Certificate Of Originality

This is to certify that the project work titled Optimized
MIPS being submitted by Gaurav Singhal, Mayank Kaushik
and Anvay Virkar as a part of the course VLSI-I, is a record
of bonafide work carried out by them under my guidance and
supervision at the Department of Electrical and Computer
Engineering , University of Texas at Austin.

Dr. Adnan Aziz
Department of Electrical and Computer Engineering,
University of Texas at Austin

Contents

1

Baseline MIPS architecture
1.1 Baseline MIPSISA
1.2 Multicycle MIPS Microarchitecture . . .

Enhanced MIPS: A Brief Overview

The Enhancement: Pipelining

3.1 Non-pipelined Baseline Architecture . . .

3.2 The Classical RISC Pipeline
3.2.1 Pipeline Register Implementation
3.2.2 Performance of the Basic Pipeline

Various Pipeline Hazards And Solutions
4.1 Structural Hazards
4.2 DataHazards
4.2.1 Data Forwarding and Interlocks .
4.2.2 Implementation of Control
4.3 Control Hazards

Other Enhancements: Branch Prediction
Optimzied Adder Design
Functional Verification and Testing

Results and Conclusion

8.1 Power analysis.
8.2 Areaanalysis
8.3 Timing Analysis.

i

15
15
16
17
18
20

22

24

29

1 Baseline MIPS architecture

The MIPS32 architecture is a simple 32-bit RISC architecture
“with relatively few idiosyncracies”. The baseline architecture
uses 32-bit instruction encodings but only eight 8-bit General
Purpose Registers which are written as $0 to $7. The Program
Counter PC is also 8-bit. Register $0 is hardwired to 0.

1.1 Baseline MIPS ISA

The baseline architecture supports the instructions shown in the

table below:

Instruction Function Enc. op funct
add $rd, $rsi, $rs2 | addition: rd <- rsl + rs2 R 000000 | 100000
sub $rd, $rsi, $rs2 | subtraction: rd <- rsl - rs2 R 000000 | 100010
and $rd, $rsi, $rs2 | bitwise and: rd <- rsl & rs2 R 000000 | 100100
or $rd, $rsil, $rs2 | bitwise or: rd <- rsl | rs2 R 000000 | 100101
set less than:
slt $rd, $rsil, $rs2 | rd <- 1 if rsl < rs2 R 000000 | 101010
rd <- 0 otherwise
addi $rd, $rsi, imm | add immediate: rd <- rsl + imm | 001000 n/a
beq $rd, $rsil, imm | branch if equal: PC <- PC + imm 1 000100 n/a
j destination jump: PC <- destination J 000010 | n/a
1b $rd, imm($rsi) load byte: rd <- mem[rs + imm] 1 100000 n/a
sb $rd, imm($rsi) store byte: mem[rs1 + imm] <- rsi 1 101000 n/a

Figure 1: Baseline MIPS Instruction Set Architecture

Each instruction is encoded in one of the three templates: R,
I and J. The high 6 bits of the formats specify the opcode of the

instruction.

e R-type (Register-based):
This instruction template is used for arithemtic and logical

instructions. It specifies two source registers and one desti-
nation register. R-type instructions have their high 6-bits
as 0; they use additional 6 function bits to specify the ALU
operation.

e I-type (Immediate):
A 16-bit constant embedded into the instruction is referred
to as an immediate. I-type instructions specify the destina-
tion register, one source register and one immediate. They
are used to add immediate values to register contents, or to
add immediate address offsets to a base value in a register.

e J-type (Jump):
J-type instructions contain in them the opcode and the
absolute address of the destination.

1.2 Multicycle MIPS Microarchitecture

The baseline architecture is the multicycle MIPS microarchitec-
ture. This is shown in Fig. 2. Following standard conventions,
rounded rectangles are multiplexers, the ovals are control logic.

Instruction execution generally flows from left to right. The
Program Counter (PC) specifies the address of the instruction.
The instruction is loaded one byte at a time over four cycles
from an off-chip memory into the 32-bit instruction register. The
opcode is sent to the controller, which sequences the datapath
through the correct operations to execute the instruction. The
result of an (ALU) operation is captured in the ALUout register.

The controller is a finite state machine that generates multi-
plexer select signals and register enables to sequence the datap-
ath. The controller produces a 2-bit aluop. The ALU Control

FEEn
oo
r 4

2]
% | =mtu
o
I Kooy (g
L]
W i3]
0 g
vy ep ; ingeafiou Aaosepy Hep
A x| fnml] | Sewnam Bl
ZTER] mmbu n | vogonnsu] § | e
pesy 1) N ORI
g y Equie
Ly R ek ot A
e peay rangsy ;
| mEtar | lizse] AR M T
pe=y R H
lsz 2 M_
ORI
0] woganaauy
X
e mﬁ,__ e
J—— Baggraniay
B
WHSTN
e
BUEMN Ldﬁ_

Figure 2: Baseline MIPS Implementation

aluop | funct | alucontrol | Meaning
00 X 010 ADD
01 X 110 SUB
10 100000 010 ADD
10 100010 110 SUB
10 100100 000 AND
10 100101 001 OR
10 101010 111 SLT
11 X X undefined

Figure 3: ALU Control Determination

unit uses combinational logic to compute a 3-bit alucontrol
signal from the aluop and funct fields as shown in Fig. 3.

