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1. Introduction

Markov decision processes (MDP) with an infinite planning horizon find im-

portant applications in many diverse disciplines. When a discounted cost criterion

is used, and the one-stage cost function is bounded, the corresponding dynamic pro-

gramming operator exhibits nice contractive properties which enable the develop-

ment of a rather complete theory, under very general conditions [3], [10]. The same

cannot be said of the average cost criterion. In this situation, usually a bounded

solution to the average cost optimality equation (ACOE) is sought, the existence

of which leads to, e.g., optimal stationary policies. However, the controlled process

must exhibit a sufficiently stable asymptotic behavior for the above to hold. Thus

the type of sufficient conditions available in the literature to guarantee the existence

of such bounded solutions imposes strong recurrence restrictions on the model, c.f.

[5], [6], [10], [11], [16], [20]. In this note, necessary conditions for the existence of a

bounded solution to the ACOE are presented. Our results hold under very general
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conditions, e.g. Borel state space, compact admissible action sets, and bounded be-

low lower semicontinuous cost function. Furthermore, the average cost is allowed

to depend on the initial state. We show that, e.g., if a bounded solution to the

ACOE exists, for a given cost function, then necessarily differences of discounted

costs are bounded, uniformly in the initial states. Furthermore, if the average cost

does not depend on the initial state, the latter holds uniformly with respect to the

discount factor. Thus, the necessary conditions presented here complement known

sufficient conditions, as examined in, e.g., [2], [5], [10], [6], [11], [17], [20]. It is

also noted that for some countable state space MDP and finite (core) state space

partially observable MDP, some of the conditions presented are both necessary and

sufficient for the existence of bounded solutions to the ACOE.

2. Notation and Preliminaries

Given a topological space W, its Borel σ-algebra will be denoted by B(W).

Following similar notation to that in [10], let {X,U, Q, c} denote a MDP, where the

state space X is a Borel space, i.e. a Borel subset of a complete separable metric

space; U denotes the control or action set, also taken as a Borel space. To each

x ∈ X, a nonempty compact set U(x) ∈ B(U) of admissible actions is associated.

Let K := {(x, u) : x ∈ X, u ∈ U(x)} denote the space of admissible state-action

pairs, which is viewed as a topological subspace of X × U. The evolution of the

system is governed by the stochastic kernel Q on X given K, i.e., Q(B| ·) is a

Borel measurable function on K, for each B ∈ B(X), and Q(· |x, u) is a probability

measure on B(X), for each (x, u) ∈ K. Finally, c : K → IR is the Borel measurable

one-stage cost function. Thus, at time t ∈ IN0 := {0, 1, 2, . . .}, the system is

observed to be in some state, say x ∈ X, and a decision u ∈ U(x) is taken. Then a

cost c(x, u) is accrued, and by the next decision epoch t+1, the state of the system

will have evolved to some value in B ∈ B(X) with probability Q(B|x, u). The

available information for decision-making at time t ∈ IN0 is given by the history of

the process up to that time ht := (x0, u0, . . . , ut−1, xt) ∈ Ht, where

H0 := X, Ht := Ht−1 × (U × X), H∞ := (X × U)∞

are the history spaces. With respect to their corresponding product topologies,

the above are Borel spaces [3], [10]. An admissible control policy, or strategy, is
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a sequence µ = {µt}t∈IN0 of stochastic kernels µt on U given Ht, satisfying the

constraint µt(U(x) |ht) = 1, for all ht = (ht−1, u, x) ∈ Ht. Of special interest is the

set of (nonrandomized) stationary policies: if there is a Borel measurable (decision)

function f : X → U, such that, for all t ∈ IN0, (i) f(x) ∈ U(x), for all x ∈ X, and

(ii) for all ht = (ht−1, u, x) ∈ Ht, µt({f(x)}|ht) = 1, then the corresponding policy

µ is said to be stationary. The set of all stationary policies will be denoted by S. We

will simply denote by µ(x) the action chosen by the stationary policy µ at x ∈ X.

Given the initial state of the process x ∈ X and a policy µ, the corresponding state

and control processes, {Xt} and {Ut} respectively, are random processes defined on

the canonical probability space (H∞, B(H∞), Pµ
x ) via the projections Xt(h∞) :=

xt and Ut(h∞) := ut, for each h∞ = (x0, u0, . . . , xt, ut, . . .) ∈ H∞, where Pµ
x is

uniquely determined [3], [10]. The corresponding expectation operator is denoted

by Eµ
x .

