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Abstract

We consider partially observable Markov decision processes with finite or count-
ably infinite (core) state and observation spaces and finite action set. Following a
standard approach, an equivalent completely observed problem is formulated, with
the same finite action set but with an uncountable state space, namely the space of
probability distributions on the original core state space. By developing a suitable
theoretical framework, it is shown that some characteristics induced in the original
problem due to the countability of the spaces involved are reflected onto the equiva-
lent problem. Sufficient conditions are then derived for solutions to the average cost
optimality equation to exist. We illustrate these results in the context of machine
replacement problems. Structural properties for average cost optimal policies are
obtained for a two state replacement problem; these are similar to results available
for discount optimal policies. The set of assumptions used compares favorably to
others currently available.
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1. Introduction

Since the pioneering work of Bellman [BEL1] in the mid fifties, the field of
Markovian decision processes (MDP) has received sustained attention over the
years, giving rise to the development of a rich theory as presented in, e.g., [BE],
[BS], [DY], [HLM1], [HS], [KV], [RO3]. Furthermore, numerous applications have
been proposed within the realm of, e.g., operations research, economics, computer
and communication networks [DJW1], [DJW2], [DJW3], [STH], [WW]. Using a
stochastic approach, these models address the problem of decision-making under
uncertainty. If the state of the process is concealed from the decision-maker, i.e.,
only partial observations are available, then he/she is further faced with the problem
of estimating the state from the available information. Moreover, some parameters
of the model may be unknown and/or time-varying, and thus the need may arise
to treat the problem from an adaptive control standpoint [BEL2], [HLM1], [KV],
[VHE].

We study here partially observable MDP with finite or countably infinite state
and observation spaces, and finite action set [MO1]. Following a standard ap-
proach, an associated completely observed problem is formulated, with the same
finite action set but with an uncountable state space, namely the space of probabil-
ity distributions on the original state space. For several optimality criteria, these
two problems are equivalent, in the sense of equal optimal costs [BS], [HLM1]. In
particular, we consider the average cost criterion. For these problem, the partic-
ular structure of the problems considered is advantageously used, instead of using
general results from the theory of MDP with general (Borel) state space. We de-
velop a theoretical framework based on the notion of invariant subsets of an MDP.
Sufficient conditions are then given, for the existence of solutions to the associated
optimality equation. The conditions developed compare favorably with respect to
other available results, since they are in many cases easier to verify and appear to
be significantly less restrictive in general. We illustrate our results in the context of
two-state machine replacement problems, and with the aid of the optimality equa-
tion, structural results are obtained for the optimal policy. These results for the
optimization problem are important in their own right, and furthermore, they are
indispensable for the study of the adaptive control problem based on an enforced
certainty equivalence principle, c.f. [AM], [FAM1], [FAM2], [GE2], [HM], [MFA].

The paper is organized as follows. In Section 2 we give the statement of the
problem and collect the main results in the literature concerning partially observable
MDP, with both finite horizon and discounted cost optimization criteria, viewing
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these within the framework of Borel state space MDP. In Section 3, the average cost
optimality equation is discussed, and some related results are reviewed. Section 4
presents an extension of the standard vanishing discount approach to the partially
observable situation, leading to verifiable conditions that guarantee the existence
of solutions to the average cost optimality equation. In Section 5, monotone MDP
are discussed, and it is shown how the existence of reset actions leads easily to
the verification of conditions under which our results hold. In Section 6, a two-
state replacement problem is studied in detail, and the corresponding average cost
optimality equations are obtained for different special cases. Using these, structural
results are then obtained for average cost optimal policies, similar to known results
for discounted cost optimal policies. Finally, Section 7 presents a discussion of
some related results currently available in the literature, e.g. [OMK], [PL], and our
conclusions.

2. Partially Observable Markov Decision Processes (POMDP)

We are interested in those problems of discrete time optimal stochastic control
in which the state dynamics are governed by a Markovian law, and only partial ob-
servations of the state are available, i.e., POMDP. Specifically, we consider problems
within the following framework. Let X and Y be countable, linearly ordered sets;
thus without loss of generality, X = {0, . . . , NX} if X is finite, for some nonnegative
integer NX ∈ IN0 := {0} ∪ IN , or X = IN0 otherwise, and similarly for Y . Also,
let U be a finite, linearly ordered set, i.e., U = {0. . . . , NU}, NU ∈ IN0. We endow
these sets with their respective order topologies, which in this situation are equal
to their discrete topologies, denoted as, e.g., 2X . In general, for a topological space
W , B(W ) will denote its Borel σ-algebra. For the above spaces we thus have, e.g.,
B(X) = 2X . The system’s state process will be modelled as a finite state controlled
Markov chain with (“core”) state space X and action space U , and with transition
matrices {P (u)}u∈U . Assume for the moment that there is an underlying probabil-
ity space (Ω,F ,P). Hence, the core state process is given by a random process {xt}
on (Ω,F ,P), t ∈ IN0, where for a sequence of U -valued random variables {uk}t−1

k=0

on (Ω,F ,P), called the controls (or decisions), we have

P{xt+1 = j|xt = i, xt−1, . . . , x0;ut = u, ut−1, . . . , u0}

= [P (u)]i,j =: pi,j(u), t ∈ IN0.

Only partial observations of {xt}t∈IN0 are available in the form of a random pro-
cess {yt}t∈IN0 taking values in the observation space Y . The core and observation
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processes are related by

P{yt+1 = y|yt, . . . , y1;xt+1 = i, . . . , x0;ut = u, . . . , u0}

= P{yt+1 = y|xt+1 = i, ut = u} =: qi,y(u), t ∈ IN0,

which leads to the definition of a collection of observation matrices {Q(u)}u∈U such
that

Q(u) := [qi,y(u)]i∈X,y∈Y .

The sequence of events is assumed as follows: initially the system is in state
x0, a decision u0 is made, a transition to a state x1 has occurred by the beginning
of time epoch 1, and a first observation y1 becomes available; at the beginning of
time epoch t ∈ IN the system is in state xt, observation yt becomes available, and
action ut is taken; transition to a state xt+1 has occurred by the beginning of time
epoch t + 1, another observation yt+1 becomes available, and then a new decision
ut+1 is made; and so on.

It is assumed that the probability distribution of the initial state, p0 :=
[P{x0 = i}]i∈X ∈ ∆, is available for decision making, where ∆ := {p ∈ IRX :
p(i) ≥ 0,1′p = 1}; here, 1 denotes the (column) vector in IRX with all components
equal to one, “prime” denotes transposition, and p(i) denotes the ith component of
p. We endow ∆ with the topology induced by the metric d(· , ·) given by

d(p1, p2) :=
∑
i∈X

∣∣∣p(i)
1 − p

(i)
2

∣∣∣ = ‖p1 − p2‖1,

where ‖ · ‖1 is the standard �1-norm on IRX . Note that when X is a finite set, ∆ is
compact. The following is easily shown.

Lemma 2.1: (∆, d) is a Polish space, i.e., it is a complete and separable metric
space.

Recursively define the history spaces

H0 := ∆,

Ht := Ht−1 × U × Y, t ∈ IN,

H∞ := H0 × (U × Y )∞,

each equipped with its respective product topology. An element ht ∈ Ht, t ∈ IN0,
is called an observable history and represents the information available for decision
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making at time epoch t. Recall that a Borel space is a Borel subset of a Polish
space. It is straightforward to show that X, Y, U , and, by Lemma 2.1, ∆ are Borel
spaces, and hence so is Ht, t ∈ IN0 (see [BS, p.119]).

A Borel measurable stochastic kernel µt(· | ·) on U given Ht is a collection
of (discrete) probability distributions {µt(· |ht) : ht ∈ Ht} on (U, 2U ) such that
for each B ∈ 2U , µt(B| ·) is a measurable function on Ht. An admissible con-
trol law, policy or strategy µ is a sequence of stochastic kernels {µt(· | ·)}t∈IN0 , or
{µ0(· | ·), . . . , µn(· | ·)} for a finite horizon; µt(· | ·) is called the control law at time
t. If for each ht ∈ Ht, t ∈ IN0, µt(· |ht) is concentrated at a point in U , then
µt(· | ·) is said to be nonrandomized; similarly for a strategy µ. Thus, we can view
a nonrandomized strategy µ as a sequence of measurable maps µt : Ht → U .

Let c : X × U → IR be a given (measurable) map; c(x, u) is interpreted as the
cost incurred given that the system was in state x and control action u was selected.
The following assumption is made for the rest of the paper.

Assumption 2.1: 0 ≤ c(x, u), for all x ∈ X and u ∈ U .

Let Ω := (X × U) × (X × Y × U)∞, which is endowed with the respective
product topology, and let an initial distribution p0 and an admissible strategy µ be
given. Then there is a (unique) probability measure Pµ

p0
on (Ω,B(Ω)) induced by

p0 and the strategy µ, which satisfies the following consistency conditions (see [BS,
p.140-144 and 249]):

Pµ
p0

{
x0

}
= p0; Pµ

p0

{
ut = u |ht

}
= µt(u |ht), ht ∈ Ht;

Pµ
p0

{
xt+1 = j|xt = i, xt−1, . . . , x0;ut = u, ut−1, . . . , u0

}
= pi,j(u), t ∈ IN0.

