
Some Numerical Aspects of Approximate Linearization

of Single Input Nonlinear Systems

Kwanghee Nam†, Aristotle Arapostathis‡ and Kyun Kyung Lee§

Revised: December 1991

Abstract

We characterize approximate linearization to order m of a single
input nonlinear system in terms of the existence of an integrat-
ing factor to order m − 2, which is equivalent to the well known
condition that a system of vector fields be order m−1 involutive.
We present a constructive method to obtain the required transfor-
mation for approximate linearization, which results in substantial
computational savings.

1. Introduction

Linearization of nonlinear systems by coordinate transformation and state feed-

back has been one of the most active research topics in recent years. Su (1982) and

Jakubczyk and Respondek (1980) characterized feedback linearizability, i.e., the

ability to linearize a system by a nonlinear state feedback and coordinate change,

in terms of the involutiveness of vector fields, while Hermann (1982) and Gardner

(1987) studied the dual characterizations in terms of differential forms. The lineariz-

ability of nonlinear discrete-time systems has also been studied extensively (Grizzle

1985), (Lee, Arapostathis, and Marcus 1987), (Nam 1987). Feedback linearization
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offers a method of building a controller for a nonlinear system by designing one

for the equivalent linear system and utilizing the transformation (from linear to

nonlinear) along with its inverse. These linearization techniques, being robust, tol-

erate some deviation from perfect linearization (Charlet 1987). This approach has

already been applied to the design of automatic flight-control systems for aircraft

(Meyer, Su, and Hunt 1984), motor controller design (Spong et al. 1987), etc.

On the other hand, since less restrictive conditions are required for approximate

linearization, this technique offers the means of enlarging the class of nonlinear

systems to which linearizing techniques are applicable. It was shown in (Krener

1984, 1987) that approximate linearization could be obtained by weakening the

hypotheses required for feedback linearization. Lee and Marcus (1986) obtained

conditions for the approximate linearization of discrete-time systems through the

expansion of higher order derivative terms into planar matrices.

In this work, we first show that a system is feedback linearizable to order m

if and only if there exists an integrating factor to order m − 2. Of course, this

is equivalent to Krener’s (Krener 1984) condition that a system of vector fields is

order m − 1 involutive. It appears, though, that the approach to the problem via

one-forms results in substantial computational savings when it comes to computing

the required transformation (see Remark 3).

2. Preliminary Remarks and Definitions

Consider a single-input, single-output system

ẋ = f(x) + ug(x), x ∈ M , (1)

where M is an n-dimensional analytic manifold and f, g are analytic vector fields

on M . Since the questions addressed in this work are local in nature, we identify

M with an open neighborhood of the origin in IRn. We also assume that f has an

equilibrium (or fixed) point at x = 0. It is well known that (1) is feedback lineariz-

able if and only if the vector fields {g, adfg, . . . , adn−1
f g} are linearly independent,

and span{g, adfg, . . . , adn−2
f g} is an involutive distribution. The involutiveness of

span{g, adfg, . . . , adn−2
f g} is equivalent to the existence of a nonzero scalar func-

tion h : M → IR satisfying 〈dh, adi
fg〉 = 0, i = 0, 1, . . . , n − 2. Hence, feedback
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linearizability of the system in (1) reduces to the existence of a function h : M → IR

such that 


〈dh, adi
fg〉 = 0 , i = 0, 1, . . . , n − 2,

〈dh, adn−1
f g〉 �= 0 .

(2)

If such a function h is available, one may directly obtain a linearizing feedback u

and coordinate transformation map T . Specifically, if we let

u(t) ≡ (v(t) − Ln
f h)

/
LgL

n−1
f h , (3)

T (x) ≡
[
h Lfh · · · Ln−1

f h
]T

(x) (4)

the system in (1) is transformed into a linear system ξ̇ = Aξ+bv, where ξ = T (x), v

is the new input coordinate, and (A, b) is a Brunovsky controllable pair. Obtaining

a function h satisfying (2), is not an easy task; in general, in order to do so, one

needs to solve a set of partial differential equations.

We will need the following definitions. Let x = {x1, . . . , xn} be coordinate

functions in IRn, and α = (α1, . . . , αn) a multi-index, i.e., a n-tuple of non-negative

integers. The monomial xα and the differential operator Dα are defined by

xα = xα1
1 . . . xαn

n ,

Dα = Dα1
1 . . . Dαn

n , where Dj =
∂

∂xj
.

