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A 690-mW 1-Gb/s 1024-b, Rate-1/2 Low-Density
Parity-Check Code Decoder

Andrew J. Blanksby and Chris J. Howland

Abstract—A 1024-b, rate-1/2, soft decision low-density parity-
check (LDPC) code decoder has been implemented that matches
the coding gain of equivalent turbo codes. The decoder features
a parallel architecture that supports a maximum throughput of 1
Gb/s while performing 64 decoder iterations. The parallel archi-
tecture enables rapid convergence in the decoding algorithm to be
translated into low decoder switching activity resulting in a power
dissipation of only 690 mW from a 1.5-V supply.

Index Terms—CMOS digital integrated circuits, decoding, error
correction coding, parallel architectures.

I. INTRODUCTION

ERROR correcting codes are used to increase the band-
width and power efficiency of communications systems

[1]. The invention of turbo codes and turbo product codes has
moved the limit of achievable coding gain much closer to the
Shannon limit for low and high code rates,1 respectively [2],
[3]. However, the iterative nature of the decoding algorithms for
turbo codes and turbo product codes present significant imple-
mentation challenges. Each pass through the data block to per-
form a decoder iteration requires the fetching, computation, and
storage of large amounts of state information. Performing mul-
tiple iterations to achieve high coding gain reduces throughput
and increases power dissipation [4].

The recent interest in iterative decoding algorithms has led
to the rediscovery of low-density parity-check (LDPC) codes.
LDPC codes were invented by Gallager in 1962 but were not
pursued due to implementation complexity [5], [6]. It has been
shown that LDPC codes are asymptotically superior to turbo
codes with respect to coding gain [7]. The most powerful codes
currently known are 1 million bit and 10 million bit, rate-1/2,
LDPC codes, achieving a capacity which is only 0.13 dB and
0.04 dB, respectively, from the Shannon limit for a bit error rate
(BER) probability of 10 [7], [8]. However, unlike turbo and
turbo product codes, it is possible to decode LDPC codes using
a block-parallel algorithm rather than a block-serial algorithm.

In this paper, a parallel architecture for decoding LDPC
codes is presented that achieves excellent coding gain while
delivering both extremely high throughput and very low
power dissipation. It is the first published implementation of
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1The rate of a code is defined as the ratio of the information bits to the sum of
the information and parity bits. A low-rate code has a large redundancy overhead
while a high-rate code has a small overhead.

Fig. 1. General structure of an LDPC matrixHHH .

an LDPC code decoder. The parallel architecture is demon-
strated through the implementation of a 1024-b, rate-1/2, soft
decision LDPC decoder that achieves a coded throughput of
1 Gb/s. In Section II, LDPC codes and the message passing
decoding algorithm are reviewed. In Section III, the design and
performance of a 1024-b, rate-1/2 LDPC code are described.
Section IV discusses two different families of LDPC decoder
architecture and in Section V the detailed architecture of a par-
allel 1024-b, rate-1/2, soft decision LDPC decoder is presented.
In Sections VI and VII, the implementation and measured
performance of this decoder are discussed, respectively.

II. L OW-DENSITY PARITY CHECK CODES

A. Matrix Representation of LDPC Codes

LDPC codes are linear block codes and thus the set of all
codewords, , spans the null space of a parity check ma-
trix

(1)

The parity check matrix for LDPC codes is a sparse binary
matrix. The general structure of is shown in Fig. 1. Each
row of corresponds to a parity check and a set element
indicates that data symbolparticipates in parity check. In a
block of bits or symbols, there are redundant parity symbols
and the code rate is given by

(2)

The set row and column elements of are chosen to satisfy
a desired row and column weight profile, where the row and
column weights are defined as the number of set elements in
a given row and column, respectively [7]. In aregular LDPC
code, all rows are of uniform weight, as are all columns. If the
row and columns are not of uniform weight the LDPC code is
said to beirregular.
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Fig. 2. Bipartite graph representation of an LDPC code. A short cycle of length
4 has been highlighted.

B. Graph Representation of LDPC Codes

LDPC codes can also be represented using a bipartite graph
[9], where one set of nodes represents the parity check con-
straints and the other set represents the data symbols or variables
as illustrated in Fig. 2. The parity check matrix is the incidence
matrix of the graph where a variable node, corresponding to
column in , is connected to check node, corresponding to
row in , if the entry in is set, i.e., non zero.