2 Enhanced MIPS: A Brief Overview

Following is a list of enhancements made to the baseline archi-
tecture:

e Larger Register File The baseline architecture has 8 reg-
isters, names $0 through $7, each of 32-bits. The new ar-
chitecture has 32 registers, each register being 32-bits in
size, denoted as $0 though $31. Register 0 always has the
value 0. A larger register file increases the performance of
the processor. A very small number of registers however,
necessitates the re-use of registers and which becomes the
bottleneck in pipelining — an issue addressed more deeply
in Section 3.

e Separate Instruction and Data Memories (Harvard
Architecture) The baseline architecture makes use of a
unified memory, wherein the instructions and data are both
stored in the same memory. This gives rise to structural
hazards the details of which are postponed until Section 4.

e Single-cycle instruction fetch The baseline architecture
simulates an 8-bit wide memory from which the MIPS can
read/write data 1-byte per cycle. However, that approach
is too antiquated and impractical. Thanks to interleaving
(and doubtlessly, caching), the fetch time can be reduced
considerably. The Enhanced MIPS employs this approach
and therefore, instruction fetch occurs in a single cycle.
Also, the PC was made 32-bits.

e Pipelining The advantage of the hardware in the datapath
is that all the functional units therein can execute in paral-
lel. This means that it is possible to have multiple instruc-

5

tions being operated upon concurrently, each instruction
being in a different phase of operation. This technique of
overlapping instruction execution is called Pipelining. All
the processors today are pipelined.

Data-forwarding Simultaneous execution of instructions
gives rise to Flow Dependencies. A very common technique
of preventing the performance being affected by dependen-
cies is by Data-Forwarding. Details of the concept and
implementation of this enhancement are spared until Sec-
tion 4.2.1

Branch Prediction: BTFN BTFN stands for “Back-
ward Taken — Forward Not Taken” Branch Prediction. It
is a static branch prediction scheme. Branch Predictions
help to improve the efficiency of the pipeline.

3 The Enhancement: Pipelining

Pipelining is a performance-improving technique whereby the
operations of a number of instructions are made to overlap in
time. At a given instant, each instruction is in a different phase
or a step of the computation. Each of these steps is called a
pipe stage or a pipe segment. The performance of a pipeline is
measured in terms of the parameter IPC or “Instructions Per
Cycle”. Such a parameter is called a System Design Metric.

3.1 Non-pipelined Baseline Architecture

The baseline architecture was a multi-cycle implementation. Ev-
ery instruction in the instruction set could be implemented in at
most 5 clock cycles. The operations taking place in each cycle
are given below:

1. Instruction Fetch

(a) Send the address in the PC to memory.
(b) Fetch the instruction from memory.

(c) Update the PC to point to the next instruction.
2. Instruction Decode

(a) Decode the instruction.
(b) Read the operands of registers.
3. Execution/Address Computation Depending upon the

type of instruction, the ALU performs one of the following
operations:

(a) Register-Register Operation: The arithmetical/logical
operation is performed on the operands found in the
Instruction Decode cycle. The

(b) Register-Immediate Operation: The arithmetical/logical
operation is performed on the first source register and
a signed offset (extended to 32 bits).

(c) Memory Reference: An effective address is calculated
by adding a signed offset to a base register.

4. Memory Access

(a) For a load instruction, data is read from the memory
location whose address was generated in the previous
cycle.

(b) For a store instruction, the data is written into the
memory location whose address was found in the pre-
vious cycle.

5. Write-back In this cycle, the destination register is loaded
with the data fetched (for a load instruction) or the ALU
result (for a Register-Register ALU operation).

3.2 The Classical RISC Pipeline

While conceiving a pipelined version for an initially non-pipelined
machine, the most essential thing to do is to identify those com-
ponents of the datapath that can operate in parallel. In effect,
the datapath is being divided into stages. Each stage takes one
clock cycle to execute. Notice how conducive the baseline ar-
chitecture was to pipelining. To implement the pipeline, it is
necessary to make the following modifications:

Clock number

Instruction Number 1 2 3 4 5 6 7 8 9
Instruction 2 IF ID EX MEM WB

Instruction 7 + 1 IF ID EX MEM WB

Instruction 7 + 2 IF 1D EX MEM WB

Instruction 7 + 3 IF ID EX MEM WB
Instruction 7 + 4 IF 1D EX MEM WB

Figure 4: Execution Pattern for a 5-stage Classical Pipeline

e Add latches between two pipeline stages. These are called
pipeline registers or pipeline latches. Each stage of the
pipeline operates on the data in its latches and as an out-
put, updates the registers of the next stage, at the end of
the cycle. The latches ensure that each stage is maintained
in its own phase of operation; each stage supports an inde-
pendent operation (which flows down the pipe).

e Each new clock cycle initiates a new instruction cycle. An
wnstruction cycle is the time required to complete one in-
struction. In the MIPS, an instruction cycle is made of five
clock cycles.

We now have five pipeline stages and four pipeline registers.
The ezeuction pattern of a pipelined machine is shown in Fig. 4.
The operations taking place in the pipeline stages are described
below:

1. Instruction Fetch Stage (IF):
IR<MEM[PC]
NPC<+-PC+4

Operation The address in the PC is sent out to the in-
struction memory and the instruction is fetched. The
instruction is held in the Instruction Register (IR). The

9

PC is incremented by 4, a word being 4 bytes. Likewise,
the next value of the PC (denoted NPC) is latched into
the pipeline latches.

2. Instruction Decode/Register Fetch Stage (ID):

A+REG[RS1] ; Source Reg. #1
B<REG[RS2] ; Source Reg. #2
Imm<—SEXT(IR[15:0]) ; Sign-extended Immediate

Operation The instruction held in IR is decoded. The
register specifiers in the instruction fields (denoted RS1
and RS2 in the above pseudo-code) are used to read
the operands from the register file and copied into the
pipeline registers. A and B are a part of the pipeline
registers. The Immediate field, the lower half-word
of the IR, is sign-extended and stored in the pipeline
latches.