We also let |α| = α1 + · · · + αn and α! = α1! . . . αn!.

With these definitions, for a smooth function ϕ : IRn → IR, Taylor’s expansion

formula takes the form

ϕ(x) = ϕ(0) +
m∑

|α|=1

1
α!

Dαϕ(0)xα + Rm+1(x) , (5)

where Rm+1(x) is the remainder term.

Definition: (Krener 1984) System (1) is called feedback linearizable to order i or

ith order linearizable, if there exists a coordinate transformation map ξ = T (x) and

a feedback u = β(x)v + α(x) such that, in the new coordinates,

ξ̇ =
(
Aξ + Oi+1(ξ)

)
+

(
b + Oi(ξ)

)
v ,
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where Oi(ξ) is the class of functions f such that lim sup
||ξ||→0

||f(ξ)||
||ξ||i < ∞.

Remark 1. From the infinitesimal linear approximation of (1) around the equilib-

rium point, we obtain the system

ẋ = Fx + Gu ,

where F = ∂f/∂x|x=0 and G = g(0). Hence, this linear system approximates (1)

to order 1.

3. Approximate Linearization

We define the function matrix U(x) by

U(x) =
[
adn−1

f g
∣∣ · · · ∣∣ adfg

∣∣ g
]

(6)

and we let

ω(x) =
[
ω1(x) . . . ωn(x)

]
=

[
1 0 . . . 0

]
U−1(x) . (7)

Since ω(x) is defined to be the first row of the inverse of the matrix U(x), it follows

that 


〈ω, adi
fg〉 = 0 , i = 0, 1, . . . , n − 2,

〈ω, adn−1
f g〉 = 1 .

(8)

With a slight abuse of notation, we define a one-form ω by

ω =
n∑

i=1

ωidxi . (9)

System (1) is feedback linearizable, if and only if there exists a scalar function,

namely an integrating factor, r : M → IR such that

dh = rω . (10)

A necessary and sufficient condition for the exactness of the one-form rω is d(rω) =

0. Hence, feedback linearizability is equivalent to the existence of an integrating

factor r : M → IR such that

∂rωi

∂xj
=

∂rωj

∂xi
, 1 ≤ i < j ≤ n . (11)
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Since dω ∧ ω = 0 for a manifold whose dimension is 2, it is always possible to find

an integrating factor r for 2-dimensional manifolds. Hereafter, we assume that the

dimension of the manifold is greater than 2.

Given an integrating factor r, one can obtain h from (10) and, thus, the lin-

earizing feedback (3) and the coordinate transformation map (4) can be easily con-

structed. Hence, the problem of obtaining the desired coordinate change and feed-

back reduces to that of obtaining an integrating factor. But, solving (11) for r is a

difficult problem. However, in the case of approximate linearization, the situation

is quite different.

Proposition 1. System (1) is feedback linearizable to order m ≥ 2 if and only if

there exists a function r : M → IR such that

∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

∂rωi

∂xj

∣∣∣∣
x=0

=
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

∂rωj

∂xi

∣∣∣∣
x=0

, (12)

for all i, j = 1, 2, . . . , n and |α| ≤ m − 2.

Note that any mth order linearizable system can be represented as

ẋ = Ax + bv + Om+1(x) + Om(x)v .

Then, ω(x) = dx1 + Om(x). Hence, with r(x) = 1, the necessity of (12) follows.

Sufficiency follows from the proof of the following Lemma.

Lemma 1. Suppose that there is a function r which satisfies (12). We let ω̃(x) =

r(x)ω(x) and define a scalar function h̃ : M → IR by

h̃(x) =
n∑

i=1

{
ω̃i(0) +

m−1∑
|α|=1

1(
1 + |α|

)
α!

Dαω̃i(0)xα
}

xi . (13)

Then, utilizing the feedback u(t) =
(
v(t) − Ln

f h̃
)/

LgL
n−1
f h̃, and the coordinate

transformation map T̃ : M → IRn, T̃ (x) =
[
h̃ Lf h̃ · · · Ln−1

f h̃
]T

(x), we obtain the

mth order linearized system

ξ̇ = Aξ + bv + Om+1(ξ) + Om(ξ)v ,
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where ξ = T̃ (x),

A =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0


 and b =




0
...
0
1


 .