For a Borel measurable function v : W → IR, where W is a topological space,

we define

‖v‖ := sup
w∈W

{|v(w)|}, (1)

sp(v) : = sup
w,w′∈W

{v(w) − v(w′)}

= sup
w∈W

{v(w)} − inf
w′∈W

{v(w′)}.
(2)

Correspondingly, we denote the vector space of bounded, Borel measurable functions

v : W → IR by

Mb(W) :=
{
v : W → IR

∣∣ v is Borel measurable, ‖v‖ < ∞
}
.

Hence for v ∈ Mb(W), ‖v‖ and sp(v) give the supremum norm and the span semi-

norm of v, respectively. It is easy to check that sp(v) ≤ 2‖v‖, for all v ∈ Mb(W).

If v ∈ Mb(W), then define

v+ := v − inf
w∈W

{v(w)} (3)

v− := v − sup
w∈W

{v(w)}, (4)

and note that sp(v) = v+(w) − v−(w), for all w ∈ W. Due to (3) and (4), we

conveniently denote the supremum of v ∈ Mb(W) as v − v−, and its infimum as

v − v+. Also, L(W) will denote the collection of lower semicontinuous bounded

below functions f : W → IR, and Lb(W) := L(W) ∩Mb(W).
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3. The Average Cost Optimality Equation

The following two assumptions will be used subsequently, and are in effect

throughout, the second of which is made to guarantee the existence of “measurable

selectors,” c.f. [3, Section 7.5].

Assumption 3.1: There exists L ∈ IR such that L ≤ c(x, u), for all (x, u) ∈ K.

Assumption 3.2: One of the following holds:

(i) For each x ∈ X, U(x) is a finite set; or

(ii) c(· , ·) ∈ L(K), and
∫

f(y)Q(dy | · , ·) ∈ L(K), for each f(·) ∈ L(X).

Remark 3.1: A sufficient condition for
∫

f(y)Q(dy | · , ·) ∈ L(K) to hold, for each

f(·) ∈ L(X), is that Q is weakly continuous, i.e.,
∫

u(y)Q(dy | · , ·) is a continuous

function of K, for all continuous and bounded functions u : X → IR, c.f. [3, Ch.7].

For an initial state x the discounted cost (DC) accrued by policy µ, using a

discount factor 0 < β < 1, is given by

Jβ(x, µ) := lim
n→∞

Eµ
x

[
n∑

t=0

βtc(Xt, Ut)

]
,

and the optimal β-discounted value function is defined as

J∗
β(x) := inf

µ

{
Jβ(x, µ)

}
,

the infimum being taken over all admissible policies. Similarly, the long-run ex-

pected average cost (AC) accrued by policy µ is given by

J(x, µ) := lim sup
n→∞

1
n + 1

Eµ
x

[
n∑

t=0

c(Xt, Ut)

]
,

and the optimal average cost is defined as

J∗(x) := inf
µ
{J(x, µ)}.

If a policy µ is such that Jβ(x, µ) = J∗
β(x), for all x ∈ X, then it is said to be DC

optimal; AC optimal policies are similarly defined.

Remark 3.2: In view of Assumption 3.1, with no loss in generality, costs may be

taken as nonnegative when considering either the DC or AC optimal control prob-

lems, as given above.
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The undiscounted dynamic programming map T : L(X) → L(X), is defined as

T (f)(x) := inf
u∈U(x)

{
c(x, u) +

∫
X

f(y)Q(dy|x, u)
}

, ∀x ∈ X, (5)

and for 0 < β < 1, the discounted dynamic programming map Tβ is given as

Tβ(f) := T (βf). (6)

These maps, as well as their iterates, are well defined, c.f., [3, p. 148-149], and the

following properties can be immediately verified from (5).

Lemma 3.1: Let f ,f ′ ∈ L(X). Then

(i) for all k ∈ IR, T (f + k) = T (f) + k;

(ii) if f ≤ f ′, then Tf ≤ Tf ′.