Decoding and Operand-read are two parallel opera-
tions. This is possible because the opcode and the
register specifier bits always occur at a fixed position
in a given instruction word. This technique, charac-

teristic of RISC designs, is called uniform decoding or
fized-field encoding.

3. Exeution/Address Computation Stage:
The operation taking place in this stage depends upon the
type of instruction. There are four cases to consider.

(a) Memory Reference:
ALU_out<-A + Imm

Operation The sign-extended immediate is added to
the first operand and stores the address in the pipeline

10

register.

(b) Register-Register Operation:
ALU_out<-A op B ‘

(c) Register-Immediate Operation:
ALU_out<-A op Imm

(d) Branches:

Address<NPC + (Imm << 2)
Cond«A==B? 1: 0

4. Memory Access/Branch Completion Stage (MEM)
There are two cases to consider.

(a) Memory Reference

PC<-NPC

if (LOAD) MDR<-MEM[Address]
if (STORE) MEM[Address<B

Operation If the instruction is a load, read the data
and place it in the MDR register. If it is a store,
then write the data to the Data Memory. In either
case, it is the Address computed in the previous
state that is used to access memory.

(b) Branch
if (cond) PC<—Address

5. Write Back Stage (WB)
(a) Register-Register Operation
REG[RD1]<+-ALU_out

(b) Register-Immediate Operation
REG[RD2]<+—ALU_out

11

(c) Load instruction
REG[RD2] <—MDR

Operation Write the data (from MDR or ALU) to the
destination register.

The modified datapath is shown in Fig. 7?7. Note how the
pipeline registers have been named. A pipeline register sitting
between stages ‘X’ and ‘Y’ is named ‘X/Y’.

3.2.1 Pipeline Register Implementation

The concept of having Pipeline Registers between two stages
seems to be quite logical and therefore, trivial at first glance.
However, there are certain critical design issues about them
which are necessary to take into account. Prior to that, it is
worthwhile reviewing the use of the pipeline registers:

e The components in the datapath need to be grouped to
facilitate pipelining. The grouping is achieved by means of
pipelining registers, which serve to delimit the stages of the
pipeline.

e Pipeline registers ensure that the different stages of the
pipeline do not interfere with each other.

e Pipeline registers carry data and control signals from one
stage to another.

e Pipeline registers ensure data integrity by responding to the
changed signals only at one instant, namely, the active edge
of the clock.

12

A pipeline is an operation sequencer. A pipeline initiates
a sequence of dataflow. Every stage in the pipeline need to
abide the dataflow protocol. Naturally, there is the need for a
sequencing mechanism. This mechanism in built into the system
due to the pipeline registers. There are three general sequencing
methods:

1. Flip-flops
2. Two-phase latches
3. Pulsed latches

Pulsed latches have hold time risk. Therefore, they have
not been used. The advantages of Two-phase latches is that
they have high skew tolerance and allow for substantial time
borrowing. However, flip-flops are the easiest to use and are
supported by all tools. Therefore, flip-flops have been used to
implement pipeline registers.

3.2.2 Performance of the Basic Pipeline

Earlier, the philosophy behind the increase in performance due
to pipelining was put forth qualitatively. Quantitavely, a mea-
sure of performance is the speedup which is defined, in general,
for a pipeline as:

Average CPI for unpipelined

Speedup from Pipelining =
P P P & Average CPI for pipelined
where CPI stands for Clock cycles per instructions which is also
a system design metric.

It may be noteworthy to point out the fact that pipelining
improves the throughput of the system. However, it does not

13

reduce the instruction cycle time. Thus, the program as a whole
runs faster, even though no single instruction has been made
fast. In fact, the instruction cycle time increases by a small
amount due to control overhead of the pipeline. Overhead is a
result of pipeline register delay and clock skew. The clock skew
imposes a lower limit on the clock cycle. The clock can be no
less than the sum of the clock skew and latch overhead.

A limitation of the pipelining is Pipeline imbalance. The
pipeline can be as fast as its slowest stage.! It is possible that a
stage may be slower than the others due to transistor assymtry
effects.

However, the immediate countereffects of a pipeline that di-
rectly affect performance are pipeline hazards.

LA chain is only as strong as its weakest link.

14

4 Various Pipeline Hazards And Solutions

Hazards are situations in which the sequential flow of opera-
tions through the pipeline gets stunted, and the next instruction
which was expected to execute has to wait until the block in the
pipeline — or a pipeline bubble — is cleared. There are three
types of stalls:

e Structural Hazards
e Data Hazards
e Control Hazards

This section is devoted to the program conditions that cause
hazards and design strategies to work around them.

A hazard causes an instruction to stall. All instructions (i.e.,
those at the front-end) issued later than that instruction are also
stalled. Instructions issued earlier (i.e., those in the back-end)
continue; they need to continue for the hazard to be cleared.

4.1 Structural Hazards

Structural hazards are resource conflicts. A conflict arises when
two stages in the pipeline attempt to access the same resource
(that cannot service more than one client). For example, in
Fig. 4, in clock cycle #4, both MEM and IF stages attempt to
access memory. In a Von Neumann architecture, which has a
unified memory, having both instructions and data in the same
memory, this leads to a conflict.

Solution: Separate the instruction memory and data memory.
Our design conforms to this policy, or Harvard architecture, as
mentioned earlier.