Denote by Eµ
p0

expectation with respect to Pµ
p0

, or an appropiate marginal.
Then, to each admissible strategy µ and initial distribution p0, the following ex-
pected costs are associated.

Finite Horizon:

Jβ(µ, p0, n) := Eµ
p0

[
n∑

t=0

βtc(xt, ut)

]
, n ∈ IN0, 0 < β. (FH)

Discounted Cost:

Jβ(µ, p0) := lim
n→∞

Eµ
p0

[
n∑

t=0

βtc(xt, ut)

]
, 0 < β < 1. (DC)

July 21, 1995 Page 5



Average Cost:

J(µ, p0) := lim sup
n→∞

Eµ
p0

[
1

n + 1

n∑
t=0

c(xt, ut)

]
. (AC)

The optimal control (or decision) problem is that of selecting an (optimal)
admissible strategy such that one of the above criteria is minimized over all admis-
sible strategies, for all p0 ∈ ∆. The optimal (DC) value function is obtained as
Γβ(p0) := inf

µ
{Jβ(µ, p0) : µ is an admissible strategy}, for each p0 ∈ ∆. Similarly

denote by Γβ(· , n) and Γ(·) the optimal cost functions for the (FH) problem with
horizon n ∈ IN0, and the (AC) problem, respectively.

During the last two decades, it has been rigorously shown that a partial or im-
perfect observations stochastic control problem can be converted into an equivalent
problem with perfect observations [AS1], [BS], [HLM1], [SY], where the new state
must be an information state [KV]. Let pt ∈ IN0 denote the conditional probability
distribution of the (core) state process, whose ith component is given by

p
(i)
t := Pµ

p0
{xt = i|yt, . . . , y1;ut−1, . . . u0}, t ∈ IN,

and p0 is the given initial distribution. Then, assuming that Pµ
p0
{ht, ut, yt+1 = y} �=

0 a.s., for t ∈ IN0 and for each y ∈ Y , and using Bayes’ rule, it is easily shown
that (e.g. see [AS1], [KV, Sect. 6.6])

pt+1 =
∑
y∈Y

Qy(ut)P ′(ut)pt

1′Qy(ut)P ′(ut)pt

· I [yt+1 = y], t ∈ IN0, (2.1)

where I[A] denotes the indicator function of the event A and the matrices Qy(u)
are given by Qy(u) := diag {qi,y(u)}. If Pµ

p0

{
ht, ut, yt+1 = y

}
= 0 a.s., then the

corresponding term for yt+1 = y in (2.1) is defined conveniently. Note that pt is a
function of (yt, pt−1, ut−1), i.e., it is recursively computable given the most recent
information.

A separated admissible law for time epoch t is a Borel measurable stochastic
kernel µt(· | ·) on U given ∆. Separated admissible strategies are defined in the
obvious way. A nonrandomized separated admissible strategy is thus viewed as a
sequence of measurable maps µt : ∆ → U . When µt(· | ·) = µ(· | ·) for all values of
t, then the policy is said to be stationary. A nonrandomized separated admissible
law µ can be regarded as a nonrandomized admissible law via ht �→ µt(pt), where
pt is obtained from ht by applying (2.1) recursively. Let

T (y, p, u) := Qy(u)P ′(u)p, y ∈ Y, p ∈ ∆, u ∈ U ;
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V (y, p, u) := 1′T (y, p, u); T (y, p, u) := T (y, p, u)/V (y, p, u).

Then V (y, p, u) is interpreted as the (one-step ahead) conditional probability of the
observation being y given an a priori distribution p for the core state, under decision
u. Likewise, T (y, p, u) is interpreted as the a posteriori conditional probability
distribution of the core state given decision u was made, observation y obtained,
and an a priori distribution p. That is, for any admissible policy µ and any initial
distribution p0,

Pµ
p0
{yt+1 = y|ut = u, . . . , u0; yt, . . . , y1}

= Pµ
p0
{yt+1 = y|pt;ut = u} = V (y, pt, u),

[Pµ
p0
{xt+1 = i|ut = u, . . . , u0; yt+1 = y, yt, . . . , y1}]i∈X = T (y, pt, u).

In this notation, (2.1) can be written compactly in the form

pt+1 =
∑
y∈Y

T (y, pt, ut) · I [yt+1 = y] . (2.2)

2.1. An Equivalent Borel State Space MDP

We present some well known properties of the process {pt}; e.g., see [AS1],
[FG], [SY].

Lemma 2.2: (i) For any fixed sequence of actions {u0, u1, . . .} ⊆ U , the controlled
process {pt} is Markovian.

(ii) The transition kernel for the controlled Markov process {pt} is given by

Pµ
p0
{pt+1 ∈ B|pt = p;ut = u} =

∑
y∈Y

V (y, p, u)I[T (y, p, u) ∈ B]

=: K(B|p, u), B ∈ B(∆).

(2.3)

Since pt can be recursively updated via (2.1), given the observable history,
then {pt} is a completely observable controlled Markov process, the state space
of which is ∆, an uncountable Borel space. Let c(· , ·) be defined on ∆ × U as
c(p, u) := p′[c(i, u)]i∈X . In addition to Assumption 2.1, the following is assumed to
hold for the rest of the paper.

Assumption 2.2: For all p ∈ ∆ and u ∈ U , c(p, u) < ∞.
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Note that the above holds whenever X is finite, or when c(· , ·) is bounded.
Then a completely observable, finite horizon, optimal control problem, with state
space ∆, can be formulated as finding a separated admissible strategy which mini-
mizes, over all admissible strategies,

J ′
β(µ, p0, n) := Eµ

p0

[
n∑

t=0

βtc(pt, ut)

]
, (FH ′)

for all p0 ∈ ∆. The problems (DC ′) and (AC ′) are defined similarly. It is well
known that a separation principle holds for the problems listed above, i.e. these
problems have been shown to be equivalent, in the sense of equal minimum costs,
to their corresponding counterparts in the original POMDP, c.f. [AS1], [BE], [BS],
[HLM1], [KV], [SY]. Thus optimal cost are denoted as before, e.g., Γβ(·).

The above equivalent formulation falls within the framework of MDP with
general Borel state space (BMDP), as studied in, e.g., [BS], [HLM]: (∆, d) is a Borel
space, by Lemma 2.1, and K in (2.3) is a stochastic kernel on ∆ given ∆ × U .
Henceforth, given a POMDP, specified by {X, U, Y, Q, P, c}, we will refer to it by
its equivalent formulation, specified by {∆, U,K, c}, the latter being viewed as a
BMDP, and thus results from this general theory can be used in our context.

The specification of {Q(u)} affects the attainable optimal costs for {∆, U,K, c},
via its influence in K of (2.3). For the case when X and Y are finite sets, we say
that the decision process is completely observable (CO) if Q(u) = I, for all u ∈ U ,
where I is the identity matrix, and completely unobservable (CU) if

Q(u) =
1

NX + 1
[
1 | · · · | 1

]
, ∀u ∈ U.

Thus in a CO problem, observations give complete “information” on the core state,
and in a CU problem, observations do not convey any “information” about the
core state. Denote by Γ(co)

β (·) and Γ(cu)
β (·) the value functions associated with these

decision processes, respectively, and similarly for problems with a finite horizon.
Also, recursively define sets of (NX + 1)-dimensional vectors as follows

A−1 = {(0, 0, . . . , 0)′},

An = {
[
c(i, u)

]
i∈X

+ βP (u)
∑
y∈Y

Qy(u)αy : αy ∈ An−1, u ∈ U}, n ∈ IN0,

and note that the cardinality of these sets obeys the recursion

|An| ≤ |U | · |An−1||Y |
, n ∈ IN.
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Some important results are summarized below.

Theorem 2.1: (i) For an (FH ′) decision problem, Γβ(· , n) is concave in p ∈ ∆, for
all n ∈ IN0 and 0 < β. In addition, Bellman’s optimality equation holds

Γβ(p, n) = min
u∈U

{
c(p, u) + β

∑
y∈Y

V (y, p, u)Γβ(T (y, p, u), n − 1)
}

,

where any (nonrandomized) separated stationary policy which attains the minimum
above is optimal. Also, if X and Y are finite sets, then Γβ(· , n) is piecewise linear,
and it can be computed as

Γβ(p, n) = min
α∈An

{p′α}.

Furthermore

Γ(co)
β (p, n) ≤ Γβ(p, n) ≤ Γ(cu)

β (p, n).

(ii) For a (DC ′) decision problem, for all 0 < β < 1, Γβ(·) is concave. In addition,
Bellman’s infinite horizon optimality equation holds

Γβ(p) = min
u∈U

{
c(p, u) + β

∑
y∈Y

V (y, p, u)Γβ(T (y, p, u))
}

, (2.4)

where any (nonrandomized) separated stationary policy which attains the minimum
above is optimal. Also, if X and Y are finite sets, then

Γ(co)
β (p) ≤ Γβ(p) ≤ Γ(cu)

β (p).