Proof: For i = 1, . . . , n, let δi denote the multi-index of length n defined by (δi)i = 1

and (δi)j = 0, i �= j. Then

∂h̃(x)
∂xk

= ω̃k(0) +
m−1∑
|α|=1

αk + 1(
1 + |α|

)
α!

Dαω̃k(0)xα

+
∑
i �=k

m−1∑
|α|=1
αk>0

αk(
1 + |α|

)
α!

Dαω̃i(0)x(α+δi−δk). (14)

Observe that, if i �= k, then, for every multi-index α, with αk > 0, there corresponds

a multi-index α̃ ≡ α+δi−δk, with α̃i > 0, and vice-versa. Then, by (12), if αk > 0,

Dαω̃i(0) = Dα+δi−δk ω̃k(0) = Dα̃ω̃k(0) , (15)

and, furthermore,

αk(
1 + |α|

)
α!

=
α̃k + 1(

1 + |α̃ − δi + δk|
)
(α̃ − δi + δk)!

=
α̃i(

1 + |α̃|
)
α̃!

. (16)

Therefore, by (15) and (16) the second sum on the right hand side of (14) reduces

to

∑
i �=k

m−1∑
|α|=1
αk>0

αk(
1 + |α|

)
α!

Dαω̃i(0)x(α+δi−δk) =
∑
i �=k

m−1∑
|α̃|=1
α̃i>0

α̃i(
1 + |α̃|

)
α̃!

Dα̃ω̃k(0)xα̃.

(17)

The second sum on the right hand side of (17) is taken over all multi-indices of order

1 to m − 1 whose ith coordinate is positive. Thus, using (17) in (14), replacing the

variable α̃ with α, and combining the two summations in (14), we obtain

∂h̃(x)
∂xk

= ω̃k(0) +
m−1∑
|α|=1

1
α!

Dαω̃k(0)xα . (18)
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Hence, by (18) and (5),

dh̃(x) = ω̃(x) + Om(x) .

Evaluating the Lie derivatives, we obtain, in view of (8),

Lgh̃ = 〈dh̃, g〉 = 〈ω̃, g〉 + Om(x) = Om(x) ,

LgLf h̃ = Lf 〈dh̃, g〉 − 〈dh̃, adfg〉 = Om(x) ,

and proceeding, in a similar fashion, LgL
i
f h̃ = Om(x) for i = 0, . . . , n−2. Therefore,

ξ̇ = Aξ + bv + Om(x)u

= Aξ + bv + Om+1(ξ) + Om(ξ)v .

Since Proposition 1 characterizes approximate linearizability in terms of the

existence of an integrating factor, it is not readily verifiable. The corollaries that

follow offer a method of verifying approximate linearizability directly. We define

ω(m−1) to be the one-form obtained from ω by truncating after the (m− 1)th order

term in x, i.e., we let

ω(m−1)(x) =
n∑

i=1

ω
(m−1)
i (x)dxi =

n∑
i=1

{
wi(0) +

m−1∑
|α|=1

1
α!

Dαwi(0)xα
}

dxi .

Corollary 1. System (1) is feedback linearizable to order m ≥ 2 if and only if

dω(m−1)(x) ∧ ω(m−1)(x) = 0 + Om−1(x) .

Proof: Since ω(m−1) is defined to be the (m− 1)th order approximation of ω, (12)

is equivalent to

∂

∂xi
rω

(m−1)
j (x) =

∂

∂xj
rω

(m−1)
i (x) + Om−1(x) , 1 ≤ i, j ≤ n .

Thus, it follows from Proposition 1 that mth order linearizability implies that

dω(m−1)(x) ∧ ω(m−1)(x) = 0 + Om−1(x). The converse also holds.
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Define

Xijk(x) = ω
(m−1)
k (x)

(
Djω

(m−1)
i (x) − Diω

(m−1)
j (x)

)

+ ω
(m−1)
j (x)

(
Diω

(m−1)
k (x) − Dkω

(m−1)
i (x)

)

+ ω
(m−1)
i (x)

(
Dkω

(m−1)
j (x) − Djω

(m−1)
k (x)

)
.

In view of the identity

dω(m−1)(x) ∧ ω(m−1)(x) =
∑

1≤i,j,k≤n
i �=j �=k �=i

Xijk(x) dxj ∧ dxi ∧ dxk ,

we obtain the following Corollary.

