
EE382m: Term Projects

Adnan Aziz
Electrical and Computer Engineering

The University of Texas at Austin

March 26, 2007

Introduction

The purpose of these projects is threefold:

1. It is worth 30% of your grade (but this should be the least important item)

2. working on this project should be training on how to go about approaching an original re-
search problem

3. the project should yield results—

• experimental findings on the efficacy of proposed algorithms, and/or

• new techniques for design synthesis

Projects can be done individually, or in pairs.

Timeline

I do not want a student going off on a tangent, only to learn at the end of the semester that this
happened. On the other hand, I don’t want to stifle creativity by monitoring things too closely.
Most of all, I don’t want rush jobs, where everything is crammed into a few days at the end of the
semester. You need time to think about these projects.

Project selection: You should make a decision as to the projects you are interested in working on
by Friday, April 6.

It’s fine for more than one person to select the same project. I will also allow two person
groups to work on a project, with the caveat that I will expect significantly higher deliver-
ables.

Progress report: To ensure progress is made continuously, I would like you to write a two-page
progress report on the status of your project, and turn it in on Monday, April 23.

1



Final report: A 10 to 20 page document (in the format of a conference paper) describing the
project should be turned in by 5:00pm Friday, May 4. There will be no penalty for submis-
sions that turned in by Friday, May 11.

Evaluation

Your grade on the project will be based on a number of factors, particularly the originality and qual-
ity of the work. Other considerations include clarity (both the written report and the presentation),
and attention to detail.

Suggested Projects

Below, I give sketches of topics that I would like to see work done on.1

1. Synthesizing a small microprocessor

The goal of this project is to design and experiment with a SIS standard cell library that uses
reasonable values for loading capacitances and drive strengths.

Rather than trying to figure out the exact delays for a 90 nanometer TSMC technology, I
would suggest that you express all the delays in terms of some nominal unit values (i.e., the
drive strength and the capacitances of a minimum sized device). I would expect that a li-
brary consisting of INV, 2NAND, 3NAND, 4NAND, 2NOR, 3NOR, 4NOR, AOI32, AOI42,
MUX21, MUX41 gates each in relative drive strengths of 1 : e : e2 : e3 together with a
simple latch should be fine.

Experiment with your library using SIS to optimize a reasonably large design (say a 10000
gate processor) and report your results.

2. Building minimum height BDDs

The example f = c · a + c′ · b shows that a function can be evaluated by examining less than
all the variables it depends on. (For this example, check the value of c, then check a or b
appropriately.)

The goal of this project is to devise an algorithm for determining a variable ordering under
which the BDD height, as measured by the number of nodes on the longest path from root
to terminals, is minimum.

A natural generalization, which you should explore, involves assigning a “cost” to each vari-
able, in which case the goal is to minimize the cost of the maximum path. If you are more
ambitious, you can try solving this problem when the inputs are generated probabilistically—
your goal then would be to select an ordering which minimizes the expected cost of comput-
ing the result.

I expect you should be able to devise an algorithm using Dynamic Programming. Chap-
ter 15, Section 5 of the Algorithms text by Cormen, Leiserson, Rivest and Stein (CLRS)

1You are welcome to suggest your own project; however it must meet with my approval.

2



discusses this problem for binary search trees, and you should get some ideas from their
analysis, as well as the references they cite. See [3] for an example of the use of DP for
BDD minimization, and also the papers [2, 1] for computing orderings. (Your algorithm
may have extremely high complexity, but exponential is still acceptable for functions of a
few variables.)

3. SAT

In recent years, there has been a great deal of interest in heuristic algorithms for checking
whether a logic formula in conjunctive-normal form (CNF) is satisfiable. (This problem is
exactly equivalent to checking if a cover represents tautology.) The state-of-the-art in SAT
solving is the miniSAT tool, which is remarkably small (1200 lines, including parser). The
goal of this project would be to think of ways in which to enhance miniSAT, and/or look
for new applications for SAT (many constrained optimization problems such as routing,
placement, etc. can be cast as SAT problems).

Chapter 34 from CLRS talks about how problems can be mapped to SAT.

4. Tarski

Static verification consists of checking a design’s correctness without applying specific test
cases; instead all possible legal inputs are considered. This approach has in the past applied
to gate-level designs, since Boolean analysis techniques such as SAT and BDDs can be
directly applied.