15

Clock number

Instruction 1 2 3 4 5 6
ADD $1, $2, $3 IF ID EX MEM WB %
ADD $4, $5, $1 IF IDt EX MEM WB

*: Producer
1: Consumer

Figure 5: Data Hazard Execution Pattern

4.2 Data Hazards
Consider a code snippet shown below:

ADD $1, $2, 33
ADD $4, $5, 31

Now consider the execution pattern of this code as shown in
Fig. 5. The first instruction writes into $1 in the fourth stage.
But the second instruction needs the value in the second stage,
early in time! This leads to a data hazard. A data hazard
has been caused as a result of a flow dependency. The second
ADD should not be allowed to continue until the first has gone
past the MEM stage. This is done by inserting bubbles into
the pipeline, essentially by making the pipeline registers as O.
Making the pipeline registers 0 has the effect of making the IR in
them 0, which is nothing but the instruction ADD $0, $0, $0.
This instruction is effectively a NOP as register 0 is hardwired to
Zero.

One way out: Stall the pipeline.
A better way out: Data forwarding.

16

4.2.1 Data Forwarding and Interlocks

Data Forwarding is also called bypassing and short-circuiting.
Data forwarding is based on the understanding that the result
is not needed by the second ADD until the first ADD produces
it. If the result can be moved from the pipeline register where
the first ADD stores it, then the need for a stall can be avoided.
Using this observation, data forwarding works as follows:

1. The ALU result from both the EX/MEM and MEM/WB
pipeline registers is always fed back to the ALU inputs.

2. If the forwarding hardware detects that the previous ALU
operation has written the register corresponding to a source
for the current ALU operation, control logic selects the for-
warded result as the ALU input rather than the value read
in the register file.

From Fig. 4, we can see that data needs to be forwarded from
an instruction that started 2 cycles earlier.

Note that data forwarding does not necessarily eliminate stalls.
For example, consider the following code:

LD R1, 0(R2)

DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, RO

The execution pattern for this code is shown in Fig. 6 Notice
that the LD instruction gives the data at the end of cycle 4, but
DSUB needs it at the beginning of cycle 4. Thus the forwarded
result arrives too late — at the end of a clock cycle, when it is
needed at the beginning.

17

Clock number

Instruction 1 2 3 4 5 6
LD R1, 0(R2) IF ID EX MEMx WB
DSUB R4, R1, R5 IF ID EXy MEM WB

*: Producer: Value produced at end of cycle
1: Consumer: Value required at start of cycle

Figure 6: Need of stall inspite of Forwarding

Clock number

Instruction 1 2 3 4 5 6 7 8 9
LD R1, 0(R2) IF ID EX MEM WB

DSUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB

Figure 7: Data Forwarding with stalls

The load instruction has a delay or latency that cannot be
eliminated by forwarding alone. Instead, it is necessary to freeze
the pipeline (stages prior to the one causing a stall) or in other
words, to add a hardware pipeline interlock to correctly insert
a bubble until the stall is cleared. The CPI for the stalled in-
struction increases by the length of the stall.

The correct execution pattern for the code is shown in Fig. 7

4.2.2 Implementation of Control

The process of letting an instruction move from the instruction
decode stage (ID) to the execution stage (EX) is called issue
of an instruction. For the MIPS pipeline, all data hazards are
checked during the ID phase of the pipeline. If a data hazard
exists, the instruction is stalled before it is issued. Likewise, we

18

Opcode in ID/EX

Opcode in IF/ID

Interlock test

Load

Register-register ALU

ID/EX.IR[RS2]==IF/ID.IR[RS1]

Load

Register-register ALU

ID/EX.IR[RS2]==IF/ID.IR[RS2]

Load

Load, Store, ALU Imm, Branch

ID/EX.IR[RS2]==IF/ID.IR[RS1]

Figure 8: Load Interlock Logic

can determine the forwarding that will be needed during ID ans
set the appropriate controls then. The implentation of a load
interlock check can be implemented in ID and the implementa-
tion of the forwarding paths to the ALU inputs during EX.

Load Interlock Logic:

If there is a data hazard with the source instruction being a
load, the load instruction will be in EX stage when an instruc-
tion that needs the data will be in the ID stage. All possible
hazard conditions are listed in the Fig. 8. Once a hazard has
been detected, the control unit must insert the pipeline stall and
prevent the instructions in the IF and ID stages from advancing.
All control information is carried in the pipeline registers. Thus,
when we detect a hazard, we need only change the control por-
tion of the ID/EX pipeline register to all 0s. The all zero opcode
acts as a NOP as it is actually DADD RO, RO, RO. In addition, we
simply re-circulate the contents of the IF/ID registers to hold
the stalled instruction.

Forwarding Logic:

Implementing the forwarding logic is similar, except that
there are more cases to consider. We observe that the pipeline
registers contain both the data to be forwarded as well as the
source and destination register fields. Thus, we can implement
the forwarding by a comparison of the destination registers of

19

the IR of EX/MEM and MEM/WB stages against the source
registers in IR of ID/EX and EX/MEM. All these cases are
shown in Fig. 9. In hardware, the table in the figure translates
to comparators and combinational logic that determine when
a forwarding path needs to be enabled. We added additional
multiplexers at the ALU inputs and add connections from the
pipeline registers that are used to forward the results.

4.3 Control Hazards

Control hazards are hazards arising due to control instructions
like branch. Control instructions are those instructions that
change the PC. Branches cause stalls due to the uncertainty of
the outcome of the comparison operation. The simplest solution
of dealing with control hazards is to freeze or flush the pipeline
holding or deleting any instructions after the branch. It is pos-
sible to complete the decision of the comparison by the end of
the ID cycle by adding a comparator in the ID stage. To take
advantage of the early decision, both PCs (those of the branch
and of the fall-through) must be computed early. Computing
the branch target address requires an additional adder, since
the ALU is not usable until EX stage. This causes only 1-cycle
stall on branches.