The algorithm used for decoding LDPC codes is known as
the message passing algorithm. For good decoding performance
with this algorithm, it is important that the length ofcyclesin the
graph representation of the LDPC code are as long as possible
[7], [9]–[11]. Short cycles, such as the length-4 cycle illustrated
in Fig. 2, degrade the performance of the message passing algo-
rithm.

C. The Message Passing Algorithm

The message passing algorithm is an iterative algorithm for
decoding LDPC codes [5]. Both hard decision and soft decision
forms of the algorithm have been developed. In hard decision
decoding, each received symbol is thresholded to yield a single
received bit as input to the decoding algorithm, and the mes-
sages passed between the variable and check nodes each consist
of a single bit only. In soft decision decoding, multiple bits are
used to represent each received symbol and the messages passed
between the variable and check nodes. Soft decision decoding
achieves substantially better coding performance because the
confidence with which each decoder decision is made is for-
warded to subsequent decoder iterations. The soft decision form
of the message passing algorithm will now be described.

Soft Decision Decoding Algorithm (or Belief Propagation Al-
gorithm) [5]–[7]:

1) Initialize all variable nodes and their outgoing variable
messages to the value of the corresponding received
bit represented as a log-likelihood ratio of the received
symbol defined as

(3)

2) Propagate the variable messages from the variable nodes
to the check nodes along the edges of the graph.

3) Perform a parity check (XOR) on the sign bits of the in-
coming variable messages at the check nodes to form the
parity check result for the row. Form the sign of each out-
going check message for each edge of the graph as the
XOR of the sign of the incoming variable message corre-
sponding to each edge and the row parity check result.

In addition, compute an intermediate row parity relia-
bility function defined as

(4)

However, this computation and the subsequent calcula-
tion of the outgoing check message reliabilities are sim-
plified by operating in the logarithmic domain where mul-
tiplications become additions and divisions become sub-
tractions. Hence, (4) yields

(5)

where is the log of the parity reliability for row
and is the reliability of the message sent to check node

from variable node .
The log of the intermediate row parity reliability func-

tion is then used to find all of the outgoing check
message reliabilities according to

(6)

where is the reliability of the check message from
check node to variable node .

4) Pass the check messages from the check nodes back to the
variable nodes along the edges of the graph.

5) At the variable nodes, update estimates of the decoded bit
using a summation of the log-likelihood of the received
bit and all of the check message log-likelihoods. The up-
date can be considered as the check messages voting for
the decoded bits value where the votes are weighted by
their associated reliability. The decoded bit is taken to be
the sign of the summation. Outgoing variable messages
for the next decoding iteration are then formed using the
same summation. However, each edge is updated without
using the incoming message on the corresponding graph
edge. This is easily implemented by subtracting the con-
tribution of each edge from the group sum.

6) Repeat steps 2)–5) until a termination condition is met.
Possible iteration termination conditions include the fol-
lowing.

• The estimated decoded blocksatisfies (1).
• The current messages passed to the parity check

nodes satisfy all of the parity checks. This does not
guarantee that (1) is satisfied but is almost sufficient
and is simple to test.

• Stop decoding after a fixed number of iterations.
The message passing algorithm is optimal as long as the algo-
rithm is propagating decisions from uncorrelated sources [5],
[9]. This condition is true while the number of decoder itera-
tions is less than half of the minimum cycle length of the graph
representation of the LDPC code.
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III. LDPC CODE DESIGN AND PERFORMANCE

A. LDPC Code Design

To explore the coding performance and implementation is-
sues of LDPC codes, an LDPC code with a block size of 1024
b and a code rate of 1/2 was designed. This block size and code
rate correspond to one of the Turbo codes proposed for third-
generation (3G) wireless systems [12]. The 1024-b, rate-1/2,
soft decision LDPC code was designed based on an irregular
graph with an average column weight of 3.25 and an average
row weight of 6.5. This weight profile was found through exten-
sive simulation and yielded 3328 graph edges or set elements in

. The column weights used were 3, 6, 7, and 8, and the row
weights used were 256 weight 6 and 256 weight 7 rows. Based
on the weight profile, a systematic code graph was constructed
using an algorithm developed to maximize cycle lengths sub-
ject to the constraints of the block size and the column and row
weight profile chosen. The effect of short cycles was further re-
duced by ensuring that they occur in distinct groups of received
bits. This approach was used in preference to random permu-
tation code construction techniques because the block size of
1024 b is relatively small [5], [7], [10].

