indicate  that  project plans  must be related to dynamic 
characteristics of the process and  system,  and to the  statistics 
of change. By rooting  the planning process in facts, figures, 
and models,  alternatives can be  quantitatively  compared, 
decisions  can  be  related to reality and risks can be evaluated. 
Software planning  must no longer be based solely on  appar- 
ent business needs and market  considerations;  on manage- 
ment’s local  perspective and  intuition.  To  illustrate  this, we 
have included  a brief example of the application of evolution 
dynamics  models to release planning. 

Many  of the  concepts and techniques presented  in this 
paper could  find wide applications  outside  the specific area 
of software systems,  in other industries, and to social and 
economic systems. Unfortunately  that  theme  cannot be 
pursued  here. 
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