Remark 2.1: The optimality equations of (a) and (b) are obtained from the general
theory of BMDP [BS], [HLM1]. For the other results, see [AS1], [AS2], [BE], [SO1],
[SO2], [SS].
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3. The Average Cost Optimality Equation

When a discounted cost criterion is used in a Markov decision problem with
bounded costs and general Borel state space, the corresponding dynamic program-
ming operator exhibits nice contractive properties which allow the development of
a rather complete theory. The same cannot be said of the average cost criterion,
for which it is much more difficult to obtain functional characterizations, and so-
lutions to these, for the optimal costs and policies. Stringent ergodicity conditions
[HLM1], [HMC], or equicontinuity assumptions [RO1] are usually required to obtain
such characterizations, which in our situation are as described below.

Definition 3.1: If there are real-valued functions J and h on ∆, such that, for all
p ∈ ∆,

J(p) + h(p) = min
u∈U

{
c(p, u) +

∑
y∈Y

V (y, p, u)h(T (y, p, u))
}

, (3.1)

then the pair (J, h) is said to be a solution to the average cost optimality equation
(ACOE).

The ACOE of (3.1) is a specialization, to our situation, of the corresponding
equation arising in general BMDP, c.f. [HLM1]. The following result can be obtained
easily from Theorem 2.2 in [HLM1, pp. 53-55].

Theorem 3.1: Suppose that (J, h) is a solution to the ACOE, and that for each
admissible policy µ and each p0 ∈ ∆, J(·) and h(·) are integrable with respect to
Pµ

p0
and

lim
n→∞

Eµ
p0

[
h(pn)

n

]
= 0. (3.2)

Then

(i) for each admissible policy µ and each p0 ∈ ∆

lim sup
n→∞

1
n + 1

Eµ
p0

[
n∑

t=0

J(pt)

]
≤ J(µ, p0), (3.3)

and if µ is a (nonrandomized) stationary separated policy such that µ(p) attains
the minimum in (3.1), equality is attained in (3.3);

(ii) if there a constant Γ∗ ∈ IR such that J(p) = Γ∗, for all p ∈ ∆, then Γ∗ = Γ(p),
for all p ∈ ∆, and if µ∗ is a (nonrandomized) stationary separated policy such that
µ∗(p) attains the minimum in (3.1), then µ∗ is average cost optimal.
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Remark 3.1: An interpretation of (i) above is that if J is taken as the cost function to
define the BMDP {∆, U,K, J}, then for any admissible µ, the average cost assessed
under the cost function J does not exceed that under cost function c.

A pair (Γ∗, h) is said to be a bounded solution to the ACOE if Γ∗ ∈ IR, and
h(·) is a bounded function on ∆. Given the results above, naturally there has
been considerable interest in finding conditions which guarantee the existence of
a bounded solution (Γ∗, h) to the ACOE, for then (3.2) is satisfied trivially, and
Theorem 3.1(ii) applies. However, the type of sufficient conditions available in
the literature, for such a solution to the ACOE to exist, impose a very restrictive
recurrence structure on the model under every stationary policy, c.f. [CC1], [CC2],
[HLM1], [HMC], [RO1], [RO3], [TH]. For the case of countable state space MDP and
bounded costs, Cavazos-Cadena has shown in [CC2] that commonly used sufficient
conditions are extremely restrictive, in that these not only guarantee the existence
of a bounded solution to the ACOE for any bounded cost function c(· , ·), but they
also do so for a whole family of MDP. For general state space MDP, Hernández-
Lerma et al. [HMC] have given a comprehensive account of recurrence conditions
used for the purpose above, and relations among them. On the other hand, it can
be shown that a necessary condition for the existence of a bounded solution to the
ACOE is that the following uniform boundedness condition holds.

(UB) There is a constant M > 0 such that

∣∣Γβ(p) − Γβ(p)
∣∣ ≤ M, ∀0 < β < 1, ∀p, p ∈ ∆.

Theorem 3.2: Suppose there is a bounded solution (Γ∗, h) to the ACOE. Then
condition (UB) is satisfied with M = 2 · sp(h), where

sp(h) := sup
p∈∆

{h(p)} − inf
p∈∆

{h(p)}.

For the case when X and Y are both finite, the result above can be inferred
from work by Platzman [PL], and for general BMDP, with cost not necessarily
bounded, it has been shown by Fernández-Gaucherand et al. [FAM4], [FG].
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4. The Vanishing Discount Approach Revisited

It is well known that for countable state space MDP with a bounded cost func-
tion, a uniform boundedness condition, similar to (UB), is sufficient for bounded
solutions to the corresponding ACOE to exist, c.f. [KV, pp.163-165], [BE, pp.311-
312], [RO3, pp.95-96]. This is shown using the vanishing discount approach, intro-
duced by Taylor [TA] in the context of some replacement problems. In this section,
we give conditions that allow the partition of ∆ into countable subsets, such that
the process {pt} will remain in the particular subset containing the given initial
distribution p0. We then use a vanishing discount approach to show that, if in
addition, condition (UB) holds, then there exists a bounded solution to the ACOE;
furthemore if instead of condition (UB) a weaker condition (UBGT ) holds, then
there exists a possibly unbounded solution to the ACOE.

Note that for fixed p ∈ ∆ and u ∈ U , the support of K(· | p, u) is countable: if
B(p, u) := {T (y, p, u) | y ∈ Y }, which is a countable set since Y is countable, then
K(B(p, u)|p, u) = 1. Thus, at any time epoch t ∈ IN0, the set of possible next states
for pt is the set

⋃
u∈U B(pt, u), which is countable since U is finite. Therefore, even

though ∆ is an uncountable Borel space, the BMDP {∆, U,K, c} has a very special
structure. This has also been noticed previously by others, c.f. [AS1, p. 187], [SO1,
p. 19-20], [PL, p. 369]. However, the first formulation that extensively exploited
this fact is that in [FAM3], where it was shown how the analysis could be reduced
to a countable state space. We substantially improve upon this formulation in the
sequel.

Definition 4.1: (i) For each p ∈ ∆ the sets of ancestors and descendants of p are
defined, respectively, as

Ap :=
{

s ∈ ∆ : ∃n ∈ IN0, y
n+1 = {y1, . . . , yn+1} ⊆ Y,

un = {u0, u1, . . . , un} ⊆ U, for which p = T (yn+1, s, un)
}

,

and

Dp :=
{

s ∈ ∆ : ∃n ∈ IN0, y
n+1 = {y1, . . . , yn+1} ⊆ Y,

un = {u0, u1, . . . , un} ⊆ U, for which s = T (yn+1, p, un)
}

,

where the maps above are given recursively as

T (y1, · , u0) = T (y1, · , u0),

T (yn+1, · , un) = T (yn+1, T (yn, · , un−1), un); n ∈ IN.

July 21, 1995 Page 12



(ii) The set of relatives of p ∈ ∆ is defined as

R(1)
p := Ap ∪ {p} ∪ Dp.

Then, R
(1)
p contains all the points that either lead to or are derived from p, in

any finite number of steps, via repeated applications of T (y, · , u), for any combi-
nation of observations in Y and actions in U . Our definition of the sets Dp is an
extension, to our context, of Doob’s concept of consequent sets [DB, p.206], and one
may intuitively think of Dp as the “reachable” set, starting at p. Furthermore, note
that Dp is a countable set, but Ap is an uncountable set, in general. The following
condition will be assumed to derive our main results; it will then be shown that a
weaker condition can be used, and the same results are obtained.

(C) For all y ∈ Y , u ∈ U , and p ∈ ∆, T−1(y, p, u) is a countable set.

Lemma 4.1: Assume that condition (C) holds. Then R
(1)
p is a countable set, for

any p ∈ ∆.

Proof: By its definition Dp is countable, for any p ∈ ∆, since T (y, · , u) is a well
defined map for any y ∈ Y and u ∈ U . Furthermore, since the countable union of
countable sets is itself countable, then Ap is countable, under the given assumptions.
This gives the result. Q.E.D.

Remark 4.1: Clearly, condition (C) holds if T (y, · , u) is an injective map, for any
y ∈ Y and u ∈ U . For the case when X and Y are both finite, conditions for
T (y, · , u) to be injective are given in the following lemma.

Lemma 4.2: Assume that both X and Y are finite sets, and let y ∈ Y and u ∈ U

be given. The map T (y, · , u) is injective if Qy(u) and P (u) are both nonsingular.

Proof: Let p, p ∈ ∆, then
T (y, p, u) = T (y, p, u)

⇔ T (y, p, u) =
V (y, p, u)
V (y, p, u)

T (y, p, u)

⇔ Qy(u)P ′(u)
(

p − V (y, p, u)
V (y, p, u)

p

)
= 0

⇔ V (y, p, u)p = V (y, p, u)p

Since 1′p = 1′p = 1, then V (y, p, u)p = V (y, p, u)p if and only if p = p. Hence the
result follows. Q.E.D.
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Definition 4.2: For p ∈ ∆, define its genealogical tree GTp as

GTp :=
⋃

n∈IN

R(n)
p ,

where the sets R
(n)
p are defined recursively as

R(n+1)
p :=

⋃
s∈R

(n)
p

R(1)
s , n ∈ IN.

Then if condition (C) holds, R
(n)
p is a countable set, for each n ∈ IN , by Lemma

4.1, and thus GTp is also a countable set.