Under Assumptions 3.1 and 3.2, the discounted cost optimality equation

(DCOE) holds:

J∗
β(x) = inf

u∈U(x)

{
c(x, u) + β

∫
X

J∗
β(y)Q(dy|x, u)

}

= Tβ(J∗
β)(x), ∀x ∈ X.

(7)

Furthermore, a stationary policy µ ∈ S is DC optimal if and only if µ(x) attains

the infimum in (7), for all x ∈ X, and one such policy exists [2], [3], [10]. Note that

J∗
β(x) = +∞ is not ruled out, and that J∗

β is not necessarily the unique fixed point

of Tβ , as is the case when c(· , ·) ∈ Lb(K) [3], [10].

If there are Borel measurable real-valued functions Γ and h on X, with h ∈
L(X), such that

Γ(x) + h(x) = inf
u∈U(x)

{
c(x, u) +

∫
X

h(y)Q(dy|x, u)
}

= T (h)(x), ∀x ∈ X,

(8)

then the pair (Γ, h) is said to be a solution of the ACOE. While the situation

involving discounted, possibly unbounded, costs corresponding to (7) is very well

understood, e.g. see [2], [3], [10], [14], [17], quite the opposite is true for the average

cost case, even for bounded costs [2], [10], [14], [17]. Indeed, the study of MDP with

an average cost criterion is an active area of research, e.g. see [4], [5], [6], [7], [8],
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[11], [13], [18], [19]. The interest in finding conditions that guarantee solutions to

(8) derives from the following result.

Theorem 3.1: Suppose that (Γ, h) is a solution to the ACOE, and that for each

admissible policy µ the following holds

lim
n→∞

Eµ
x

[
h(Xn)

n

]
= 0, ∀x ∈ X. (9)

Then

(i) lim sup
n→∞

1
n + 1

Eµ
x

[
n∑

t=0

Γ(Xt)

]
≤ J(x, µ),

and if µ ∈ S is such that µ(x) attains the infimum in (8), equality is attained above;

(ii) if Γ(x) = Γ∗ ∈ IR, for all x ∈ X, then Γ∗ = J∗(x), for all x ∈ X, any µ∗ ∈ S such

that µ∗(x) attains the infimum in (8) is AC optimal, and one such policy exists.

The proof of Theorem 3.1 is a simple extension of Theorem 2.2 in [9, p.53-55],

and will not be given here. Note that (i) above says that if Γ is taken as the cost

function to define the MDP {X,U, Q,Γ} then, for any admissible policy µ, the

average cost assessed under the cost function Γ does not exceed that under cost

function c.

Given the results above, naturally there has been considerable interest in find-

ing conditions which guarantee the existence of a bounded solution (Γ∗, h) to the

ACOE, with Γ∗ ∈ IR and h ∈ Lb(X), for then (9) is satisfied trivially, and (ii)

applies. However, the type of sufficient conditions available in the literature, for

such a solution to the ACOE to exist, impose a very restrictive recurrence structure

on the model under every stationary policy, see [5], [6], [10], [11], [16], [20]. For the

case of countable state space MDP and bounded costs, Cavazos-Cadena has shown

in [6] that the usual conditions used for the above effect are extremely restrictive,

in that these not only guarantee the existence of a bounded solution to the ACOE

for any cost function c ∈ Lb(K), but they also do so for a whole family of MDP. For

general state space MDP, Hernández-Lerma et.al. [11] have given a comprehensive

account of recurrence conditions used for the purpose above, and relations among

them. Also, given a bounded solution (Γ∗, h) to the ACOE, properties of policies

µ∗ ∈ S attaining the infimum have been recently investigated in [12]; see also [9].

Our objective is to exhibit some necessary conditions that complement known suf-

ficient conditions, as examined in, e.g., [2], [5], [6], [7], [8], [10], [11], [12], [14], [16],

[17], [20].
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4. The Necessary Conditions

Let T k
β denote the kth iterate of the discounted dynamic programming operator

(6). Note that given v ∈ Lb(X), then −‖v‖ ≤ v ≤ ‖v‖, and hence, by Lemma 3.1,

Tβ(0) − β‖v‖ ≤ Tβ(v) ≤ Tβ(0) + β‖v‖.

Then, under Assumptions 3.1 and 3.2, the following can be shown [2], [3], [10].

