
'

&

$

%

Butterfly routing

Adnan Aziz

The University of Texas

References:

• Parallel Algorithms and Architectures. T. Leighton.
Morgan Kaufmann, 1992.

Interconnection Networks Butterfly routing 1 of 15

'

&

$

%

Butterfly formalized

r-dimensional butterfly — (r + 1) · 2r nodes, r · 2r+1 edges

• use 〈w, i〉 to represent a node at level i, and row w

• edge (〈w, i〉, 〈w′, i′〉) iff i = i′ + 1 and w and w′ are equal

or differ only in i′-th bit

– straightedges, and crossedges

Interconnection Networks Butterfly routing 2 of 15

'

&

$

%

Note there exists a unique path from any level 0 vertex to

any level r vertex

• path traverses each level exactly once, takes a cross
edge iff source and destination differ in the i+ 1 bit

Analogous to Boolean n-cube

• merge all nodes in a row, remove extra edge

r-dimensional butterfly contains 2 r − 1-dimensional
butterflys (remove level 0 or level r nodes to see this)

Interconnection Networks Butterfly routing 3 of 15

'

&

$

%

Wrapped butterfly

Take butterfly, and merge 〈w, 0〉 with 〈w, r〉 — left with r

levels

• alternately, on (r) · 2r nodes, (r − 1) · 2r+1 edges

• edge (〈w, i〉, 〈w′, i′〉) iff i = i′ + 1 mod r and either w = w′

or w and w′ differ in i-th bit

Theorem: Given N node wrapped butterfly with

≤ 1 packet/node, and permutation
π : {1, . . . , N} 7→ {1, . . . , N}, there is a way of routing packets
through the butterfly in ≤ 3 · lgN steps.
Proof idea — view as 2r × r array, use offline routing

algorithm for arrays

• use straight edges for Phases 1 and 3

Interconnection Networks Butterfly routing 4 of 15



'

&

$

%

• traverse butterfly to and from end ⇒ effectively a
Benes network, can perform Phase 2

No more than 3 pkts ever at any node — one which has

reached its destination, one traveling in each direction

Interconnection Networks Butterfly routing 5 of 15

'

&

$

%

Online routing

Previous algorithm needed global knowledge of packets and

their destinations

• not very practical (also, cannot parallize it)

Would prefer algorithms where local routing decisions are

made without precomputation and without global knowledge

• will restrict attention to 1-to-1 static end-to-end
routing

Consider performing “bit reversal” permutation routing with

greedy algorithm

• packet at input 〈u1, u2, . . . , ulg N 〉 headed to output
〈ulg N , ulg N−1, . . . , u1〉

Interconnection Networks Butterfly routing 6 of 15

'

&

$

%

Observe: all packets starting at 〈u1, u2, . . . , ulg N/2, 0 . . . , 0〉
pass through 〈0, 0, . . . , 0〉

• given Ω
√

(N/2)) lower bound on greedy algorithm

• same phenomenon with “transpose” routing —
〈u1, u2, . . . , ulg N/2, . . . , ulg N 〉 going to
〈ulg N/2+1, . . . , . . . , ulg N , u1, u2, . . . , ulg N/2〉

Interconnection Networks Butterfly routing 7 of 15

'

&

$

%

Theorem: Greedy algorithm completes in O(
√
N) steps

Proof idea — for any edge at level i, we have ≤ 2i−1

greedily chosen paths which could enter and at most 2lg N−i

greedily chosen paths which could exit

• bound on number of greedy path passing through an
edge is O(

√
N)

For small N (¡ 100) not too bad, since
√
N is not that far

from the lower bound of lgN

• for large N , complexity is an issue, especially since
many natural problems exhibit worst case

Interconnection Networks Butterfly routing 8 of 15



'

&

$

%

Fact: queues can grow to be Θ(
√
N)); if queues are

restricted to be O(1) sized, then greedy routing can take

Θ(N) steps

Fact: if each of the N lgN nodes holds a packet, then the

greedy algorithm completes in Θ(
√

(N lgN)) steps in worst

case

Fact: if path depends only on origin & destination (and not

other packet’s source/destination, congestion) need

Ω((
√
N)/d) steps for 1-to-1 routing

Interconnection Networks Butterfly routing 9 of 15

'

&

$

%

Greedy algorithm is good for routing M ≤ N packets to first

M slots

• referred to as “packing”

Greedy routing good for “spreading”

• reverse of packing

Greedy routing good for “monotone routing”

• pack and spread

Interconnection Networks Butterfly routing 10 of 15

'

&

$

%

Average case behavior of greedy algorithm

Results based on “congestion analysis”

For most routing problems, with p packets/input, at most C

packets pass through each node

• C = O(p) if p ≥ logN/2

• C = O(logN/ log(logN/2)) if p ≤ logN/2

Succinctly, c ≤ O(p) + o(logN)

Note that the queue size is never more than the congestion

Interconnection Networks Butterfly routing 11 of 15

'

&

$

%

Analysis is easier when we use the following congestion

resolution protocol:

• give a random rank to each packet (a number in
[1 . . .Θ(p+ logN)])

• lower rank wins (break ties using destination address)

Theorem: Given any routing problem with congestion C on

a logN dimensional butterfly, the greedy algorithm will

complete in T steps with probability ≥ 1−N−7 when the

random rank protocol is used

• T = O(C), if C ≥ logN/2, and

• T = logN +O(logN/ log(logN/C)) if C ≤ logN/2

Again, can use Valiant’s paradigm

Interconnection Networks Butterfly routing 12 of 15



'

&

$

%

Ranade’s algorithm

Previously, no hard cap on queue size – unlikely to be larger

than O(p) + o(logN)

What if queue size fixed say to Q?

• use “back pressure”

Ranade’s algorithm

• random rank contention resolution

• require packets pass through each node in sorted order
– need “ghost packets” to inform neighbor of current

transfer

Again, given any routing problem with congestion C on a

logN dimensional butterfly with queues of max size q ≥ 1,

Interconnection Networks Butterfly routing 13 of 15

'

&

$

%

greedy algorithm completes in T steps with probability

≥ 1−N−7 when the random rank protocol is used, where

• T = O(C), if C ≥ logN/2, and

• T = logN +O(logN/ log(logN/C)) if C ≤ logN/2

Use in conjunction with Valiant’s paradigm

Interconnection Networks Butterfly routing 14 of 15

'

&

$

%

Removing queues

Use “information dispersal”

• break each packets into a collection of subpackets &
route each subpacket in a greedy fashion

– more balance

– encode with some redundancy ⇒ fault tolerance
– need more bits for addressing, routing; more packets

Use coding theory to make a B bit packet P into 2B/ logN

packets, each B/ logN bits in size

• recover P from logN/2 subpackets

Interconnection Networks Butterfly routing 15 of 15