Through software simulation, it was found that 64 decoder
iterations were sufficient for good coding performance. It was
also found that the decoder messages could be represented using
only 4 b, one sign bit to represent the parity and three magnitude
bits to represent the reliability, without significant coding per-
formance penalty. The loss of coding gain with the fixed-point
decoder performing 64 iterations is only 0.2 dB when compared
to the decoder implemented using floating-point arithmetic and
performing 1000 iterations.

B. LDPC Coding Performance Comparison

Although the coding gain of a rate-1/2 LDPC code with a
block size of 1024 b is theoretically inferior to that of compa-
rable turbo codes [7], implementation restrictions on the number
of turbo code decoder iterations may not enable the realiza-
tion of this difference. Most implementations of turbo codes
to date have been of the lower complexity soft-output Viterbi
algorithm (SOVA) performing only a small number of itera-
tions [4]. In Fig. 3 the coding gain of the LPDC decoder ex-
changing 4-b messages is compared to the 1024-b, rate-1/2 turbo
code in the 3G proposal decoding using the SOVA and max-
imum a posteriori (MAP) decoding algorithms implemented
with full floating point precision [13], [14]. The performance of
the LDPC code in Fig. 3 was obtained using a bit accurate soft-
ware model of the parallel decoder implementation described in
Section V. The coding performance of the LDPC code is compa-
rable to that of the turbo code when decoded with six iterations
of a MAP decoder for packet error rates (PERs) less than 1%.

IV. A RCHITECTURES FORLDPC CODE DECODERS

The main challenge when implementing the message passing
algorithm for decoding LDPC codes is managing the passing
of the messages. As the functionality of both the check and
variable nodes is very simple, their respective realizations are
straightforward and involve only a small number of gates. The

Fig. 3. Bit accurate simulation of the coding performance of the 1024-b,
rate-1/2 LDPC code with 4-b messages and 64 decoder iterations. Also shown
is a 3G wireless turbo code simulated using the MAP and SOVA decoding
algorithms with full floating-point precision.

issue requiring most consideration is the implementation of the
bandwidth required for passing messages between the func-
tional nodes. The message bandwidth measured in
b/s of an LDPC code with average column weight can be
computed according to

(7)

where is the number of bits used to represent each message,
is the number of decoder iterations,is the target coded

throughput in b/s, and the factor of 2 is to count both variable and
check messages. The realization of the message passing band-
width results in very different and difficult challenges depending
on whether a hardware sharing or parallel decoder architecture
is pursued.

A. Hardware-Sharing Decoder Architecture

A hardware-sharing LDPC decoder architecture consists of a
small number of units implementing either the check or variable
node functionality and a memory fabric to store the messages
and realize the graph connectivity. This approach has been pro-
posed in [15] and a generalized form of the hardware-sharing
architecture is illustrated in Fig. 4. The advantages of the hard-
ware-sharing architecture are that it minimizes the area of the
decoder and can be readily configured to support multiple block
sizes and code rates. However, the throughput of the hardware-
sharing architecture is limited by the need for the functional
units to be reused and the memory fabric accessed multiple
times to perform each decoder iteration. For example, using (7)
it is found that to decode the 1024-b, rate-1/2 LDPC code intro-
duced in Section III with 64 iterations using 4-b messages and
achieve a coded throughput of 1 Mb/s requires a memory fabric
with a bandwidth of 1.7 Gb/s. While it is possible to achieve
this bandwidth with a single memory, higher throughputs are
more problematic. For example, to achieve a coded throughput
of 1 Gb/s requires 1.7 Tb/s of memory bandwidth which cannot
be realized using a single memory. Using multiple memories to
achieve the required memory bandwidth is difficult because the
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Fig. 4. Hardware-sharing LDPC decoder architecture.

essentially random or unstructured nature of the LPDC graph
resists a memory architecture that allows both the variable node
and check node messages to be addressed efficiently. Enforcing
structure in the code graph to simplify the memory architec-
ture typically introduces short cycles in the graph and reduces
coding gain. High memory bandwidth requirements are also
likely to translate into significant power dissipation. Another
major issue with the hardware-sharing decoder architecture is
the complexity of the control logic required for the represen-
tation of the graph connectivity and the corresponding address
generation needed for fetching and storing the messages. The
hardware sharing decoder architecture seems most suited for
low-throughput applications where area is the major concern.