The following result will be used in subsequent sections.

Lemma 4.3: Let q, s, p ∈ ∆.

(i) If q ∈ R
(n)
p and s ∈ R

(m)
q , for some n, m ∈ IN , then s ∈ R

(n+m)
p .

(ii) If q ∈ R
(n)
p , then p ∈ R

(n)
q .

(iii) If q ∈ GTp, then GTq = GTp.

Proof: (i) Fix n ∈ IN arbitrarily. If q ∈ R
(n)
p and s ∈ R

(1)
q , then it follows from

the definition of R
(n+1)
p that s ∈ R

(n+1)
p . Proceeding by induction, suppose that

for some m ∈ IN , if q ∈ R
(n)
p and s ∈ R

(m)
q , then s ∈ R

(n+m)
p . Now let q ∈ R

(n)
p

and s ∈ R
(m+1)
q ; then there exists r ∈ R

(m)
q such that s ∈ R

(1)
r . By the induction

hypothesis, we have that r ∈ R
(n+m)
p , and thus s ∈ R

(n+m+1)
p , completing the

induction procedure.
(ii) It is clear that if q ∈ R

(1)
p , then p ∈ R

(1)
q . Proceeding by induction, suppose

that for some n ∈ IN , if q ∈ R
(n)
p , then p ∈ R

(n)
q , . Let q ∈ R

(n+1)
p ; then there

exists s ∈ R
(n)
p such that q ∈ R

(1)
s . Since s ∈ R

(1)
q , and by the induction hypothesis

p ∈ R
(n)
s , then by (i) we conclude that p ∈ R

(n+1)
q , completing the induction

procedure.
(iii) Let q ∈ GTp; then q ∈ R

(n)
p , for some n ∈ IN . Let s ∈ GTq; then s ∈ R

(m)
q ,

for some m ∈ IN . Hence, by (i) we have that s ∈ R
(n+m)
p , and thus s ∈ GTp.

Therefore, we have that GTq ⊆ GTp. Now, let s ∈ GTp; then s ∈ R
(m)
p , for some

m ∈ IN . Since by (ii) p ∈ R
(n)
q , then we conclude from (i) that s ∈ R

(n+m)
q , and

thus s ∈ GTq. Therefore, we have that GTp ⊆ GTq, and hence GTq = GTp. Q.E.D.
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4.1. Controlled Sub-MDP

Let us consider the BMDP specified by {∆, U,K, c}.

Definition 4.3: Let B ∈ B(∆).

(i) B is said to be positively invariant if Dp ⊆ B, for all p ∈ B.

(ii) B is said to be invariant if it is positively invariant, and if Ap ⊆ B, for all
p ∈ B.

The above definition of positively invariant sets is an extension, to our context,
of the concept as introduced by Doob [DB, p.206]. Very importantly, note that
if B ∈ B(∆) is a positively invariant set, then {B, U,K, c} is also a BMDP. Since
B ⊆ ∆, then {B, U,K, c} will be called a sub-MDP of {∆, U,K, c}. The concept of
sub-MDP has been used also by Kurano [KU2],[KU3], in a different context but for
similar purposes.

For any p ∈ ∆, it is clear from our definitions that Dp is the smallest positively
invariant set containing p, and that GTp is the smallest invariant set containing
p. Therefore {Dp, U,K, c} and, if condition (C) holds, {GTp, U,K, c} are countable
state space sub-MDP of {∆, U,K, c}, where for p1, p2 ∈ Dp, their state transition
matrices have elements given by K({p2} | p1, u). The idea is then to appropriately
use known results for countable state space MDP, in the analysis of the uncountable
state space MDP specified by {∆, U,K, c}.

Under condition (UB), it follows that for any p ∈ ∆,
∣∣hβ(·)

∣∣ ≤ M , uniformly
in β ∈ (0, 1), where for each 0 < β < 1 and p ∈ ∆,

hβ(p) := Γβ(p) − Γβ(p). (4.1)

For our purposes, the following conditions can be used instead of condition (UB).

(UBGT ) There is a p ∈ ∆, such that for each p ∈ ∆

|hβ(s)| ≤ Mp, ∀0 < β < 1, ∀s ∈ GTp,

for some constant Mp > 0.

(UBD) There is a p ∈ ∆, such that for each p ∈ ∆

|hβ(s)| ≤ Mp, ∀0 < β < 1, ∀s ∈ Dp,

for some constant Mp > 0.
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Obviously, (UB) implies (UBGT ), and (UBGT ) implies (UBD). The next
result is similar to those given in [SEN], for countable state space MDP, and in
[HL], for BMDP.

Lemma 4.4: Assume that condition (UBD) holds. Then for each p ∈ ∆, there is a
constant Mp > 0 such that

0 ≤ (1 − β)Γβ(p) ≤ Mp, ∀0 < β < 1.

Proof: By Assumption 2.1 and the optimality equation (2.4), we have that for any
u ∈ U

0 ≤ (1 − β)Γβ(p) ≤ c(p, u) + β
∑
y∈Y

V (y, p, u)Γβ(T (y, p, u)) − βΓβ(p)

= c(p, u) + β
∑
y∈Y

V (y, p, u)hβ(T (y, p, u)) − βhβ(p),

for each p ∈ ∆ and 0 < β < 1. Thus

0 ≤ (1 − β)Γβ(p) ≤ c(p, u) + 2Mp. Q.E.D.

Since for each p ∈ ∆, the MDP specified by {Dp, U,K, c} has a countable
state space, then under assumption (UBD) a vanishing discount approach may be
followed to obtain the next result.

Theorem 4.1: Assume that condition (UBD) holds, and for any p ∈ ∆ consider the
MDP specified by {Dp, U,K, c}. Then

(i) there is a constant Γ∗ ∈ IR and a function hDp : Dp → [−Mp, Mp] such that

Γ∗ + hDp
(s) = min

u∈U

{
c(s, u) +

∑
y∈Y

V (y, s, u)hDp
(T (y, s, u))

}
, ∀s ∈ Dp; (4.2)

(ii) any (nonrandomized) separated stationary policy that attains the minimum in
(4.2) is average cost optimal, one such policy exists, and the minimal average cost
is Γ(s) = Γ∗, for all s ∈ Dp;

(iii) we have that

(1 − β)Γβ(p)−→
β↑1

Γ∗.
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Proof: Let {βn} ⊆ (0, 1) be a given sequence, such that βn ↑ 1. By Lemma 4.4 and
via the Bolzano-Weierstrass Theorem [BA, p.108], with no loss in generality we may
assume that {βn} is such that (1 − βn)Γβn(p) converges to a point Γ∗ ∈ [0,Mp],
that is

(1 − βn)Γβn
(p) −→

βn↑1
Γ∗.

Now, let p ∈ ∆ be chosen and consider the set Dp. For any s ∈ Dp, rewrite the
discounted cost optimality equation (2.4) as

(1 − βn)Γβn
(p) + hβn

(s) = min
u∈U

{
c(s, u) + βn

∑
y∈Y

V (y, s, u)hβn
(T (y, s, u))

}
. (4.3)

Since
∣∣hβn

(s)
∣∣ ≤ Mp, for all s ∈ Dp, then via the Bolzano-Weierstrass Theorem and

a Cantor Diagonalization argument [BA, p.24], there is a subsequence βnk
↑ 1 such

that
hβnk

(s) −→
βnk

↑1
hDp(s), ∀s ∈ Dp,

for some function hDp : Dp → [−Mp, Mp]. Then taking limits in (4.3) as βnk
↑ 1,

and using the Bounded Convergence Theorem [BA, p.242], [RY, p.81-82], equation
(4.2) is obtained, proving (i). Since hDp(·) is bounded on Dp, and since U is finite,
then by standard arguments, e.g., see [BE, p.311-312], [KV, p.163-165], [RO3, p.95-
96], [HLM1, p.52-55], (ii) follows. Finally, since βn ↑ 1 was arbitrary, and since by
(ii) Γ∗ gives the optimal average cost, (iii) follows. Q.E.D.

Remark 4.2: From the proof of Theorem 4.1, note that Γ∗ does not depend on
the particular set Dp considered, and thus it gives the optimal average cost for
{∆, U,K, c}. Therefore condition (UBD) induces a uniformity among all the posi-
tively invariant sets Dp, in the sense of equal optimal average costs.

4.2. A Solution to the ACOE

We have shown in Theorem 4.1 that if condition (UBD) holds, then there is a
bounded solution to the ACOE on each invariant set Dp, for all p ∈ ∆. Furthermore,
under this assumption, the same optimal average cost is attained on each invariant
set Dp. However, the method of proof used in Theorem 4.1 does not lead to a well
defined function h(·) on all of ∆, since even if for p1, p2 ∈ ∆, such that Dp1

⋂
Dp2 =

φ, it may be the case that GTp1 = GTp2 . Next, an equivalence relation is defined
on ∆, which is used to circumvent this problem.

Definition 4.4: Let p, q ∈ ∆. We say that p ∼ q if GTp = GTq.
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It follows trivially that “∼” defines an equivalence relation on ∆, see [RY, p.
22]. Furthermore, from Lemma 4.3(iii), we see that the equivalence classes defined
by “∼” are the sets GTp. Hence, if condition (C) holds, the collection of equivalence
classes ∆/ ∼ is a partition of ∆ into countable subsets. Therefore, if conditions (C)
and (UBGT ) hold, the method of proof of Theorem 4.1 can be used to obtain the
following.