Operating at a higher level makes automatic verification significantly easier for a number of
reasons. One of my graduate students, Hari Mony, harimony@us.ibm.com, has been
working on a tool for expressing designs at a high-level of abstraction.

The goal of this project is to add synthesis capabilities to Tarski, that is, the ability to write a
Tarski model out as a Boolean netlist, either Verilog or blif which can then be synthesized
using DC or SIS. You would be responsible for designing a small unit (e.g., a pipelined DLX)
in Tarski, and seeing the quality of results of the synthesized netlist compared to direct design
and synthesis in Verilog.

You can read about the commercial Bluespec tool that is based on research done at MIT to
get some ideas of the tradeoffs involved. System-C also is similar in spirint.

5. Case studies in synthesis

The goal of this project is to design a nontrivial unit (e.g., a small processor, an Ethernet
controller, an MPEG decoder, an FFT, etc.), and see how much synthesis can improve on
the design. I am particularly interested in comparing SIS with DC, specifically in terms of
performance optimizations, e.g., retiming.

6. c-slow transformation

Replacing each flop in a sequential design D by c flops in series results in a design Dc that
is referred to as the c-slow version of D. The design Dc is not functionally equivalent to D
but it can be used to mimic c independent copies of D, by interleaving the different input se-
quences. In some circumstances (datapath, simulation, etc.) c copies of D are advantageous.

3



In addition to area, another advantage Dc has over D is that its iteration bound (IB) is 1/c
that of D. The iteration bound of a design is the largest average delay on a cycle of gates and
flops in the design.

In theory, a design can always be clocked to achieve the iteration bound, through combina-
tions of retiming, logic replication, time-borrowing and useful skew. In practise, it may be
hard to achieve the iteration bound with edge triggered flops, and a fixed clock.

The goal of this project is to see what the practical impact of c-slow is in terms of clock
speed. You are to take benchmarks and c-slow them, and run synthesis (through SIS) to
determine the critical path after optimization.

Resources:

• sequential benchmarks: /home/projects/logic_synthesis/benchmarks/seq-blif

• generic libraries and optimization scripts: /home/projects/logic_synthesis/sis/sis/sis_lib
(look carefully at script.timing)

7. Building circuits from relations

Often it is most natural to describe the behavior desired from a hardware block in terms of
relations. Suppose the inputs are x1, x2, x3, and the outputs are y1, y2. Then a declarative
specification could be

x1 · x2 · x3 → (y1 + y2)

(x1)
′
· (x2)

′ + x3 → (y1)
′

(x1)
′ + x2 → (y2)

′

There are a number of techniques for implementing logic circuits from such relations, and
the goal of this project is to experiment with them, and see if there are ways in which they
can be improved. See [4] for a good overview.

8. Synthesis with noisy gates

The goal of this project is to experiment with techniques for implementing reliable com-
puting with unreliable gates. The idea is that through redundancy, a design with unreliable
can be made more reliable. The redundancy can come in several ways, e.g., through simple
replication or by more sophisticated coding. See the following article for an overview:

• http://ieeexplore.ieee.org/iel5/7729/33729/01605221.pdf?arnumber=1605221

I am particularly interested in seeing if there are ways in which a logic circuit with unreliable
gates can be efficiently simulated on an FPGA.

Miscellaneous

A project of this nature will naturally build upon existing work. You are encouraged to build
upon existing code/results, and in your report you may copy/adapt from others papers. However,
you must explicitly make it clear that you have done so; failure to report this will be considered
plagiarism and will be dealt with severely.

4



References

[1] Steven J. Friedman and Kenneth J. Supowit. Finding the optimal variable ordering for binary
decision diagrams. IEEE Transactions on Computers, 39(5):710–713, May 1990.

[2] Yi-Yu Liu, Kuo-Hua Wang, TingTing Hwang, and C. L. Liu. Binary decision diagram with
minimum expected path length.

[3] A. Prakash, R. Kotla, T. Mandal, and A. Aziz. A high-performance architecture and bdd-
based synthesis methodology for packet classification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 83(10), June 2003.

[4] J. Yuan, K. Albin, A. Aziz, and C. Pixley. Constraint Synthesis for Environment Modeling in
Functional Verification. Design Automation Conference, 2003.

5