B. Parallel Decoder Architecture

The message passing algorithm maps extremely well to a par-
allel decoder architecture in which the graph (see Fig. 2) is di-
rectly instantiated in hardware. By this we mean that each of
the variable and check nodes are realized once in hardware and
routed together as defined by the LDPC code graph. To perform
each decoder iteration, the variable and check node functional
units are used once and messages are exchanged between them
along the routed message wires. The graph representation of an
LDPC code shows that the computational dependencies for any
node depend only on nodes of the opposing type. This allows all
variable nodes or all check nodes to be updated in a block-par-
allel manner enabling a large number of decoder iterations to be
performed during a block period as well as allowing very high
throughput. This is in stark contrast to the block-serial trellis
dependencies inherent in turbo decoding. Furthermore, it can
be shown that as the message passing algorithm iterates the per-
centage of messages changing rapidly converges to a very small
value that is determined by the input SNR ( ). This is il-
lustrated in Fig. 5 for the 1024-b, rate-1/2 LDPC code designed
in Section III.

While the parallel decoder architecture is necessarily larger
than that of the hardware sharing architecture, the activity factor
for the parallel architecture is very small, resulting in extremely
low power dissipation. Very little control logic is needed for
the parallel architecture when compared to the hardware-
sharing architecture because the LDPC code graph is directly
instantiated by the interconnection of the functional units.
Higher throughput with a parallel decoder can be achieved by
implementing a code with a larger block size and maintaining
the same clock frequency. To increase the throughput in a
hardware-sharing decoder, it is necessary to run the decoder at

Fig. 5. Switching activity of message bits in a 1024-b, rate-1/2, soft decision
LDPC decoder with 4-b messages.

a higher clock frequency, or in the case of turbo decoding to
develop sliding window techniques to address the block-serial
dependencies [16].

The main challenge when implementing a parallel decoder
architecture for LDPC codes is the interconnection of the func-
tional units at the top level. For an LDPC code to provide strong
coding performance, the check nodes must necessarily connect
to variable nodes distributed across a large fraction of the data
block length. This results in a large number of long routes at
the top level. However, by careful management of the physical
design process, it is possible to solve routing congestion and
timing closure problems.

The major drawbacks with the parallel decoder architecture
are the relatively large area and the inability to support multiple
block sizes and code rates on the same core. However, for appli-
cations that require high throughput and low power dissipation
and can tolerate a fixed code format and large area, the parallel
architecture is very suitable.

V. ARCHITECTURE OF APARALLEL LDPC DECODER

To explore the performance and implementation issues of
the parallel decoder architecture introduced in Section IV, a
proof-of-concept device was designed and fabricated based on
the 1024-b, rate-1 /2 LDPC code described in Section III. The
number of variable nodes is set by the block size, in this case
1024, while the number of check nodes is determined by the
code rate and the block size according to (2), in this case 512 for
a rate-1/2 code. The interconnection of the variable and check
nodes is determined by the LDPC code itself where for each
edge in the code graph physical nets must be instantiated to carry
messages between the variable and check nodes. The decoder
architecture also requires a method to load new data packets into
the decoder and write out packets once they have been decoded.
The datapath, check node, variable node, and data input/output
architecture of the parallel LDPC decoder are described in the
following sections.

A. Decoder Datapath

The datapath of the parallel decoder is illustrated in Fig. 6
where for the purpose of clarity only one variable node and one
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Fig. 6. Datapath architecture for the parallel decoder.

check node have been shown. The messages from variable nodes
to check nodes and the messages returning from the check nodes
to the variable nodes are carried on distinct sets of wires. On first
inspection, this doubles the number of message wires that need
to be routed when compared to using a single set of wires in a
time division multiplexing fashion. However, the control signal
distribution, bidirectional buffers, and logic overhead associated
with reusing a single set of wires negate the potential routing ad-
vantage of using a single set of wires. The total number of mes-
sage wires required to connect between the variable and check
nodes is calculated as

graph edges b/message paths

message wires (8)

To ensure correct synchronous execution of the message passing
algorithm, it is necessary to insert registers into the datapath
to align the messages corresponding to each decoder iteration.
By associating the registers with the variable nodes as shown
in Fig. 6, the check nodes become purely combinatorial logic
blocks which simplifies the floor planning of the overall de-
coder.