Theorem 4.2: Assume that conditions (C) and (UBGT ) hold. Then

(i) there is a solution (Γ∗, h), with Γ∗ ∈ IR, to the ACOE

Γ∗ + h(p) = min
u∈U

{
c(p, u) +

∑
y∈Y

V (y, p, u)h(T (y, p, u))
}

,∀p ∈ ∆; (4.4)

(ii) h : ∆ → IR is such that for each p ∈ ∆,
∣∣h(s)

∣∣ ≤ Mp, for all s ∈ GTp;

(iii) any (nonrandomized) stationary separated policy that attains the minimum in
(4.4) is average cost optimal, one such policy exists, and the minimal average cost
is Γ(p) = Γ∗, for all p ∈ ∆;

(iv) we have that
(1 − β)Γβ(p)−→

β↑1
Γ∗.

Proof: Let {βn} ⊆ (0, 1) be a given sequence, such that βn ↑ 1, and as in Theorem
4.1, assume with no loss in generality that

(1 − βn)Γβn(p) −→
βn↑1

Γ∗.

As in the proof of Theorem 4.1(i), a function hGTp : GTp −→ [−Mp, Mp] can be
obtained, for each p ∈ ∆, such that (Γ∗, hGTp

) is a solution to the ACOE on GTp.
Since ∆ is partitioned into the sets GTp, a function h : ∆ −→ IR can be well defined
as

h(p) := hGTp(p), ∀p ∈ ∆.

Then, (Γ∗, h) is a solution to the ACOE on all of ∆, showing (i). Furthermore,
under condition (UBGT ), parts (ii)-(iv) follow as in Theorem 4.1. Q.E.D.

Remark 4.3: Note that if condition (UB) holds, then from Theorem 4.2(ii), we
conclude that a bounded solution to the ACOE exists. On the other hand, condition
(UBGT ) guarantees the existence of a possibly unbounded solution to the ACOE;
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the latter resembles other recent results in the area of MDP with an average cost
criterion, e.g., [BOR], [GM], [HL], [SEN].

The results in Theorem 4.1 and Theorem 4.2 were derived under the assumption
that condition (C) held. These results remain valid under the assumption that the
following weaker condition holds.

(C ′) The action set U can be partitioned as U = U1 ∪ U2, such that:

(i) T−1(y, p, u) is a countable set, for all y ∈ Y , u ∈ U1, and p ∈ ∆,

(ii) the set {T (y, p, u)|y ∈ Y, p ∈ ∆, u ∈ U2} is finite.

Corollary 4.1: Assume that conditions (C ′) and (UBGT ) hold. Then the conclu-
sions of Theorem 4.2 hold.

Proof: Let {βn} ⊆ (0, 1) be a given sequence, such that βn ↑ 1, and as in Theorem
4.1, assume with no loss in generality that

(1 − βn)Γβn(p) −→
βn↑1

Γ∗.

By our hypotheses,
{
hβn(T (y, p, u)|y ∈ Y, p ∈ ∆, u ∈ U2

}
is a finite set, which is

bounded by M := min
{
MT (y,p,u)|y ∈ Y, p ∈ ∆, u ∈ U2

}
, uniformly in βn, and thus

there is a subsequence βnk
↑ 1 such that

hβnk
(T (y, p, u)) −→

βnk
↑1

h(T (y, p, u)).

Then using {βnk
}, the proofs of Theorem 4.1 and Theorem 4.2 can be paralleled

for the terms corresponding to u ∈ U1 in (4.3), leading to well defined limits h(p),
for all p ∈ ∆. Q.E.D.

Remark 4.4: The set in (ii) of condition (C ′) may also be taken to be countable,
but then condition (UB) must hold in order to obtain the results of Corollary 4.1.

Next, a simple generalization of the concept of Blackwell optimality, as given
in [BE, p.339], is formulated for particular actions. This result will be needed in
subsequent sections.

Lemma 4.5: Assume that condition (UBD) holds. Then

(i) for a given p ∈ ∆, it is average cost optimal to take action “a” at p, denoted
as µ∗(p) = a, if there is a sequence {βn} ⊆ (0, 1), with βn ↑ 1, such that it is
βn-discount optimal to take action “a” at p, denoted as µ∗

βn
(p) = a;
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(ii) if µ∗(p) = a is the only average cost optimal action to take at p ∈ ∆, then
there is a sequence {βn} ⊆ (0, 1), with βn ↑ 1, such that it is βn-discount optimal
to take action µ∗

βn
(p) = a at p ∈ ∆.

Proof: (i) Let {βn} ⊆ (0, 1), with βn ↑ 1, and assume that µ∗
βn

(p) = a attains
equality in (4.3). Then, by taking limits along an appropriate subsequence {βnk

},
as in the proof of Theorem 4.1, we conclude that action µ∗(p) = a attains equality
in (4.1), and hence is average cost optimal, by Theorem 4.1 and Remark 4.2.
(ii) Suppose that µ∗(p) = a is the only action which is average cost optimal at
p ∈ ∆, but that there does not exists a sequence {βn} ⊆ (0, 1), with βn ↑ 1, such
that µ∗

βn
(p) = a. Then, since the action set is finite, for each sequence {βn} ⊆ (0, 1),

with βn ↑ 1, there is a subsequence βnk
↑ 1, such that µ∗

βnk
(p) = u, for some u �= a,

which by part (ii) leads to a contradiction. Q.E.D.

5. Monotone POMDP

Let {∆, U,K, c} be the (equivalent) specification of a POMDP. Suppose that a
partial order “≺” has been defined on ∆, and let “≺u” denote the linear order given
for U . We use the notation {(∆,≺), (U,≺u),K, c} to make explicit what specific
order relations are being used.

Definition 5.1: Consider {(∆,≺), (U,≺u),K, c}, and let p1, p2 ∈ ∆. We say that:

(i) the value functions are monotone if

p1 ≺ p2 ⇒ Γβ(p1) ≤ Γβ(p2), ∀ 0 < β < 1,

(ii) a (nonrandomized) stationary separated policy µ is monotone if

p1 ≺ p2 ⇒ µ(p1) ≺u µ(p2).

Two frequently used partial orders on ∆ are the stochastic dominance ≺st and
the monotone likelihood ratio ≺lr, defined below.

Definition 5.2: Let p1, p2 ∈ ∆; we say that:

(i) p1 ≺st p2 if
∑
i≥q

p
(i)
1 ≤

∑
i≥q

p
(i)
2 , for all q ∈ X, and

(ii) p1 ≺lr p2 if p
(j)
1 p

(i)
2 ≤ p

(i)
1 p

(j)
2 , for all i, j ∈ X such that i ≤ j.
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Remark 5.1: When NX = 1, it follows easily that ≺st and ≺lr are equivalent total
orders on ∆; furthermore, by (uniquely) identifying each p ∈ ∆ with its second
component, then ≺st and ≺lr are equivalent to the standard order in IR.

Let ej denote the element of ∆ with the jth component equal to 1, j ∈ X; thus,
e.g., e0 = (1, 0, 0, . . .). The following is easily shown.

Lemma 5.1: (i) If p1, p2 ∈ ∆ and p1 ≺lr p2, then p1 ≺st p2.

(ii) For all p ∈ ∆, e0 ≺lr p.

Structural properties of sequential decision processes, e.g., the monotonicity
notions defined above, give very useful information that may be advantageously
used in several ways. For example, monotonicity of the value functions and optimal
strategies may be exploited to design efficient computational algorithms, or it may
suggest suboptimal strategies, which may be simple to implement but yield a near
optimal performance. In a very general framework, Porteus has given conditions
that imply that both value functions and optimal control strategies exhibit given
structural properties [KPO], [PO1], [PO2]. As will be shown, monotonicity prop-
erties of the value function and the availability of reset actions can be combined to
yield that condition (UB) holds.

5.1. Reset Actions

An action uj ∈ U is called a reset action if, for some j ∈ X, T (y, p, uj) = ej ,
for all y ∈ Y and p ∈ ∆. This corresponds to the core state of the system being
j, with probability one, at the next time epoch after action uj has been taken.
Hence P ′(uj) has all columns equal to ej . This type of action arises naturally in
manufacturing systems subject to inspection, maintenance, and replacement. The
following results derive from the work of Sondik [SO1].

Lemma 5.2: (i) If there exists a reset action uj ∈ U , then

Γβ(p) − Γβ(ej) ≤ c(p, uj), ∀p ∈ ∆, (5.1)

(ii) if X is finite, and for each j ∈ X there is a corresponding reset action, then for
each β ∈ (0, 1) there exists J ∈ X such that

0 ≤ Γβ(p) − Γβ(eJ) ≤ M, ∀p ∈ ∆,

where M := max
{
c(i, u) | i ∈ X, u ∈ U

}
.

