EE 360R — Computer-aided IC Design, Unique No. 15885 Adnan Aziz ACE 6.120 Office Hours: MW 1:00-2:00pm Fall 2004 adnan@ece.utexas.edu (512) 475-9774 Lecture: MW 3:30-5:00, ENS 127

Description:

We aim to study the process of implementing a digital system as a CMOS integrated circuit.

The course will begin with a review of the basics of CMOS transistor operation and the manufacturing process for CMOS VLSI chips.

We will then study in detail the problem of implementing logic gates in CMOS. Specifically, we will cover layout, design rules, and circuit families.

Afterwards, we will examine techniques for timing and power analysis and clocking. We will also examine ways to optimize timing and power. This will be followed by an overview of datapath design, specifically adders and multipliers. We will also study memory arrays, including SRAM and DRAM cell and clock design.

The course will conclude with a survey level treatment of advanced topics, including functional verification, test, design-for-test, electrical effects, and future trends.

We will also have guest lecturers talk about real-world design practise.

Prerequisites:

This course is intended for ECE undergraduate students. A knowledge of digital logic design (EE316 or its equivalent), and Computer Architecture (EE360N, or its equivalent) is required.

Recommended text:

• CMOS VLSI Design: A Circuits and Systems Perspective. N. Weste and D. Harris. *3rd Edition*, 2004. Addison-Wesley.

Web site:

All material related to the course is available at www.ece.utexas.edu/~adnan

Format/Evaluation:

I will assign approximately 6 written homeworks, which will consist of questions from the book, and will be worth 10% of your grade. There will be three in-class tests collectively worth 50% of your grade. There will be three major design projects which will count for 30% of your grade. The remaining 10% of your grade will be based on a term paper, due on the last day of classes, in which you will be asked to critique a commercial design effort.

	Week	Material
Preliminaries		
	Aug 25	Introduction, history
	Aug 30	MOS transistor theory
	Sep 1	CMOS processing
	$\operatorname{Sep}6$	Labor day—no class
	Sep 8	Layout 1
CMOS circuit and logic design		
	$Sep \ 13$	Basic logic design in CMOS, Lab 1 posted
	$Sep \ 15$	Basic physical design
	Sep 20	Dynamic CMOS
	Sep 22	Adders
	Sep 27	Midterm 1
Timing		
	Sep 29	Circuit characterization
	Oct 4	Circuit characterization
	Oct 6	Delay calculation, Lab 1 due, Lab 2 posted
	Oct 11	Performance optimization
	$Oct \ 13$	Performance optimization
Control		
	Oct 18	Control design
	$Oct \ 20$	Midterm 2
	$Oct \ 25$	Latches and clocking, Lab 2a due
	$Oct \ 27$	Verilog and synthesis
Datapath and memories		
	Nov 1	MOS memories, Lab 2b due, Lab 3 posted
	Nov 3	MOS memories
	Nov 8	Floating point
Advanced topics		
	Nov 10	Test
	Nov 15	Verification
	Nov 22	Midterm 3
	Nov 24	Wed before Thanksgiving $=$ no class ?
	Nov 29	Electrical considerations
	Dec 1	Conclusion, Lab 3 due, term paper due

NOTE: All departmental, college and university regulations concerning drops will be followed. The University of Texas at Austin provides upon request appropriate academic adjustments for qualified students with disabilities. For more information, contact the Office of the Dean of Students at 471-6259, 471-4241 TDD.