B. Check Node Architecture

Each check node performs a parity check across all vari-
ables in a row of . As shown in Fig. 7(a), the row parity is
XOR-ed with each check node input to calculate the value that all
other variables in the group imply each individual variable node
should take. Along with the parity determination, an implied re-
liability of the parity in the log-likelihood domain is computed.
The reliability update is performed in the log domain according
to (5) and (6) so that it is multiplication- and division-free. At
the output of the check node, each result is converted back into
the log-likelihood domain. This arithmetic conversion is sim-
ilar to the log-MAP implementation of MAP decoders [14].
The architecture of the reliability update is shown in Fig. 7(b)
where the hyperbolic trigonometric functions required by (5)
and (6) have been merged with the logarithmic and exponen-
tiation functions. As the reliability messages have only a 3-b
word size, the implementation of these mathematical functions

(a)

(b)

Fig. 7. Architecture for check node withk-inputs. (a) Parity update. (b)
Reliability update.

is straightforward. The approximate logarithm at the inputs of
the check node is realized using 10 combinatorial logic gates.
The exponentiation at each of the outputs is approximated as
a leading zeros count requiring 11 logic gates. A full adder
compressor tree and ripple-carry adder were used to form the
row reliability sum. All of the differences were computed using
ripple-carry adders.

C. Variable Node Architecture

The architecture of the variable nodes is shown in Fig. 8.
The variable nodes contain all of the registers in the decoder,
including the decoder message registers and the shift regis-
ters that will be discussed in more detail in Section V-D. At
the packet start signal, the decoding of a new packet is com-
menced and the previous packets results are loaded into the
output shift registers. For the first decoding iteration, the mes-
sages sent to the check nodes are the sign-magnitude represen-
tations of the log-likelihood of the received value, since for a
Gaussian channel the received values are the log-likelihoods up
to a scaling factor. All messages passed between the variable
and check nodes are represented as a sign bit and three magni-
tude bits. For subsequent iterations, each message entering the
variable node together with the received value are converted to
2’s complement and summed. The sign of the sum represents
the current estimate of the decoded bit at each variable node.
Outgoing messages are then formed as the group sum minus
the input message of each individual edge. This is the value all
other connected checks and the received value imply that each
check should use for the next parity update. All values are con-
verted back to a sign-magnitude representation and registered,
to be used by the check nodes connected to the variable node
in the next decoder iteration. In the case that the group sum is
zero or the outgoing messages sum is zero, the sign bit used is
that of the received bit, as this is the most probable value for
the decoded bit. Note that for clarity the logic that performs the
zero testing is not shown in Fig. 8.

D. Data Input/Output

The parallel decoder can be considered as a three-block
pipeline. While one block is being iteratively decoded, the next
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Fig. 8. Architecture for variable node withj-inputs.

Fig. 9. Architecture of a variable node shift register group.

block is loaded into the decoder, and the previous block is
read-out from the decoder. Data is loaded and unloaded from
the decoder using parallel shift registers, with a length of
samples, such that

(9)

The number of decoder iterations performed on all blocks is
set to . The columns of , and hence the variable nodes, are
divided into groups, each separated byreceived symbols
as shown in Fig. 9. The decoder was implemented with
and , thereby performing 64 decoder iterations for every
packet. Using these parameters, a clock frequency of 64 MHz is
required to achieve a coded throughput of 1 Gb/s.

E. Packet Error Detection

A packet error signal is derived by performing an OR opera-
tion of all row parities from the last decoder iteration, approxi-
mating a test of (1). The satisfaction of all parity checks in the
final iteration is not equivalent to testing the parity using the
final decoded bits but the difference is not significant.

VI. I MPLEMENTATION OF A PARALLEL LDPC DECODER

The implementation of the decoder presented many unique
challenges because the architectural characteristics of the de-
coder are so dissimilar to those of a typical ASIC. This required
the development of special software tools to augment industry
standard synthesis and place-and-route CAD tools. The floor
planning and routing of the decoder are discussed in the fol-
lowing sections.