Corollary 2. System (1) is feedback linearizable to order m ≥ 2 if and only if for

i, j, k ∈ {1, . . . , n}, i �= j �= k �= i,

DαXijk(0) = 0 , ∀ |α| ≤ m − 2 . (19)

4. Solving for the Integrating Factor

Proposition 1 does not offer a method of obtaining the integrating factor r.

In this Section, we will develop a constructive algorithm for finding an integrating

factor r for those systems which are mth order linearizable. We first consider a

system which is linearizable to order 2. By Proposition 1, there is an integrating

factor r(x) such that for all 1 ≤ i, j ≤ n

∂rωi

∂xj

∣∣∣∣
x=0

=
∂rωj

∂xi

∣∣∣∣
x=0

. (20)

In such a case, it is always possible to satisfy (20) with a first order polynomial

r1(x) = 1 + r1x1 + · · · + rnxn , (21)

since the differentials of higher order terms vanish at x = 0. We express ω(x) as

ω(x) = ω(0) + D1ω(0)x1 + · · · + Dnω(0)xn + O2(x) .
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Simplifying the notation, let ωk = ωk(0), , 1 ≤ k ≤ n. Then, equation (20) reduces

to

riωj − rjωi = Djωi(0) − Diωj(0) , 1 ≤ i, j ≤ n . (22)

Representing (22) in matrix form, we obtain, letting yij := Djωi(0) − Diωj(0),




ω2 −ω1 0 0 · · · 0
ω3 0 −ω1 0 · · · 0
0 ω3 −ω2 0 · · · 0
ω4 0 0 −ω1 · · · 0
0 ω4 0 −ω2 · · · 0
0 0 ω4 −ω3 · · · 0
...

...
...

...
. . .

...
ωn 0 0 0 · · · −ω1

0 ωn 0 0 · · · −ω2
...

...
...

...
. . .

...
0 0 0 0 · · · −ωn−1







r1

r2

...

rn−1

rn




=




y12

y13

y23

y14

y24

y34
...

y1n

y2n
...

y(n−1)n




. (23)

Let Ωn = [ω1 . . . ωn]T and In denote the identity matrix of dimension n. For

each n = 2, 3, . . ., we define a matrix Hn of dimension
(
n
2

)
×n as follows: For n = 2,

let H2 = [ω2 − ω1] and inductively for n ≥ 3 by

Hn =


 Hn−1 0

ωn In−1 −Ωn−1


 .

Also let Rn = [r1 . . . rn]T and Yn denote the vector on the right hand side of (23).

Then, equation (23) takes the form Hn Rn = Yn. Observe that (23) is invariant

under permutations of the subscripts {1, . . . , n}. Therefore, since Ωn �= 0, by (7),

we may assume, without loss of generality, that ωn �= 0. Then, since ωn In−1 is a

minor of Hn, the rank of Hn is at least n−1. On the other hand, Hn Ωn = 0 and it

follows that rank (Hn) = n − 1. The matrix Kn =
(

ωn Im

−HT
n−1

)
, where m =

(
n−1

2

)
,

has rank
(
n−1

2

)
and satisfies KT

n Hn = 0. Thus, the span of Kn is precisely the

kernel of HT
n . For (23) to have a solution Rn it is necessary and sufficient that Yn

be orthogonal to the kernel of HT
n or, equivalently, KT

n Yn = 0. This reduces to the

requirement that, for all 1 ≤ i, j, k ≤ n, i �= j �= k �= i,

ωkyij + ωjyki + ωiyjk = 0 . (24)
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Equation (24) is equivalent to the condition in Corollary 2 for second order lineariz-

able systems. We have the following Lemma.

Lemma 2. The linear system in (23) has a solution Rn = [r1 . . . rn]T if and only

if (24) holds. Also, assuming that ωn �= 0, the family of solutions of (23) can be

parameterized by

ri =
yin

ωn
+ aωi , i = 1, . . . , n .

where a is an arbitrary constant.

Remark 2. The first part of Lemma 2 follows essentially from Proposition 1 and

Corollary 2. The second part results from the structure of (23) as analyzed above.

Remark 3. By Lemma 2 one choice for the coefficients r1, · · · , rn is

ri =
Dnωi(0) − Diωn(0)

ωn
, i = 1, . . . , n .

With these values, the transformation which linearizes the system to order 2 may be

easily obtained from Lemma 1. Note that in Krener’s work (1984, 1987), this task

requires the solution of n2(n + 3)
/
2 linear equations in n(n + 1)2

/
2 + n unknowns.