Lemma 4.1: For any v ∈ Lb(X), T k
β (v)(x) −→

k→∞
J∗

β(x), for all x ∈ X.

Suppose that (Γ, h) is a solution to the ACOE, and let k ∈ IR; then for h(x) :=

h(x) + k, we have that (Γ, h) is also a solution to the ACOE, as is easily seen

from (8). Thus (Γ, h+) and (Γ, h−) are also solutions to the ACOE, if (Γ, h) is a

solution with h ∈ Lb(X). The following result has been proved by Platzman [15]

for partially observable MDP , with both X and U finite; nevertheless, in this more

general setting the proof follows along similar lines.

Lemma 4.2: Suppose that (Γ, h) is a solution to the ACOE, with Γ ∈ Mb(X) and

h ∈ Lb(X). Then, for all x ∈ X,

h−(x) ≤ J∗
β(x) − Γ − Γ+

1 − β

and

h+(x) ≥ J∗
β(x) − Γ − Γ−

1 − β
.

Proof: For 0 < β < 1, note that 0 ≤ βh+ ≤ h+, and h− ≤ βh− ≤ 0. Hence, by (6)

and Lemma 3.1,

T (h−) ≤ T (βh−) = Tβ(h−).

Since (Γ, h−) is also a solution to the ACOE then, for all x ∈ X, we have

Γ(x) + h−(x) ≤ Tβ(h−)(x)

⇒ h−(x) ≤ Tβ(h−)(x) − 1 − β

1 − β
(Γ − Γ+), ∀x ∈ X.

(10)

Proceeding by induction, suppose that for some k ∈ IN

h−(x) ≤ T k
β (h−)(x) − 1 − βk

1 − β
(Γ − Γ+). (11)
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Multiplying both sides of (11) by β, using the first inequality in (10) and Lemma

3.1, we obtain

Γ(x) + h−(x) ≤ T (βh−)(x)

≤ T (βT k
β (h−))(x) − β − βk+1

1 − β
(Γ − Γ+).

Since T (βT k
β ) = T k+1

β , then after rearranging terms in the inequality above, the

following is obtained

h−(x) ≤ T k+1
β (h−)(x) − 1 − βk+1

1 − β
(Γ − Γ+),

completing the induction procedure.

Similarly, we obtain that

T k
β (h+)(x) − 1 − βk

1 − β
(Γ − Γ−) ≤ h+(x), ∀k ∈ IN.

Hence, taking limits as k → ∞, the result is obtained, by Lemma 4.1.

Remark 4.1: If Γ(x) = Γ∗ ∈ IR, for all x ∈ X, then from Lemma 4.2, it is obtained

that (1 − β)J∗
β(x) → Γ∗, uniformly in x, as β ↑ 1.

Our main results can now be easily proved.

Theorem 4.1: Suppose that (Γ, h) is a solution to the ACOE, with Γ ∈ Mb(X) and

h ∈ Lb(X). Then

(i) J∗
β ∈ Lb(X), for all 0 < β < 1, and

∣∣J∗
β(x) − J∗

β(y)
∣∣ ≤ sp(J∗

β) ≤ 2sp(h) +
sp(Γ)
1 − β

, ∀x, y ∈ X, ∀0 < β < 1.

Furthermore if (a) for every choice of cost function c ∈ Lb(K) there is a correspond-

ing solution to the ACOE (Γc, hc), with Γc ∈ Mb(X) and hc ∈ Lb(X), and (b) there

exists 0 < M < ∞ such that

‖hc‖ ≤ M‖c‖, ∀c ∈ Lb(K),

then

(ii)
∣∣J∗

β,c(x) − J∗
β,c(y)

∣∣ ≤ 4M‖c‖ +
sp(Γc)
1 − β

, ∀x, y ∈ X,∀0 < β < 1,∀c ∈ Lb(X),
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where J∗
β,c denotes the DC value function corresponding to the cost function c.