20

For source instruction in: EX/MEM

Source Op- | Destination Op- | Dest. Test
code code of for-
warded
result
Reg-Reg Reg-Reg, Immediate, | A EX/MEM.IR|RD] == ID/EX.IR[RSI]
Load, Store, Branch
Reg-Reg Reg-Reg B EX/MEM.IR[RD| == ID/EX.IR[RS2]
Imm Reg-Reg, Imm, Load, | A EX/MEM.IR[RS2| == ID/EX.IR[RS1]
Store, Branch
Tmm Reg Reg B EX/MEM.IR[RS2] == ID/EX.IR[RS2]
For source instruction in: MEM/WB
Source Op- | Destination Op- | Dest. Test
code code of for-
warded
result
Reg-Reg Reg-Reg, Imm, Load, | A MEM/WB.IR[RD| == ID/EX.IR[RSI]
Store, Branch
Reg-Reg Reg-Reg B MEM/WB.IR[RD] == ID/EX.IR[RS2]
Imm Reg-Reg, Imm, Load, | A MEM/WB.IR[RS2] == ID/EX.IR[RS]]
Store, Branch
Tmm Reg Reg B MEM/WB.IR[RS2] == ID/EX.IR[RS2]
Load Reg-Reg, Imm, Load, | A MEM/WB.IR[RS2] == ID/EX.IR[RS]]
Store, Branch
Load Reg-Reg B MEM/WB.IR[RS2] == ID/EX.IR[Rs2]

Figure 9: Data Forwarding Logic

21

5 Other Enhancements: Branch Prediction

Branch Prediction mechanisms are speculative execution tech-
niques. The purpose of branch prediction is to reduce the stall
period of the pipeline. In order to reduce the stall, a predic-
tion is made as to whether the branch will be taken or not. If
the prediction is correct, then no stalling of the pipeline will be
necessary. However, if the prediction turns out to be incorrect,
there is a latency referred to as Branch Misprediction penalty.
Branch Prediction mechanisms aim to reduce the misprediction
penalty.
There are two approaches to Branch Prediction:

e Static Branch Prediction
e Dynamic Branch Prediction

Static branch prediction techniques are those that make a
prediction about the branch at compile-time. Dynamic branch
predictors make a comparison at run-time. Implementation
of dynamic branch prediction increases significantly the area
and the power consumption of the chip. We have implemented
one of the best known static prediction scheme called BTFN—
Backward Taken—Forward Not taken.

The BTFN mechanism predicts that all backward branches
will be taken, and all forward branches will not be taken. This
is due to the observation that all loops have much more back-
ward branches than forward braches. For example, consider the
following loop:

BACK: LD R1, #COUNT ; Counter

22

SLT R2, R1, RO ; If count==0, R2=1
BEQ R2, RO, BACK ; If count<>0, branch back

If the counter value is set to n, then the backward branch is
taken (n — 1) times and the forward path is taken 1 time. The
BTFN scheme predicts each of the n times that it will be taken.
Thus out of n, there is only 1 misprediction. Thus the accuracy

of the BTFN scheme is "

which is very high.
n
The final enhanced MIPS architecture Implementation with
Pipelining, Data Forwarding and Branch Prediction is shown in
Fig. 10.

IF ID EX
NPQ PQ
25:21 L

Addr Datajrsv |

2016 per DatafH v H

—JAddr 5, ”

ormat]
@——IIMMP
Addr
Mem (Decode)7 - - i
Port o dest. reg

Out

5

A

1)
ol|lo

Figure 10: Enhanced MIPS Implementation

23

6 Optimzied Adder Design

The delay encountered in a microprocessor’s ALU is a major
factor influencing the maximum frequency that the chip can
operate at. The delay encountered in the simple ALU in our
implementation of an optimized MIPS microprocessor depends
a great deal on the adder that makes up the ALU, and also the
register file. To further optimize the design and increase the
frequency at which the chip can be operated, both the register
file and the adder will have to be optimized.

The following is a discussion of the delays encountered in var-
ious VLSI adder implementations. A comparison of the delays
encountered in both static and dynamic implementations of var-
ious popular adder topologies is presented, drawn from various
published works.

In the course of VLSI processor design it is very important
to choose the adder topology that would yield the desired per-
formance. The speed of a VLSI adder depends on many factors:
the technology of implementation (and its own internal rules),
circuit family used for the implementation, sizing of transistors,
chosen topology of the VLSI adder, and many other second
order effect parameters. Knowles [4] has shown how different
topologies may influence fan-out and wiring density thus in-
fluencing design decisions and yielding better area/power than
known cases.

Logical Effort (LE) can be used to estimate the speed of var-
ious VLSI adders [1]. Logical Effort methodology takes into
account the fact that the speed of a digital circuit block is de-
pendent on its output load (fan-out) and its topology (fan-in).
Further, LE introduces technology independence by normaliz-
ing the speed to that of a minimal size inverter which makes

24

the comparisons of different topologies, implemented in differ-
ent technologies, possible.

The following are the results of performing critical path anal-
ysis using Logical Effort technique to compare performance, use-
ing several representative topologies, as published in [1]. The
adders that were examined were:

1. Static:

(a) Kogge-Stone (KS) radix-2 [5]
(b) Mux-based carry-select [2]
(c) Han-Carlson (HC) radix-2 [3, 7]

2. Dynamic:

(a) KS radix-2, Ling Adder [6]
(b) HC radix-2
(c) CLA adder with 4-bit grouping.