July 21, 1995 Page 21



Proof: (i) We have that

Γβ(p) = min
u∈U

{
c(p, u) + β

∑
y∈Y

V (y, p, u)Γβ(T (y, p, u))
}

≤ c(p, uj) + Γβ(ej),

and the result follows. (ii) Recall that Γβ(·) is concave, for each β ∈ (0, 1), and thus
it attains its minimum at a (vertex) ej , since X is finite. Let J ∈ X be such that
the minimum is attained at eJ , and note that it depends on β ∈ (0, 1), in general.
Since costs are assumed to be positive, then

0 ≤ Γβ(p) − Γβ(eJ) ≤ c(p, uJ) + βΓβ(eJ) − Γβ(eJ)

≤ M − (1 − β)Γβ(eJ) ≤ M,

and thus the result follows as above, see [SO1, p.195-196]. Q.E.D.

Remark 5.2: Note that if Γβ(·) is monotone with respect to ≺lr, and if there is
an action u0 ∈ U that resets the state to e0, then 0 ≤ Γβ(p) − Γβ(e0) ≤ c(p, u0),
uniformly in β ∈ (0, 1). Thus, if c(s, u0) ≤ Mp, for all s ∈ GTp, for some constant
Mp > 0, then condition (UBGT ) holds. Furthermore, note that when X is finite,
a constant M > 0 exists such that c(p, u0) ≤ M , for all p ∈ ∆, and thus condition
(UB) holds.

Models with a replacement action that resets the system to an “as new” state
e0 have been considered in, e.g., [AKU], [LO2], [OKM], [OMK], [RO2], [WA1],
[WA2], [W1], [W2], [W3], [W4], [W5]. Related problems are those considered in
[FI], where a reset action to a most desirable state is available, and in [HW], where
(maintenance) reset actions uj are available for all j �= 0, with X a finite set. Also,
two-state replacement problems have been considered in the context of adaptive
control in [FAM1], [FAM2], [GE2], [HM], [MFA]. Condition (C ′) is satisfied for
most of the cases considered in, e.g., [AKU], [FAM1], [FAM2], [FI], [HW], [MFA],
[RO2], [W1], [WA1], [WA2], and thus the results of Theorem 4.2 and Corollary 4.1
are applicable to a large number of the models above. Some of the models above
do not satisfy condition (C ′); however, a special case of each of these, namely when
Qy(u) and P (u) are injective, for all y ∈ Y and all non-reset actions u, leads to
condition (C ′) being satisfied, by Lemma 4.2.
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6. The Two-State Replacement Problem

We consider now in detail a replacement problem for a production unit in
a manufacturing system, that may be in either of two states: a good (0) or a
failed (1) state. The three available actions are to produce with the current unit
(0), to produce with the current unit and at the same time inspect it (1), or to
replace it with a new machine (2), where the associated costs are c(0, 0) = 0,
c(1, 0) = C, c(i, 1) = I and c(i, 2) = R, i = 0, 1, with the natural assumption that
0 < C < I < R. If initially the unit is not failed, and no replacement actions are
taken, it will fail at a random time; the model of the POMDP takes the form

P (u) =
[

1 − θ θ
0 1

]
, u = 0, 1; P (2) =

[
1 0
1 0

]
;

Q(u) =
[

qu 1 − qu

1 − qu qu

]
, u = 0, 1, 2,

where θ ∈ [0, 1] and qu ∈ [0.5, 1]. The cases qu = 1/2 and qu = 1 correspond
to the completely unobservable (CU) and completely observable (CO) processes,
respectively; furthermore, by the symmetry of Q(u) we need only consider qu as
specified; since for u = 2 the state of the machine is good w.p.1 by the next decision
epoch, then the value of q2 is unimportant. Also it is natural to expect θ to be some
small positive number.

The conditional probability vector can be written as pt = [1 − ρt, ρt]′, where
ρt is the conditional probability of the unit being in failed. Hence, the problem
reduces to a scalar one, in terms of ρt. Given an a priori probability ρ of the unit
being failed, we have the following one-step ahead conditional probabilities for the
observations (with obvious modifications in the definitions for this scalar case), for
1/2 ≤ qu ≤ 1, u = 0, 1:

V (0, ρ, u) = qu(1 − ρ)(1 − θ) + (1 − qu)[ρ(1 − θ) + θ],

V (1, ρ, u) = (1 − qu)(1 − ρ)(1 − θ) + qu[ρ(1 − θ) + θ],

and when these quantities are nonzero, the a posteriori conditional probabilities of
the system being in the bad state are given by

T (0, ρ, u) =
(1 − qu)[ρ(1 − θ) + θ]

V (0, ρ, u)
,

T (1, ρ, u) =
qu[ρ(1 − θ) + θ]

V (1, ρ, u)
,
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T (y, ρ, 2) = 0; y = 0, 1, ρ ∈ [0, 1].

For qu = 1, u = 0, 1, we get that V (0, ρ, u) = 0, for ρ = 1 or θ = 1, hence we define
T (0, ρ, u) = 1; also V (1, ρ, u) = 0, for ρ = θ = 0 and thus we define T (1, ρ, u) = 0.
Otherwise, we have for qu = 1, u = 0, 1

T (y, ρ, u) = y.

If qu = 1/2, we get

T (y, ρ, u) = ρ(1 − θ) + θ = 1 − (1 − ρ)(1 − θ) =: T (ρ),

for y = 0, 1. Note that if θ = 0, then any ρ ∈ [0, 1] is a fixed point of T (·), which says
that our initial knowledge of the state of the system never changes in this situation;
if θ �= 0, the unique fixed point of T (·) is ρ = 1, this can be seen by iterating the
map

T 0(ρ) := ρ,

Tn(ρ) := T (Tn−1(ρ)) = 1 − (1 − ρ)(1 − θ)n; n ∈ IN,

and by noticing that under motion by Tn(·), ρt monotonically tends towards ρ = 1,
i.e. ρ < T (ρ), ρ �= 1.

With ρ0 := [0 1]p0, we have

ρt+1 = T (1, ρt, ut)yt+1 + T (0, ρt, ut)(1 − yt+1),

where ut is the decision made at time epoch t. We now study some important
properties of T (y, · , u), y, u ∈ {0, 1} for the case when qu ∈ (0.5, 1), see also [AKU],
[W1]. Define

f
(u)
0 (ρ) := T (0, ρ, u) − ρ, f

(u)
1 (ρ) := T (1, ρ, u) − ρ.

Thus, the roots of f
(u)
0 (·) and f

(u)
1 (·) are the fixed points of T (0, · , u) and T (1, · , u),

respectively. The pertinent quadratic equation for f
(u)
0 (·) is

(ξ(u)
0 )2(2qu − 1)(1 − θ) − ξ

(u)
0 [(2qu − 1)(1 − θ) + (1 − qu)θ] + (1 − qu)θ = 0,

and for θ �= 1 its roots are

ξ
(u)

0 = 1; ξ
(u)
0 =

(1 − qu)θ
(2qu − 1)(1 − θ)

.
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For θ = 1, both roots are equal to 1. Replacing qu by (1−qu) above, the expressions
corresponding to f

(u)
1 (·) are obtained.

Lemma 6.1: Let qu ∈ (0.5, 1); if θ ∈ (0, 1), the following holds:

(i)
∣∣V (y, ρ, u) − V (y, ρ′, u)

∣∣ ≤ (2qu − 1)(1 − θ)|ρ − ρ′|, for u = 0, 1 and y = 0, 1;

(ii)
∣∣T (y, ρ, u) − T (y, ρ′, u)

∣∣ ≤ ( qu

1−qu
)(1 − θ)|ρ − ρ′|, for u = 0, 1, and y = 0, 1;

(iii) T (y, · , u) is monotone increasing in [0, 1), for each u = 0, 1 and y = 0, 1;

(vi) T (0, ρ, u) < T (1, ρ, u), ρ ∈ [0, 1), u = 0, 1;

(v) ρ < T (1, ρ, u), for ρ ∈ [0, 1), u = 0, 1;

(vi) if 1
2−θ < qu, then ξ

(u)
0 ∈ [0, 1), ρ1 < T (0, ρ1, u) and T (0, ρ2, u) < ρ2, for

ρ1 ∈ [0, ξ
(u)
0 ) and ρ2 ∈ (ξ(u)

0 , 1), u = 0, 1;

furthermore, if θ �= 0, we have that

(vii) if qu ≤ 1
2−θ , then ξ

(u)
0 ≥ 1 and ρ < T (0, ρ, u) for ρ ∈ [0, 1), u = 0, 1.

(viii) T (0, 0, 0) < ξ
(0)
0 ; also ξ

(0)
0 < ξ

(1)
0 if and only if q1 < q0.

