
Greedy Algorithms

Adnan Aziz

Based on CLRS, Ch 16.

Algorithms for optimization usually go through a sequence of steps with choices at each step.

In DP all/some choices are explored. In the greedy algorithms, only once choice is made, one

that looks best. This approach is not always optimum, but in some special cases it works.

Example of the greedy method: Activity Selection Problem

S = {a1, a2, . . . , an} activities which use a single shared resource (lecture hall, CPU, network

connection, etc.).

Activity ai has a start time si and finish time fi, 0 ≤ si < fi < ∞.

If selected, ai takes places in interval [si, fi).

Activities ai and aj are compatible if [si, fi) ∩ [sj, fj) = ∅.

The Activity Selection Problem (ASP) is to find a maximum-sized subset of S in which all

activities are compatible.

For example, if S = {(1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)}

then {a3, a9, a11}, {a1, a4, a8, a11}, and {a2, a4, a9, a11} are compatible.

DP springs to mind—if we select ak, find an optimum ACS for {ai | fi ≤ sk}, and for

{aj | fk ≤ sj}.

Notation: Let Sij = {ak ∈ S | fi ≤ sk and fk ≤ sj}, i.e., Sij is the set of activities that start

after ai finishes and finish before aj start.

1

Introduce dummy activities a0 and an+1 with f0 = 0 and sn+1 = ∞.

Let c[i, j] be the number of activities in max-sized subset of mutually compatible activities

in Sij.

Assume a1, . . . , an are sorted by finish time, so c[i, j] = 0 for i ≥ j.

Now if ak is selected, c[i, j] = c[i, k] + c[k, j] + 1 (assumption is that i < k < j). So the

recursion is

c[i, j] = 0 if Sij = ∅

= max
i<k<j,ak∈Sij

{c[i, k] + c[k, j] + 1} if Sij 6= ∅

Straightforward to solve in time Θ(n3): Θ(n2) entries, each takes Θ(n) time to fill in.

Can do better. Use the following:

Theorem 1 If am is activity in Sij with minimum finish time, i.e., fm = min{fk | ak ∈ Sij},

then

1. am is used in some maximum sized subset of mutually compatible activities in Sij, and

2. Sim is empty.

Claim 2: holds because we chose am to have smallest finish time.

Claim 1: consider any max sized subset Aij of mutually compatible activities and swap the

element with smallest finishing time in Aij with am. The set is still compatible, and of the

same size.

Results in the following algorithm: choose activity with the smallest finish time, recurse on

remaining compatible activities.

Takes Θ(n) time if the ais are sorted in order of finish time; otherwise Θ(n · lg n).

2

Comments

Greedy does not always result in optimum solution: choosing the action with start time/least

duration/least overlap with other actions would not have lead to optimum solution to ASP.

0-1 knapsack problem

n items, each with value vi and weight wi. Can store no more than W pounds in the

knapsack. What items to take?

fractional knapsack problem: n items, each with value vi and weight wi. Can store no more

than W pounds in the knapsack; fractional quantities are acceptable. What items to take?

Both versions have optimum substructure property:

• 0-1: If we take item j, remaining solution is optimum for W − wj weight and items

{1, . . . , j − 1, j + 1, . . . , n}.

• fraction: Take w of j ⇒ take optimum for W −w from remaining n−1 items + wj −w

pounds of j.

However the first cannot be solved using a greedy approach: consider 3 items with values

60, 100, 120 respectively, and weights 10, 20, 30, respectively. Knapsack capacity is 50.

0-1 Greedy approach would select Item 1 (highest value-to-weight ratio); then regardless of

whether Item 2 or 3 was chosen, the resulting solution would be inferior to choosing

just Items 2 and 3.

Fraction Greedy approach would select Item 1, then Item 2, then 20 pounds of Item 3; this

is optimum.

3

Huffman codes

Huffman coding: data compression. Exploits the fact that some characters are more common

than others.

Example—data consists of 100,000 character file. Suppose the only characters are a, b, c, d, e, f ,

and that the number of occurrences of each is given in the table below.

char a b c d e f

count (1000s) 45 13 12 16 9 5

fixed length code 000 001 010 011 100 101

variable length code 0 101 100 111 1101 1100

The fixed length coding requires 300, 000 bits; the variable length coding uses 224,000 bits.

Can avoid ambiguity in decoding by requiring that no codeword is a prefix of another code

work.

Given codebook, it’s trivial to encode. For decoding, note there’s only one way to recover a

code word from the start of the file; get this word, and apply the process to the remainder

of the file.

E.g., 001011101 decodes to 0 · 0 · 101 · 1101 = aabe.

Can represent codebook by a binary tree whose leaves are given characters. Corresponding

codeword is given by path from root to leaf.

Note that the binary tree is not a search tree.

Let C be a set of n chars, each with frequency f(ci) in some file. We want to construct a

codebook (≡ tree) of C that minimizes the number of bits needed to represent the file.

Fact: the optimum tree for a code cannot contain a nonleaf node with less than two children.

(Otherwise could splice it out, get a shorter code word.)

Given T , the number of bits needed is
∑

c∈C f(c) · dT (c), where f(c) is the frequency of c,

and dT (c) is the depth of c’s leaf in T .

Here’s an algorithm for creating the codebook.

4

a:45

b:13c:12

d:10

e:9f:5

100

55

25
30

14

a:45 e:9b:13 c:12 d:10 f:5

0

0 1

1

1

0

0 1 10 0
58

86

100

28 14

14

Fixed length scheme Variable length scheme

Figure 1: Tree representation of coding schemes

• start with |c | leaves, perform |c | −1 merging operations to create tree

Use a minheap Q, keyed on f to merge the two least frequent objects; result is a new object

with frequency that’s the sum of the frequencies of the merged objects.

Runtime is O(n lg n): n − 1 merges, each takes O(lg n) time (selection from minheap).

Apply to example yields to the variable length coding in the tree above.

Why does this algorithm work? Can take any optimum tree, replace it by one in which the

two deepest siblings are the lowest frequency without increasing cost.

In example below, let x and y have the lowest frequency. WLOG, assume f(a) ≤ f(b), and

f(x) ≤ f(y). Then swapping x with a cannot increase cost, neither can swapping b and y.

Question: in what sense is Huffman greedy?

Cost of a tree is equal to the sum of the costs of its merges—Huffman picks the least cost

merge at each step.

5

b
x y

a

y

x

ba x b

a

y

T’T T’’

Figure 2: Huffman correctness argument

6