The results obtained using Logical Effort were compared with
the results obtained using H-SPICE simulation. The comparison
results are shown in Fig. 11.

Wire delays were accounted for by estimating the length of
the wire and assigning appropriate delay to it, however, the
portion of the wire delay was not significant (less than 10% of
the total delay) due to the proximity of the cells.

The obvious observation is that there is a huge difference
between Static CMOS and Dynamic CMOS implementations.
This demonstrates the dependency on logic design style, and
thus static CMOS adders are rarely seen in places where high
speed is required. Instead dynamic implementations like domino
logic are used.

25

__ Static CMOS Legic [] Legical Effort
14 +————mplementation————————- BasrcE-————— r =

12 4 i - - - *= —

Dynamic CMOS Iimplementation

Delay [No. of FO4)

KS MXA HC KS Ling HC CLA

Figure 11: Speed estimation of various VLSI adders using Logical Effort vs.
H-SPICE results

A more rigorous quantitative estimation and evaluation of
different VLSI adder topologies has been done in [8], which is
cited here. Before the analysis, it is necessary to characterize
the technology used. This step needs to be done only once,
but it improves the accuracy of the LE since the characteristics
of the technology are taken into account. Characterization is
performed using SPICE simulation of the gate delay for various
output loads driving a copy of itself, according to the LE rules.
This is repeated for each cell used in the logic library. Charac-
terization of dynamic gates requires special attention due to the
fact that only one transition is of interest. Obtained results are
compared to that of an inverter and parameters such as parasitic
delay (p) and effort (g) were normalized with respect to that of
an inverter. Select results are shown in Fig. 6 below:

This step preserves LE features, allowing delay results to be
presented in terms of fan-out of 4 (FO4) delay, relatively in-

26

0.10um technology, FO4=19pS

Gate type LE (g) P?;aliil; -
Inverter 1 1

Dyn. Nand 0.6 1.34
Dyn. CM 0.6 1.62
Dy, CM=-4N 1 3.71
Static CM 1.48 2.53
Mux 1.68 2.93
XOR 1.69 2.97

CM: Carry-Merge cell
Dyn: Dynamic

Figure 12: Normalized LE parameters

dependent of the technology of implementation. The LE-based
delay estimation tool works on the logic stages in the critical
path, assigning branch effort (bi), logical effort (gi) and para-
sitic effort (pi) to each gate (Fig. 13).

In computing the branch effort, we take into consideration the
worst-case interconnect at each stage. In a 64-bit Kogge-Stone
adder, the worst-case interconnect in stage 6 (CM C30) spans
32 bit-slices. We make an assumption that the adder bit-pitch
is 10um, which would result in a 320um wire. To account for
the propagation delay through a wire we incorporate an Elmore
delay model in Fig. 13, which corresponds to the critical-path
interconnect delay in the adder.

A comparison of representative VLSI adders implemented in
static and dynamic CMOS design style is presented in Fig. 14.
It is interesting to see that there are indeed very small speed
differences between the three fastest dynamic adders: KS, HC
and Quarternary (QT).

27

Frefix-2 Kogge-Stone (Static)

N Branch - Total Path Effort (Parasitic| Wire | Total | Total
Stages B Effort o] e Branch JoRILE Effort Fopt Delay | Delay | belay | Delay | Delay
SPan| py | @ | @) (8) {8} (F) M f ps | we) | ws | ws) | Foa)
g0 (MANDZ) 0 2.0 .11 1.84
CO (OAl) 2 2.2 1.55 2.6
C2Z (ACH 4 2.4 1.52 2,76
CB (DAl 8 2.8 1.65 2.26
C14 {ADY 16 35 1.82 2.76 | 6BE+03 |2.26E+01 |3.76E+04 | 3.22 106 a8 14 209 11.0
Can (DAl 32 52 1.55 2.26
CB2 {AD])] 1.0 1.52 2.76
SE3 (TEXORS) 0 1.0 1.56 2.59
INV {INV) 0 3.0 1.00 1.00
Prefix-2 i{owi -Stone {Dynamic)
Branch = Tetal Path Effort | Parasitic | Wire | Total | Tetal
Stages 5?31:“ Effort :;E} P'_”t;s}mc Branch TM;’JLE Effort F;?t Delay | Delay |Delay| Delay | Delay
(B} ! i (B} (F) (ps) ps {ps) (ps) (FO4)
g0 (Dk1NDZ) 0 2.0 1.02 1.34
Co (OAl 2 2.2 1.56 1.69
C2Z (DAGH 4 2.4 0.58 1.33
CE (DAl B 28 1.56 1.69
C14 {DAOIH 16 ie 068 1.33 1.66E+03 [1.26E+00 |2.09E+03 | 2.34 i 60 14 181 8.0
C30{OAl) 2 5:2 1.56 1.69
CB2 {DADI Li] 1.0 068 1.33
SB3 {TGXORs) 0 1.0 1.56 2,58
TNV (INV) 0 an 1.00 1.00

Figure 13: Delay Comparison of Static and Dynamic implementation of

Kogge-Stone Prefix-2 Adder

Total Path Effort Parasitic | Wire Total Delay
Adders Stages | Branch | Total LE | Effort fopt Delay Delay Delay | (pS) | (FO4)
(B) (G} (F) (pS) (pS) (pS)
Static MXA 15 11600 0.369 4280 1.75 96 93 14 203 10.7
Static KS 9 1660 22.6 37600 | 3.22 106 88 14 209 11
Static HC 10 1660 22.6 27600 2.87 105 92 14 212 11.1
Dynamic K8 9 1660 1.26 2090 2.34 77 G0 14 151 8.0
Dvnamic HC 10 1660 1.26 2090 2.15 79 64 14 157 8.26
Dynamic QT 10 1540 2.08 3220 224 82 68 8 158 8.3
Dynamic LNG | 10 1430 0.973 1400 2.00 76 70 15 161 8.47
Dynamic CLA 14 20600 0.627 12800 1.97 101 =1 12 195 10.26