Proof: Since V (y, ρ, u) = [qu(1 − θ) + (1 − qu)θ] + ρ(1 − θ)(1 − 2qu), then part (i)
follows directly. Also, from the latter expression we see that V (y, ρ, u) is decreasing
in θ, since 1− 2qu < 0; thus V (y, ρ, u) < 1− qu, the last quantity being the value of
V (y, ρ, u) when θ = 1. Then (ii) follows by simple algebraic manipulations on the
numerator of the pertinent expression. Part (iii) is shown by using the following
fact: If a function h : D ⊆ IR → IR satisfies the property that, for some scalars a,
b, c, d, h(x) = (ax + b)/(cx + d) with cx + d �= 0 for all x ∈ D, then h is monotone
increasing (nondecreasing) on D if bc < ad (bc ≤ ad). By a similar argument,
considering qu as the variable, and since (1 − qu) < qu for qu ∈ (0.5, 1), (iv) also
follows [W1]. We have that

ξ
(u)
1 =

quθ

(1 − 2qu)(1 − θ)
,

is one of the fixed points of f
(u)
1 (·), and since qu ∈ (0.5, 1), then ξ

(u)
1 ≤ 0. It is easy

to see then that f
(u)
1 (ρ) > 0 for ρ ∈ (ξ(u)

1 , 1), giving part (v). Writing

ξ
(u)
0 =

(1 − qu)θ
(2qu − 1)(1 − θ)

=
(1 − qu)θ

(1 − qu)θ + [qu(2 − θ) − 1]
,

then we have that 0 ≤ ξ
(u)
0 < 1 for 1/2 ≤ 1

2−θ < qu < 1 and, if θ �= 0, 1 ≤ ξ
(u)
0 for

1/2 < qu ≤ 1
2−θ . Then parts (vi) and (vii) follow by analyzing the sign of f

(u)
0 (·) on
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[0, 1). Finally, part (viii) follows by simple algebraic operations on the expressions
for the given quantities. Q.E.D.

Remark 6.1: When θ = 1 (not a very interesting situation), it follows that T (0, · , u)
= T (1, · , u) = 1 on [0, 1], for u = 0, 1. Also, (v) and (vi) above can be interpreted
as meaning that an observation of the process being in the bad state is trusted more
than an observation of the process being in the good state.

The CU case, i.e. q0 = q1 = 1/2, has a deterministic nature in the sense that
T (·) is fixed and ρt moves towards ρ = 1 monotonically (if θ �= 0). Also, when
θ �= 0 and 1/2 < qu ≤ 1

2−θ , we have from (vii) in Lemma 6.1 that the ρt moves
monotonically towards ρ = 1; since θ is to be expected to be positive but small,
then this behavior is due to the process being nearly completely unobservable.

The following is the cost structure for the equivalent problem:

c(ρ, 0) = ρC : Produce,
c(ρ, 1) = I : Inspect,
c(ρ, 2) = R : Replace.

Thus 0 ≤ c(ρ, u) ≤ R, for all ρ ∈ [0, 1], u = 0, 1, 2, satisfying Assumption 2.2
trivially. Furthermore, as shown in [W1, Corollary 5.6], we have that Γβ(·) is
monotone nondecreasing in ρ ∈ [0, 1], and thus monotone with respect to ≺lr.
Hence, for any ρ ∈ [0, 1]

0 ≤ Γβ(0) ≤ Γβ(ρ) ≤ Γβ(1) ≤ R + βΓβ(0). (6.1)

The rightmost inequality becomes an equality if it is optimal to replace at ρ = 1.
The latter is guaranteed if [W1]

R ≤ C(1 + βθ)
1 − β(1 − θ)

.

Hence, from our discussion of monotone MDP with reset actions, we conclude that
condition (UB) holds.

For the case when 1/2 ≤ q0, q1 < 1 and θ ∈ (0, 1), we obtain from Lemma 4.2
that T (y, · , u) is injective, for y, u ∈ {0, 1}; also, we have that T (y, ρ, 2) = 0, for all
y, ρ, and thus the term corresponding to u = 2 in the discounted cost optimality
equation is given by R + βΓβ(0). Hence, condition (C ′) holds with U2 = {2}, and
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applying Corollary 4.1 the corresponding ACOE is obtained as

Γ∗ + h(ρ) = min
{

ρ C +
1∑

y=0

V (y, ρ, 0) h(T (y, ρ, 0)) ;

I +
1∑

y=0

V (y, ρ, 1) h(T (y, ρ, 1)) ; R

}
,

(6.2)

where ρ = 0 was taken as a reference state. Also, when 1/2 ≤ q0 < q1 = 1 we
similarly obtain, with U2 = {1, 2}, that

Γ∗ + h(ρ) = min
{

ρ C +
1∑

y=0

V (y, ρ, 0)h(T (y, ρ, 0)) ;

I + V (1, ρ, 1) h(1) ; R

}
,

(6.3)

is the ACOE, where ρ = 0.

6.1. The Structure of Optimal Policies

For the two-state replacement problem, we wish to determine structural proper-
ties of average cost optimal policies, by using (6.2) and (6.3). Recall from Theorem
2.1 that hβ(·) is concave; furthermore, it can be shown that hβ(·) is nondecreasing
in ρ ∈ [0, 1], c.f. [W1]. In [RO2], [W1], structural properties where obtained for dis-
counted cost optimal policies, by taking advantage of the concavity of hβ(·). Even
though it can be established by other methods [OMK], by our method of proof we
cannot conclude that the function h(·) in Theorem 4.2 is concave, since its values
at different points are obtained as a limits of values of hβ(·) along possibly different
sequences βn ↑ 1. This precludes us from following a similar method as in [RO2],
[W1]. However, the Bolzano-Weierstrass Theorem allows us to follow a different
approach; we exclude the uninteresting cases θ = 0, and θ = 1. The following
condition will be needed for some of our results.

(R) There exists 0 < β < 1 such that

R <
C(1 + βθ)

1 − β(1 − θ)
.

Theorem 6.1: Let θ ∈ (0, 1); then:
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(i) If every average cost optimal policy replaces at ρ ∈ [0, 1], then every average
cost optimal policy replaces in the interval [ρ, 1].

(ii) Let ξ := min{ξ(1)
0 , T (0, 0, 0)}; then it is average cost optimal to produce in the

interval [0, ξ).

(iii) If ξ
(1)
0 < T (0, 0, 0), then there is an average cost optimal policy that does not

replace in the interval [ξ(1)
0 , T (0, 0, 0)).

(iv) If q1 ≤ q0, then there is an average cost optimal policy that does not inspect
at any ρ ∈ [0, 1].

(v) If condition (R) holds, then there exists a number ξ ≤ αR < 1 such that it is
average cost optimal to replace in the interval [αR, 1].

(vi) If condition (R) holds, and q0 < q1 = 1, then there are numbers 0 ≤ αP ≤ αI ≤
αR < 1, such that it is average cost optimal to produce for ρ ∈ [0, αP ) ∪ [αI , αR),
to inspect for ρ ∈ [αP , αI), and to replace for ρ ∈ [αR, 1].

(vii) If condition (R) does not hold, then it is optimal to produce for all ρ ∈ [0, 1].

Proof: (i) Since the term in the β-discounted cost optimality equation correspond-
ing to the action to replace is constant, and since Γβ(·) is concave, then it is simple
to show that the β-discounted replace region, i.e., the set of points in [0, 1] at which
it is β-discounted optimal to replace, is either empty, or an interval [αR(β), 1], with
0 < αR(β) < 1, see [AKU], [LO1], [RO2], [W1]. Now, if the action to replace is
the only average cost optimal action to take at ρ ∈ [0, 1], then there is a sequence
βn ↑ 1 such that it is βn-discount optimal to replace at ρ, by Lemma 4.5(ii), but
then every βn-discount optimal policy replaces in the interval [ρ, 1], and the result
follows by Lemma 4.5(i).

(ii) It is known that it is always discount optimal to produce at ρ = 0, and thus
it is average cost optimal to produce at this point, by Lemma 4.5(i). We consider
next the nontrivial case when ξ �= 0. From [AKU, Lemma 2], it is known that it
is not β-discount optimal to inspect at ρ ∈ [0, ξ

(1)
0 ), for any 0 < β < 1. Thus it

is average cost optimal to either produce or replace at each ρ in this interval, by
Lemma 4.5(i). Let ρ ∈ [0, ξ), and suppose that it is not average cost optimal to
produce at ρ, then it is average cost optimal to replace in [ρ, 1], by (i). By Lemma
6.1(ii), it is seen that the average cost accrued by this policy is Γ∗ = R/2, since
T (y, ρ, 0) ≥ ξ, y = 0, 1. But then a policy that produces in [0, ξ) and replaces in
[ξ, 1], also accrues an average cost of Γ∗ = R/2, and hence it is optimal to produce
at ρ, giving the result.
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(iii) Suppose that there is an average cost optimal policy which takes action to
replace at some ρ ∈ [ξ, T (0, 0, 0)). Then as in (ii), it is seen that a policy that
produces in [0, T (0, 0, 0)) accrues the same average cost, giving the result.

(iv) It is known that for this situation it is not β-discount optimal to inspect at
any ρ ∈ [0, 1], for any 0 < β < 1, [AKU], [W1]. Then the result follows by Lemma
4.5(i).