Proof: (i) Under Assumptions 3.1 and 3.2, J∗
β ∈ L(X) [3]. It then follows immedi-

ately from Lemma 4.2 that J∗
β ∈ Lb(X), since v+ and v− are both bounded. Now,

let x, y ∈ X and 0 < β < 1 be chosen arbitrarily; then∣∣J∗
β(x) − J∗

β(y)
∣∣ ≤ sp(J∗

β)

= sup
x′,y′

{[
J∗

β(x′) − Γ − Γ−

1 − β

]
−

[
J∗

β(y′) − Γ − Γ+

1 − β

]}
+

sp(Γ)
1 − β

≤ sup
x′,y′

{
h+(x′) − h−(y′)

}
+

sp(Γ)
1 − β

= sup
x′,y′

{
h(x′) − h(y′) + sp(h)

}
+

sp(Γ)
1 − β

= 2sp(h) +
sp(Γ)
1 − β

,

where Lemma 4.2 was used to obtain the second inequality.

(ii) Since

sp(hc) ≤ 2‖hc‖ ≤ 2M‖c‖,

then the result directly follows from (i) above.

From (i) in Theorem 4.1, we see that the existence of a bounded solution to

the ACOE necessarily imposes the boundedness condition J∗
β ∈ Lb(X). Usually, a

solution with Γ(x) = Γ∗ ∈ IR, for all x ∈ X, is required, giving that J∗(x) = Γ∗

independently of the initial state. For this case sp(Γ) = 0, and (i) in Theorem

4.1 implies then that {J∗
β(x) − J∗

β(y)} is uniformly bounded, over x, y ∈ X and

0 < β < 1. For the case when the state space X is countable, the action set U is

finite, and a cost function c ∈ Lb(K) is used, this uniform boundedness condition is

well known to be also a sufficient condition for the existence of a bounded solution

to the ACOE [2], [14], [17]. This has been extended by Sennott [18] to the case

when the cost function c is bounded below, but not necessarily bounded above,

under the additional assumption that J∗
β(x) < ∞, for all x ∈ X. These results are

shown using the vanishing discount method, i.e. by letting β ↑ 1 in the DCOE, c.f.,

[2], [14], [17], [18]. Also, for c ∈ Lb(K), X a countable set and, e.g., U a finite set,

Cavazos-Cadena [5] has shown, under additional assumptions (see Assumption 1.2

in [5]), that the conditions (a) and (b) stated in Theorem 4.1, with Γc a constant, are

together equivalent to some very strong recurrence conditions for {Xt}, under every
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admissible policy (see condition C3 in [5]); related issues are also treated in [6], [11].

For X a general Borel space, a finite action set U, and a bounded cost function

c ∈ Lb(K), Ross [16] has shown that if, in addition to a uniform boundedness

condition, the family {hβ}β∈(0,1) is equicontinuous, where for x0 ∈ X arbitrary but

fixed hβ(·) := J∗
β(·) − J∗

β(x0), then a bounded solution to the ACOE exists. For a

partially observable MDP, with a finite (core) state space X, it is well known that an

equivalent MDP can be associated with it, where the latter has as state space the

set of probability distributions on X [1], [2], [14]. It is shown in [15] that a uniform

boundedness condition in the equivalent MDP gives rise to a bounded solution to

the ACOE. Actually, it is shown in [9] that {hβ} is an equicontinuous family, and

thus the latter result follows as in [16]. We summarize some of our comments above

as follows.

Corollary 4.1: Let the MDP {X,U, Q, c} be such that U is a finite set, c ∈ Lb(K),

and either (a) the state space is countable, or (b) it is the equivalent MDP associated

with a partially observable MDP with finite (core) state space . Then the following

are equivalent:

(i) there exists M ∈ IR such that

∣∣J∗
β(x) − J∗

β(y)
∣∣ ≤ M, ∀x, y ∈ X, ∀0 < β < 1;

(ii) there exists a solution (Γ∗, h) to the corresponding ACOE, with Γ∗ ∈ IR and

h ∈ Lb(X).

5. Conclusions

Although it is a classical problem, the MDP with a long-run expected aver-

age cost criterion is still far from being completely understood. In this note, we

have presented necessary conditions for the existence of a bounded solution to the

ACOE. For some situations, some of these conditions are also sufficient for the ex-

istence of such a solution, as noted in Corollary 4.1. Thus, our results add a new

interesting facet to the understanding of these problems. In particular, it can now

be appreciated more clearly how restrictive it is to require bounded solutions to the

ACOE, which in turn motivates further studies dealing with unbounded solutions

to the ACOE, as in, e.g., [4], [8], [18], [19].
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