Figure 14: Comparison of representative VLSI

(wire delay estimate included)

28

adders using Logical Effort

7 Functional Verification and Testing

Exhaustive testing and verification was carried to check the
functional and logical correctness of the implemented enhanced
MIPS architecture. First, a test program which tests all the
instructions of the ISA was written and was used as a bench-
mark to check the functional correctness of all the intermediate
designs as we went forward towards implementing our final en-

hanced MIPS.

The assembly code, and hexadecimal encoding of this code is

given in Fig. 15.

Program

Machine Code

; Code #1

; Testing Functional Correctness
addi $3, $0, 8
addi $4, $0, -2
add $5, $3, $4
sub $6, $3, $4
and $5, $3, $4
or $6, $3, $4
slt $5, $3, $4
beq $6, $5, 4
sb $6, 2($0)
1b $5, 2(80)
j 7

200300008
2001fffd
00642420
00643022
00642424
00643025
0064242a
10c50004
20060002
80050002
08000007

Figure 15: Functionality Test

Our final as well as the intermediate implementations passed
the test correctly i.e the execution trace and output was as ex-

pected.

Next a test code was made to test Data forwarding. Data
and control dependencies were created in this test case, and the

29

baseline and pipelined MIPS with dataforwarding was tested
against it. The Pipelined MIPS without dataforwarding was
halted at various positions due to data dependencies, and hence
took more cycles to execute the code, whereas MIPS with data
forwarding executed the code in lesser number of cycles, showing
the effectiveness of data forwarding.

The assembly code, and hexadecimal encoding of the code to
test effectiveness of data forwarding is given in Fig. 16.

Program Machine Code

; Code #2

; Fibonacci Numbers Program
addi $3, $0, 10 20030008
addi $4, $0, 1 20040001
addi $5. $0, -1 2005ffff

loop: beq $3, $0, end 10600005
add $4, $4, $5 00852020
sub $5, $4, $5 00852822
addi $3, $3, -1 2063ffff
J loop 08000003
sb $4, 255(%0) 000400£ff

Figure 16: Fibonacci Numbers Program

Finally, a test code was written to demonstrate the effec-
tiveness of Branch prediction. The final implementation with
Branch prediction was compared against various intermediate
designs, and the number of cycles taken to execute each code is
given in Fig. 18. Clearly a good branch predictor like BTFN re-
sults in significant increase in throughput of the entire pipeline,
hence increaing performance.

The assembly code, and hexadecimal encoding of the final
code to test branch prediction is given in Fig. 17.

The waveforms of final code (to test branch prediction) run-

30

Program

Machine Code

; Code #3

addi $3, $0, a
addi $4, $0, 1
addi $5, $0, -1

loop: add $4, $4, $5
sub $5, $4, $5
addi $3, $0, -1
bne $3, $0, loop
sb $4, 255($0)

; Fibonacci Numbers Program: Backward Loop

2003000a
20040001
2005ffff
00852020
00852822
2063ffff
1460fffc
a00400ff

Figure 17: Fibonacci Numbers Program With Backword Loop

Design

cycles for Code in Fig. 17

Baseline MIPS (32-bit) extended

Pipelined (No Data Forwarding and no prediction)
Pipelined (Data Forwarding, No Prediction)
Pipelined (Data Forwarding, Branch Prediction)

179
109
75
ol

Figure 18: Results and Comparison

ning on Pipelined MIPS with Data Forwarding but not Branch
prediction & Pipelined MIPS with Data Forwarding and Branch
prediction are attached as an Appendix to the report.

31

8 Results and Conclusion

The first change that we made to the basic design in [10] was to
extend the fetch bandwidth from 8-bit to 32-bit. This resulted
in a single-cycle fetch, which is a basic requirement for designing
a pipeline [9].

Next we implemented a 5-stage pipeline. The pipelining of
instructions took advantage of parallelism in hardware, thereby
resulting in greater throughput.

The addition of a pipeline resulted in various pipeline haz-
ards, viz., Structural, Data and Control Hazards. Structural
hazards were avoided by having separate instruction and data
caches, and by having a separate adder for incrementing the Pro-
gram Counter. Data Hazards were removed by using aggressive
Data Forwarding. Control Hazards were reduced by using an
effective branch prediction mechanism called BTFN.

A comprehensive and exhaustive test plan was developed to
check the functionality of the implemented design. First, a test
program which tests all the instructions of the ISA was written
and was used as a benchmark to check the functional correct-
ness of all the intermediate designs as we went forward towards
implementing our final enhanced MIPS. Qur final as well as
the intermediate implementations passed the test correctly i.e
the execution trace and output was as expected. Likewise, a
test program for verifying Data Forwarding was written. Fi-
nally, a test code was made to demonstrate the effectiveness
of Branch prediction. The final implementation with Branch
prediction was compared against various intermediate designs,
and the number of cycles taken to execute each code is given in
Fig. 19. Clearly a good branch predictor like BTFN results in
significant increase in throughput of the entire pipeline, hence

32

increasing performance.