(v) For 0 < β < 1, it is known that every β-discount optimal policy replaces in a
neighborhood of ρ = 1 if and only if the cost to replace is such that

0 < R <
C(1 + βθ)

1 − β(1 − θ)
=: H(β), (6.4)

(see [AKU] and [W1]). Furthermore, as in the proof of Lemma 6.1(i), it is easily
shown that H(·) is monotone increasing on (0, 1). Then, H(β) ↑ C(1+θ)

θ , and by
our assumption there is an 0 < ε < 1 such that (6.4) holds for all 1 − ε ≤ β < 1.
Let {βn} ⊆ (1 − ε, 1) be such that βn ↑ 1; then by Lemma 4.5(i) it follows that
it is average cost optimal to replace at ρ = 1. Furthermore, we claim that there
is a number ξ ≤ αR < 1 such that it is average cost optimal to replace in the
interval [αR, 1]. We argue by contradiction: suppose that αR = 1; we have that
Wβ(ρ) − Wβ(0) → Cρ/θ, for ρ �= 0, and (1 − β)Wβ(0) → C, as β ↑ 1, where Wβ(·)
is the β-discounted cost accrued by the policy that produces for all ρ ∈ [0, 1) (see
[W1] for an expression of Wβ(·)). Then, by direct substitution into (6.2), it is shown
that Γ∗ := C and h(ρ) := Cρ/θ solve the ACOE, under our hypothesis that, for
ρ ∈ [0, 1),

Cρ +
1∑

y=0

V (y, ρ, 0)
[
CT (y, ρ, 0)

θ

]
= Cρ +

C [ρ(1 − θ) + θ]
θ

≤ R.

Then, letting ρ ↑ 1 we obtain C(1+θ)
θ ≤ R, which contradicts the hypothesis. This

establishes (v).

(vi) If q1 = 1, then to each 0 < β < 1 there correspond numbers 0 < αP (β) ≤
αI(β) ≤ αR(β) < 1 such that it is β-optimal to produce for ρ ∈ [0, αP (β)) ∪
[αI(β), αR(β)), to inspect for ρ ∈ [αP (β), αI(β)), and to replace for ρ ∈ [αR(β), 1].
Then, given a sequence βn ↑ 1, there is a subsequence {βnk

} such that, as βnk
↑ 1

αP (βnk
)−→αP , αI(βnk

)−→αI , αR(βnk
)−→αR,

and 0 ≤ αP ≤ αI ≤ αR ≤ 1. Also, by similar arguments as in (v), we have that
αR < 1.
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(vii) Finally, if condition (R) does not hold, then it is β-discount optimal to produce
for all ρ ∈ [0, 1], see [W1]. The result follows by Lemma 4.5(i). Q.E.D.

Remark 6.2: Theorem 6.1 extends the following results found in the literature.

(i) Those obtained by Ross in [RO2], for a particular model with q0 = 1/2, q1 = 1,
where results similar to those in (vi) of Theorem 6.1 are obtained by showing that
{hβ(·)} is uniformly bounded and equicontinuous.

(ii) Results by Wang [WA1], similar to those in (v) of Theorem 6.1, obtained for
the model of [RO2], but with no inspection actions allowed.

(iii) Results by Andriyanov et al. [AKU] and Lovejoy [LO2], where structural results
are given for discounted cost optimal policies.

(iv) Several results by White, e.g. those in [W1], where discounted costs are con-
sidered for the infinite horizon, and also equicontinuity of {hβ(·)} is shown for some
values of q0, q1, and θ, but structural results are not given for the average cost op-
timal policy; and those in [W2], [W3] and [W5], where a restriction to a countable
set in ∆ is imposed, for the average cost case.

(v) Results by Georgin [GE2], who established structural properties of the average
cost optimal policy and of h(·) for the case when q0 = 1/2 and q1 = 1, as studied in
[RO2].

(vi) Results by Ohnishi et al. [OMK], where analogs to (i) and (vi) in Theorem
6.1 were obtained, for a model with an arbitrary, but finite, number of states, and
perfect observations under inspection.

(vii) Results by Albright, who obtained analogs to (i) and (iv), for a model with
qu = q, for all u ∈ U , q > 1/2, but allowing for possibly uncountably many actions.

7. Comments on Other Approaches

In the study of POMDP, a prevalent approach in the past has been to view
these as Borel state space MDP, and then use results from this general theory,
c.f. [GE2], [HM], [HW], [RO2], [SY]. One shortcoming of this approach, specially
when an average cost criterion is used, is that the types of conditions that are
usually employed in order to derive results for general BMDP models, are very
restrictive or difficult to verify. For example, for MDP with a countable state space,
much research has been devoted to the problem of finding bounded solutions to
the ACOE, and necessary and sufficient conditions for solutions to exist have been
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recently given by Cavazos-Cadena [CC1]. However, for BMDP this problem is much
more difficult; considerable research has been carried out in this area, c.f. [FAM4],
[GE1], [GS], [HL], [HLM1], [HLM2], [HMC], [KU1], [KU2], [KU3], [RO1], [WIJ].
In general, the available results require ergodicity conditions that must hold under
every stationary policy and/or every possible initial state. These types of conditions
are very stringent and difficult to verify, in general; see [HMC] for a comprehensive
survey of such conditions.

We illustrate the restrictiveness of some of these ergodicity conditions, within
the context of the problems with resetting actions considered in this paper. For
p ∈ ∆, u ∈ U , and B ∈ B(∆), recall that K(B|p, u), as given in (2.3), is the
transition kernel for pt+1, given that pt = p and ut = u. Very importantly, recall
that K(· | p, u) is supported on the set {T (y, p, u)|y ∈ Y }, a key fact used in the
developments in this paper. Now define a finite signed measure on B(∆) as

Q(· | p, p, u) := K(· | p, u) −K(· | p, u)

Then, it is easily seen that, in general,

‖Q(· | p, p, u)‖ = 2

for all p �= p, where ‖ · ‖ denotes the total variation of Q(· |p, p, u) [HLM1], [RY]. For
example, for the two-state replacement problems considered in previous sections,
u = 0, 1 are actions for which the above holds.

In [RO1], the existence of a bounded solution to the ACOE is shown, under an
equicontinuity assumption imposed upon the family {hβ(·)}β∈(0,1), in addition to a
uniform boundedness condition with respect to β. However, for the intended pur-
poses, it suffices that {hβn(·)} be uniformly bounded and equicontinuous, for some
sequence βn ↑ 1. It is also important to note that it suffices to show equicontinuity
of {hβn(·)} with respect to any metric D(· , ·) on ∆, such that (∆, D) is separable,
allowing therefore the use of the Arzela-Ascoli Theorem [RY, p. 177-179]. However,
equicontinuity with respect to the usual metric d(· , ·) of Lemma 2.1 is difficult to
verify, even in simple situations with considerable structure as in [RO2], [W1]. Now,
if |hβn

(·)| < M < ∞, for all p ∈ ∆ and some βn ↑ 1, it is easy to see that

|hβn
(p) − hβn

(p)| ≤ max
u∈U

{
|c(p, u) − c(p, u)| + M‖Q(· |p, p, u)‖

}

and thus if

(GS) ‖Q(· |p, p, u)‖−→
p→p

0, for each u ∈ U
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then {hβn(·)} is equicontinuous. This, combined with arguments similar to those in
[RO1], was used by Gubenko and Statland [GS, Theorem 10] to show the existence
of a bounded solution to the ACOE. However, from our comments above, condition
(GS) does not hold for many problems for which the conditions in Theorem 4.2
and Corollary 4.1 are satisfied. For the same reasons, related approaches based on
span-contractive operators [HLM1, p.56-61] cannot be used for such problems. In
[RO1] conditions proposed by Taylor [TA] to show equicontinuity of {hβ(·)} for a
replacement process are used. However, as pointed out in [GS, p.59], these imply
that (GS) above is satisfied.

Given a uniform boundedness condition on {hβ(·)}, Georgin proves the ex-
istence of a bounded solution to the ACOE [GE1, Proposition 3], by first giving
conditions under which {hβ(·)} is an equicontinuous family. However, for these
results to be applicable, it has to be possible to represent the transition kernel as

(GE) K(B|p, u) =
∫

B

ξ(p|u, p)µ(dp)

where ξ(· |u, p) is a density and µ(·) is a probability measure on B(∆). However,
since K(· | p, u) is supported on the set {T (y, p, u)|y ∈ Y }, then a representation
as (GE) is not possible if {T (y, p, u)|y ∈ Y } �= {T (y, p, u)|y ∈ Y } for some u �= u.
Hence, (GE) is not satisfied for a large number of problems for which the conditions
in Theorem 4.2 and Corollary 4.1 are satisfied.

For the case when the core state space X is finite and condition (UB) holds,
the finite dimensionality of ∆ and the concavity of hβ(·) are used in [PL], [OMK]
to find a sequence βn ↑ 1, such that a bounded solution (Γ∗, h) to the ACOE is
obtained via the vanishing discount approach, by taking limits as βn ↑ 1. These
results rely critically on X being finite and the concavity of hβ(·), neither of which
is needed for the results of Theorem 4.2 to hold. Furthermore, as shown in [FG],
{hβ(·)} is an equicontinuous family, with respect to a metric on ∆ used in [PL]
for other purposes. The topology on ∆ induced by this metric can be shown to be
separable and thus, contrary to what is claimed in [PL], this situation falls within
the formulation in [RO1].

In this paper, we have followed an approach which more advantageously uses
the particular structure of the countably supported transition kernels associated
with POMDP. From the above and the results obtained in the paper, we see that it
is indeed beneficial to use the structure of the particular uncountable state problem
at hand. However, these are problems with very special characteristics, and there
are many important open questions in the general situation [HMC].
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