A. Floor Planning

The decoder was designed in a 0.16-m 1.5-V CMOS process
with five levels of metal. The variable and check node netlists

Fig. 10. Device microphotograph and floorplan.

were synthesized from a VHDL description. To simplify the
physical design of the decoder, careful use of hierarchy was
employed. As discussed in Section V, the 1024 variable nodes
were grouped into 16 variable node shift register groups, de-
notedvgrp0to vgrp15, each containing 64 variable nodes. Each
of the shift register groups was individually placed and routed
to create a macro. Macros were also created for the weight 6
and weight 7 check nodes. To aid the routing of the top-level
message nets, the variable node shift register group and check
node macros were routed using only metals 1, 2, and 3, leaving
metals 4 and 5 free for top-level message nets, clock, and power
and ground distribution. The total gate count of the decoder was
1750K gates with the variable node and shift register logic con-
tributing 986K gates and the check node logic requiring 686K
gates.

As the check nodes do not contain any clocked elements, they
were placed in the center of the chip and a clock ring containing
clock buffers was placed around the periphery of the chip to
distribute the clock and control signals to the variable node
shift register groups. The floor plan of the decoder is shown
superimposed on the device microphotograph in Fig. 10. The
device dimensions are 7.5 mm7.0 mm giving a total area of
52.5 mm .

The floor planning and placement of the check nodes was
critical to reducing the level of routing congestion. Each of the
check nodes is connected to either six or seven variable nodes
located in any of the 16 variable node shift register groupsvgrp0
to vgrp15. To minimize the length of the 26 624 message nets
at the top level, the placement of each of the 512 check nodes
was optimized using a software tool developed for that purpose.
Even after optimized placement, the average length of these top
level nets is 3 mm as shown in Fig. 11. As there are a large
number of very long message nets, the power dissipation of the
decoder is largely determined by the switching activity of these
wires.
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Fig. 11. Histograph of top level net lengths.

B. Routing

The size of the decoder was determined by routing conges-
tion and not by the gate count. The key area of routing con-
gestion was across the check node array in the center of the
device. Given that the average message net length was 3 mm,
buffer insertion was needed on almost every net to satisfy rise
and fall time constraints. A software tool was developed to in-
sert and place buffers for each net in such a way as to guide the
router around areas of known routing congestion and enforce
Manhattan geometry. As well as reducing routing congestion,
the promotion of a Manhattan routing geometry had the added
advantage of minimizing the number of vias on each net, re-
sulting in substantial reduction in net resistance and hence net
delay. The styles of buffer placement that were deemed “bad”
and “good” for this approach are illustrated in Fig. 12(a) and
(b), respectively.

With the combination of an optimized floor plan and the
buffer placement technique to reduce routing congestion,
timing closure for the decoder at the target clock frequency of
64 MHz was achieved under worst-case slow operating con-
ditions. The utilization of the decoder was 50%. Significantly
higher utilization could have been achieved with the availability
of more levels of metal for signal routing.

VII. M EASUREMENTRESULTS

The fabricated decoder was tested and was found to be fully
functional at 64 MHz corresponding to a throughput of 1 Gb/s.
The device characteristics are summarized in Table I.

A. Power Dissipation

The power dissipation of the decoder as a function of clock
frequency and throughput was measured and is shown in
Fig. 13 for input SNR values of 0 and 3 dB. For low SNRs,
such as 0 dB, the decoder is not able to correct any packets and
hence the switching activity of the message nets is relatively
high (see Fig. 5). For higher values of SNR, such as 3 dB, when
the decoder is functioning correctly, the switching activity on
the message nets is substantially lower as the decoder is able
to quickly correct packets and the message nets stop changing

(a) (b)

Fig. 12. Buffer placement strategy to reduce routing congestion. (a) “Bad”
buffer placement. (b) “Good” buffer placement.

TABLE I
SUMMARY OF CHIP CHARACTERISTICS

state after a small number of decoder iterations. At high SNRs
and at low clock frequencies, it can be seen from Fig. 13 that
the minimum power dissipation of the decoder is set by device
leakage at around 4.5 mW. As the device contains around 7
million transistors, this corresponds to about 0.4 nA/device of
leakage current.

If normal operation is considered at an SNR of 3 dB, the
typical power dissipation of the decoder is 690 mW for a
1-Gb/s coded throughput. Lower power dissipation or higher
throughput for the decoder can be achieved by voltage scaling.
For operation below 1 Gb/s throughput, the supply voltage can
be reduced below 1.5 V to as low as 0.75 V for throughputs
of 10 Mb/s or less, with a corresponding saving in power
dissipation. By increasing the supply voltage to 2.25 V, it was
possible to run the decoder at 100 MHz to achieve a throughput
of 1.6 Gb/s.

