Homework #5 and #6
Principles of Programming

Steven Harrison

steven.harrison@ni.com
Questionable Code – sections 5.2 and 5.4
Page 120, #1

The book gives the answer to this one; scanf expects its second parameter to be passed by reference.

Page 120, #2

The call to printf passes variables that are double and int, which is a mismatch with respect to the placeholders: %d for an integer and %f for a floating-point number, respectively.

Page 121, #1

outname is presumably a char*, so it needs the address of the command-line argument (excluding the first two characters), i.e. &argv[i][2]

atoi expects a char*, so all the calls to atoi should be atoi(&argv[i][2])
Page 122, #1
This line will compile because the fourth argument of qsort is a pointer to a function that returns an int given two const void*s. Thus any comparison function will compile. However, if the string comparison function scmp is passed as the fourth parameter when an array of integers is to be sorted, scmp will try to cast the void*s to char*s, which will probably result in a crash when those pointers are dereferenced.

Page 127, #1

This is an operator precedence problem. == has higher precedence than &, so this statement is really:
if (x & (1 == 0))

Page 128, #1

This is a classic = (assignment) vs. == (equivalence) mistake. The second line of the fragment should be;

if (c == ‘\n’)
Page 128, #2

There are two possible problems here. The first is that the first line of the fragment terminates with a semicolon, so the second line of the fragment does not execute n times. Second, even if the semicolon is removed, i is incremented twice – once in the body of the for loop, and once when used as an index for a.

Page 128, #3
default is misspelled! At first glance I thought this code wouldn’t compile, but I tried it and realized that “defualt” is interpreted as a named label, which gives unexpected behavior. (My compiler did give a warning.)
Page 128, #4
The second and third parameters are reversed; since both are (presumably) ints, the compiler won’t catch this.

Page 128, #5

The same node is being added to two lists – list1 and list2 – so these lists are inadvertently linked to each other, which is not what the test intends.

Page 129, #1, #2, #3
These macros can result in the argument being evaluated twice, which leads to unexpected results when the macro is used as shown here. The authors warn about these kinds of macros on page 18.
6.1

(a)

int factorial(int n)

{

int i;

int fac = 1;

for(i = 1; i <= n; i++)

fac *= i;

return fac;

}
(b)
char c;

int i = 0;

while((c = s[i++]) != '\0')

{

putchar(c);

putchar('\n');

}
(c)

void strcpy(char *t, char *s)

{

int i = 0;

for(;;)

{

t[i] = s[i];

if (t[i] == '\0') break;

i++;

}

}

(d)

void strncpy(char *t, char *s, int n)

{

int i = 0;

if (n < 1) return;

for(;;)

{

t[i] = s[i];

if (t[i] == '\0') break;

i++;

if (i >= n) break;

}

}
(e)

if (i > j)

printf("%d is greater than %d.\n", i, j);

else if (i < j)

printf("%d is less than %d.\n", i, j);

else

printf("%d is equal to %d.\n", i, j);

(f)
if (c >= 'A' && c <= 'Z')

{

if (c <= 'M')

cout << "first half of alphabet";

else

cout >> "second half of alphabet";

}

Critique of Extreme Programming (XP) View of Testing
XP promotes two kinds of tests: unit tests and acceptance tests. There is roughly a one-to-one correspondence between each unit test and a given method of a class. Acceptance tests correspond to what XP calls user stories, which are similar to use cases except that they are shorter (just a few sentences), written in the customer’s language, and contain less detailed

Unit Testing

XP advocates that all code should have unit tests and that all code should pass its unit tests before release. This implies three activities for the programming team:
1. Develop (or reuse) a unit test framework.
2. Develop the tests themselves.
3. Execute the unit tests and correct for any failures.
The philosophy behind this approach, which has been well-researched, is that bugs found during unit testing are less costly to fix than bugs found in later testing. I agree very much with this approach in principle, but I believe it often breaks down in practice. What typically happens at my company is this:

· Marketing tells R&D they need Widget 1.0 to release in one year with a certain feature set.
· R&D gathers detailed requirements and does high-level design.

· R&D creates a prototype that shows that the major features are feasible. Minor features are often missing, and the code is not production-worthy.

This is the critical point. R&D has rushed to get the prototype finished and has not created unit tests along the way. (For all R&D knows, Marketing won’t like the prototype and will ask them to start over, so why create unit tests?) If Marketing does like the prototype, they’ll say “It looks great! Now go finish the rest of the features!” At this point, R&D says, “Wait, we really should create unit tests for the code we already have. We know we should!” But they are discouraged from doing so because:

1. They probably don’t have a unit test framework to use. Creating one, or even adapting an off-the-shelf framework, seems daunting given the pressure they are under. How will they justify taking a month of the project cycle to do so? (XP states that “Unit testing frameworks are not hard to create from scratch”). I disagree. I’ve seen unit test frameworks developed. It is not easy.
2. They’ve written a lot of code just to get the prototype working. Going back and writing tests for all those methods will take a long time. And after all, these aren’t methods that simply add two numbers or print a Markov chain; they do complicated stuff!

What happens at this point is that unit testing doesn’t happen, or it gets redefined. Many programmers believe unit testing is the testing that they do on their development computers before they check the code into the source code control system. To be sure, this is better than nothing, but it is not unit testing in the spirit of XP. The programmers naively hope that any bugs will be found “later”.

Acceptance Testing

XP states that acceptance tests result from user stories, which are written by customers. This approach assumes that:

1. There exists a customer.

2. The customer is willing to write comprehensive user stories.
My company creates software for a broad market. We don’t have a customer; we have thousands of current customers and thousands more potential customers. Should we ask every one of them to write user stories?

We could ask the marketing department – or even a few well-chosen, knowledgeable customers – to write the user stories, with the goal that these stories represent how the typical customer would want the system to perform. That sounds reasonable, but we quickly face assumption 2 above. Marketing does have a good idea about the most important functionality of the system, but they rarely think of the corner cases, and that is where a disproportionate number of the bugs lie!
Here is an example: We recently received a bug report because our application’s UI didn’t look quite right (i.e. graphics were oddly stretched, text overran its borders) on a particular version of Windows when the customer put the display into Extra Large Font mode.
We admit that this is a bug. The UI does not behave as we intend in this case. But which acceptance test would have caught this? One customer in a thousand might put their system into this mode, so it is doubtful it would show up in a user story.
This is one example of thousands that I can name. Complex systems – especially those aimed at a mass market – can be used in literally millions of ways. How can user stories possibly capture enough of this behavior such that acceptance tests, derived from such stories, can even begin to be considered comprehensive?

This leaves three tough choices:

1. Create some other category of test to capture all the corner cases. A comprehensive set of such tests would be enormous.
2. Eliminate the corner cases. Easier said than done.
3. Concede that your software can’t hope to behave correctly in every corner case. Sounds defeatist!

Conclusion
Ultimately, we skimp on unit testing and “bang on the system” very hard for the last several weeks of the cycle, trying to find and fix as many bugs as possible. This is more expensive, and it’s risky to fix one bug at this stage for fear of creating another. But this approach is mostly successful given our customers’ current expectations of our software’s quality. There is a diminishing business return on making software perfect. (See the following article: http://www.joelonsoftware.com/articles/fog0000000014.html)

I agree that unit testing and acceptance testing will result in higher-quality software. Having quality for quality’s sake is noble, but companies will invest in these approaches only when it becomes apparent that doing so makes them more competitive. Only when the market starts demanding high-quality software through the power of their pocketbooks will companies become serious about the kinds of testing that XP advocates.
