EE382m: Homework 5 Multi-level logic optimization

Professor Adnan Aziz

For this assignment, when you are asked to use SIS for optimization, restrict yourself to the following operations: ¹

sweep (performs constant propoagation and inverter minimization)

el (performs elimination)

fx (performs kernel–based common logic extraction)

decomp (performs a decomposition of the network nodes)

For you own edification, you may want to read about/play with the following commands: *simplify*, *full_simplify*, *print_delay*, *reduce_depth*, *tech_decomp*, *tech_map*.

You can see the results of each operation by typing *print_stats* at the prompt; you may want to *set auto_exec print_stats* initially, which will run *ps* automatically after each command. The network can be printed using *write_blif*, *write_eqn*, *write_pla*, *print_factor*.

Report the best result (i.e., least number of literals) and the steps you took to get there.

1. (Problem 15, Chapter 10 Hachtel & Somenzi) Perform weak division of F = abrs + abrt + abd + abe + abu + ghrs + ghrw + ghd + ghe + ghu + dp + ep + rstuw by <math>D = ab + gh.

10 marks

2. (Problem 12, Chapter 10 Hachtel & Somenzi) Run SIS on the function F given above. You may input the function in either eqn or blif format, but the output should be in blif. (The optimum result contains 23 literals; show your steps.)

10 marks

3. For the function F = uwxy + uvxy + tx + tz + rsw + rsv + vwxy, compute all the level-0 kernels.

10 marks

¹Help is available for all these commands; you can save yourself a lot of typing by making use of aliases and paths. Run *alias* at the prompt, also take a look at **adnan/.sisrc**.

4. (Problem 4, Chapter 8 deMicheli's book.) Consider the logic network defined by the following expressions.

$$x = ad' + a'b' + a'd' + bc + bd' + ac$$

$$y = a + b$$

$$z = a'c' + a'd' + b'd' + e$$

$$u = a'c + a'd + b'd + e'$$

Draw the logic network graph. Outputs are $\{x, y, z, u\}$. Perform the weak division f_x/f_y and show all steps. Substitute y into f_x and redraw the network graph. Compute all kernels and co-kernels of z and u. Extract a multiple-cube subexpression common to f_z and f_u . Show all steps. Redraw the network graph.

25 marks

5. In this problem, you are to devise an 8-bit ALU in Verilog and run it through algebraic optimizations available in SIS.

The ALU should take two 8-bit vectors data arguments, and a two bit control argument, corresponding to the operation to be performed. The output is a single 8-bit vector. The functionality is given in Table 1.

ALU Operation Mode	Output
00	in1 AND in2
01	in1 XOR in2
10	in1 OR in2
11	in1 PLUS in2

Write this design in the Verilog HDL. Compile it to the *blif_mv* format using the vl2mv compiler. Read it in VIS using the *read_blif_mv* command, and write it out in the *blif* format using the *write_blif* command. (You may want to verify your design works by using the *sim* command in VIS.)

SUN binaries for SIS, vl2mv and VIS are available at

- (a) /home/projects/ece/verif/vis-1.2/vis
- (b) /home/projects/ece/verif/vis-1.2/vl2mv
- (c) /home/projects/logic_synthesis/solaris/bin/sis

50 marks