Design # cycles for Code in Fig. 17
Baseline MIPS (32-bit) extended 179
Pipelined (No Data Forwarding and no prediction) 109
Pipelined (Data Forwarding, No Prediction) 75
Pipelined (Data Forwarding, Branch Prediction) 51

Figure 19: Results and Comparison

For quantitative comparisons of the various performance pa-
rameters of the base-level design as compared to the final pipelined
design, the Verilog implementations of both were synthesized
and further analyzed using Design Vision.

The Verilog files were read into Design Vision, linked and
compiled. The designs were found to be fully synthesizable.

A qualitative discussion of the results obtained is presented
below.

8.1 Power analysis

The baseline implementation was reported to have a dynamic
power consumption of 6.2159 W, where as the final implemen-
tation had a figure of 10.7881 W. The Design Vision reports for
power can be found in the Appendix.

The increase in power can be attributed to the increase in
the number of functional units. In the analysis reported here,
the dynamic power consumption due to switching activity in the
values stored in functional units such as the register file is not
taken into account by the software. However, even this simple
analysis shows the increase in dynamic power dissipation in our
final implementation over that in the initial baseline implemen-
tation.

33

8.2 Area analysis

The initial design was reported in Design Vision to have a total
area of 235822.875 units, whereas the final design was reported
in Design Vision to have a total area of 307056.843750 units. The
Design Vision reports for area can be found in the Appendix.

The increase in area can be explained on the basis of the
greater number of functional units in the final implementation.
In the final pipelined MIPS implementation, an extra adder had
to be incorporated so that the fetch stage and the execute stage,
both of which need adders, could be carried out in parallel. The
adder can be assumed to contribute almost half the total area
of 235822.875 units in the initial design. The effect of the extra
adder, as well as the contribution of a number of extra func-
tional units added to implement pipelining is evident from the
increased area of 307056.843750 units of the final implementa-
tion.

8.3 Timing Analysis

An analysis of the timing reports provided by Design Vision for
the two implementations shows interesting results. It is found
that both the basic implementation and the final pipelined im-
plementation have the same maximum clock frequency for the
above values of the areas. The Design Vision reports for timing
can be found in the Appendix.

A closer look at the timing reports shows that in the ini-
tial implementation, the maximum frequency is constrained by
the delay of the adder, which contributes 793.73ps out of the
1940ps of total delay time, where the maximum available time
is 2000ps. In contrast, in the final implementation, the maxi-

34

mum frequency is constrained by the delay of the register file,
which contributes 524.17ps out of the 940.78ps of total delay
time, where the maximum available time is 1000ps. This dif-
ference arises due to the different implementations of the two
designs. In the second design, the register file has only a half
clock cycle to produce its value, since it is designed to be acti-
vated on the negative edge of the clock cycle. This is necessary
in order to implement data forwarding while preserving the cycle
time.

This leads to the conclusion that in a final optimized version
of the pipelined MIPS, both the adder and the register file need
to be optimized. The size of conventional register files grow
linearly with respect to the number of registers. The increased
area contributes to greater delay. Additionally, the increase in
the complexity of the decode logic needed to access the various
registers in the register file also contributes to the delay. Sugges-
tions for efficient implementation of register files can be found
in various published works, most of which suggest hierarchical
implementations of the register file. In section 6 on page 24 we
have presented comparisions of performance of various adders,
taken from various published works.

At first glance, this timing analysis may seem to suggest that
no improvement was obtained by pipelining the baseline MIPS,
since the maximum achievable clock frequency is the same for
both implementations. However, we must remember that the
real advantage of pipelining is the increase in throughput, ac-
cording to the discussion already presented.

APR of the final pipelined implementation was done. Silicon
Ensemble Design Summary Report is attached at the end, with
the Layout of the chip.

35

References

[1]

(6]

[7]

8]

H. Dao and V. G. Oklobdzija. Application of logical ef-
fort techniques for speed optimization and analysis of rep-
resentative adders. In 85th Annual Asilomar Conference on
Signal, Systems and Computers, pages 272-279, 2001.

A. Farooqui, V. G. Oklobdzija, and F. Chehrazi. Multi-
plexer based adder for media signal processing. In Interna-
tional Symposium on VLSI Technology, Systems and Appli-
cations, 1999.

T. Han, D. A. Carlson, and S. P. Levitan. Vlsi design of
high-speed low-area addition circuitry. In Proceedings of the
IEEFE International Conference on Computer Design: VLSI
in Computers and Processors, pages 418-422, 1987.

S. Knowles. A family of adders. In IEEE Symposium on
Computer Arithmetic, pages 30-34, 1999.

P. M. Kogge and H. S. Stone. A parallel algorithm for the
efficient solution of a general class of recurrence equations.
In IEEFE Transactions on Computers, pages 786—793, 1973.

H. Ling. High speed binary adder. In IBM journal of Re-
search and Development, pages 156166, 1981.

S. K. Mathew. Sub-500-ps 64-b alus in 0.18m soi/bulk cmos:
design and scaling trends. In IEEE Journal of Solid-State
Circuits, pages 1636—1646, 2001.

V. G. Oklobdzija, B. R. Zeydel, H. Dao, S. Mathew, and
R. Krishnamurthy. Energy-delay estimation technique for

36

high-performance microprocessor vlsi adders. In IEEE Sym-
posium on Computer Arithmetic, pages 272279, 2003.

[9] D. A. Patterson and J. L. Hennessy. Computer Architecture
. A Quantitative Approach. Morgan Kaufmann, 1996.

[10] N. Weste and D. Harris. CMOS VLSI Design A Circuits
and Systems Perspective (8rd Edition). Addison Wesley,
2004.

37