Also shown in Fig. 13 is the power dissipation estimated from
the parasitics extracted from the decoder layout prior to fabrica-
tion. The switching activity factor of the message nets for this
calculation was taken from Fig. 5 for an SNR value of 3 dB. It
can be seen that the estimated power dissipation underestimates
the measured power dissipation by a factor of 3. The reason for
this discrepancy is that the message switching activity simula-
tion used to produce Fig. 5 did not consider the substantial skew
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Fig. 13. Measured power dissipation as a function of throughput.

of the messages from the variable nodes to each check node in-
troduced after implementation due to differences in net delay.
This skew introduces extra switching in the ripple-carry adders
used in the check nodes which results in additional switching
activity on the message nets from the check nodes back to the
variable nodes. For the cost of registers at the output of the check
nodes, this switching could be eliminated and the power dissi-
pation of the decoder could be reduced substantially.

The power dissipation of the decoder was also measured as
a function of SNR for a fixed clock frequency. This measure-
ment result for a clock frequency of 64 MHz, corresponding to
a throughput of 1 Gb/s, is shown in Fig. 14. The dependence of
the decoder power dissipation on SNR is clearly evident.

B. Performance Comparison

At 1 Gb/s, the throughput performance of the parallel LDPC
decoder is at least an order of magnitude greater that any pub-
lished iterative decoder implementation [4], [17]. The inordinate
throughput advantage that the parallel LDPC decoder achieves
through massive parallelism makes it challenging to perform a
fair performance comparison in terms of power dissipation and
silicon area to other iterative decoder implementations which
are exclusively based on low-throughput block-serial architec-
tures. Despite these difficulties, a crude comparison is attempted
as follows.

In Fig. 13, the performance of the parallel LDPC decoder is
compared to the work of Hong and Stark in which a turbo de-
coder that realizes the SOVA algorithm was implemented [4].
Their decoder performed three iterations on a 256-b block and
dissipated 170 mW while achieving an information throughput
of 1 Mb/s. Their device was simulated in a 0.6-m 3.3-V CMOS
process, so scaling linearly with process technology feature size
and quadratically with supply voltage gives an estimated power
dissipation of 9 mW in 0.16 -m 1.5-V CMOS. A linear scaling
of throughput with feature size and assuming a code rate of 1/2
gives a coded throughput of 7.5 Mb/s. This gives the parallel
LDPC decoder a 30% power dissipation performance advan-

Fig. 14. Measured power dissipation as a function of SNR.

tage over the turbo code decoder at a SNR of 3 dB. However,
at a throughput of 7.5 Mb/s, the power dissipation of the par-
allel LDPC decoder is significantly limited by leakage. It can
be expected that, for higher throughputs, the power dissipation
advantage of the parallel LDPC decoder over a turbo code de-
coder would be substantially higher.

In terms of silicon area, the turbo code decoder of Hong
and Stark uses 100 mmof silicon in 0.6- m CMOS. Scaling
quadratically with feature size yields an estimated area of
7 mm in 0.16- m CMOS. By contrast the area of the parallel
LDPC decoder is 52.5 mm. However, the area of the parallel
LDPC decoder is largely determined by routing congestion.
Using CMOS fabrication technologies with six or seven levels
of metal would result in a significant reduction in die size.
Furthermore, it would not be possible to significantly increase
the throughput performance of the turbo code decoder to match
that of the parallel LDPC decoder without a substantial area
penalty.

VIII. C ONCLUSION

A 1024-b, rate-1/2 low density parity check code (LDPC) de-
coder has been described that achieves a coded throughput of
1 Gb/s while dissipating 690 mW from a 1.5-V supply. This
performance is achieved by implementing a parallel architec-
ture that exploits the inherent parallelism and rapid convergence
of the message passing decoding algorithm. The coding per-
formance of the LDPC decoder is equivalent to that of com-
parable turbo codes, while the parallel architecture provides the
LDPC decoder with a substantial throughput and power dissipa-
tion performance advantage over turbo code decoders. The real-
ization of the parallel LDPC decoder architecture was achieved
by developing specific software tools to manage the floor plan-
ning and routing stages of the design process.

As iterative decoding schemes are considered for the next
generation of forward error correction devices, LDPC codes
will be chosen for many applications because of their excellent
coding performance, and the ability in their implementation to
elegantly tradeoff area for high throughput and lower power dis-
sipation as demonstrated by this work.
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