This approach can be extended to higher order linearizable systems. In the

third order case, we need to find an integrating factor r(x) such that (20) holds

and, for 1 ≤ i, j, k ≤ n.

Dk
∂rωi

∂xj

∣∣∣∣
x=0

= Dk
∂rωj

∂xi

∣∣∣∣
x=0

. (25)

We let

r2(x) = r1(x) +
n∑

i,j=1

rijxixj ,

where rij = rji and r1(x) is a first order polynomial whose coefficients satisfy (23).

Clearly, the second order linearizability condition (20) is satisfied automatically.

Also for each k, (25) reduces to

rkiωj − rkjωi =Dkjωi(0) − Dkiωj(0) + rjDkωi(0) − riDkωj(0)

+ rk

(
Djωi(0) − Diωj(0)

)
, 1 ≤ i, j, k ≤ n . (26)
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Let z
(k)
ij denote the right hand side of (26). For each fixed k, (26) is a system

of linear equations which has the same structure as (23). An inductive argument

shows that if r1, · · · , rn solve (23) and the system is third order linearizable (i.e.,

it satisfies the condition in Corollary 2 with m = 2), then there exist constants rki

which solve (26). Moreover, these can be obtained as follows: first solve for rni,

i = 1, . . . , n as dictated by Lemma 2 to obtain

rni =
z
(n)
in

ωn
, i = 1, . . . , n , (27)

and then solve recursively for each k = n − 1, n − 2, . . . , 1 using the previously

computed coefficients to obtain

rki =
z
(k)
in − rnkωi

ωn
, i = 1, . . . , k . (28)

The number of coefficients computed in (27)–(28) is n(n + 1)
/
2.

The same procedure can be used to obtain integrating factors to an arbitrary

order. In passing from one order to the next one computes recursively for the

coefficients of the next order term utilizing all the previously computed coefficients.

This claim, which is summarized in the following Proposition, can be derived by

means of a straightforward induction, which is unfortunately very messy and will

be skipped. The analogous observation for vector fields has already been made by

Krener (1984).

Proposition 2. Consider an νth order linearizable system defined on an n-

dimensional (n ≥ 3) analytic manifold M and ω(x) as defined in (7). Suppose

that rν−2(x) is an integrating factor polynomial of degree ν − 2 which satisfies for

|α| ≤ ν − 3

Dα ∂rν−2ωi

∂xj

∣∣∣∣
x=0

= Dα ∂rν−2ωj

∂xi

∣∣∣∣
x=0

.

Defining

rν−1(x) = rν−2(x) +
∑

|γ|=ν−1

rγxγ ,

one can find coefficients rγ such that for |β| = ν − 2,

Dβ ∂rν−1ωi

∂xj

∣∣∣∣
x=0

= Dβ ∂rν−1ωj

∂xi

∣∣∣∣
x=0

,
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by solving the linear system of equations

rβ+δj
ωi − rβ+δi

ωj = Dβ ∂ωj

∂xi

∣∣∣∣
x=0

− Dβ ∂ωi

∂xj

∣∣∣∣
x=0

+
∑
q>0

p+q=β

β!
p!q!

(
rp+δi

Dqwj(0) − rp+δj
Dqwi(0)

)

+
∑
q>0

p+q=β

β!
p!q!

rp

(
Dq+δiwj(0) − Dq+δj wi(0)

)
.

5. An Example

Consider the nonlinear system




ẋ1

ẋ2

ẋ3

ẋ4


 =




sinx2 + x2x4

−x3 + x2
2

x4

0


 +




0
0
0
1


u . (29)

Then,

U(x) =
[
ad3

fg
∣∣ ad2

fg
∣∣ adfg

∣∣ g
]

=




2x2(x3−x2
2)

+2x4+cos x2
(x3 − x2

2) −x2 0
2x2 −1 0 0
0 0 −1 0
0 0 0 1


 .

Since 〈adfg, ad2
fg〉 = [−2 0 0 0]T does not lie in span{g, adfg, ad2

fg}, this distri-

bution is not involutive. Therefore, system (29) is not feedback linearizable. In the

following we establish that the system is feedback linearizable to order 2. We have,

ω(x) = [1 0 . . . 0]U−1(x) =
1

det U(x)
[−1 x3 − x2

2 x2 0],

where det U(x) = 4x2(x3 − x2
2) + 2x4 + cos x2. Since ω1 = −1 �= 0, it fol-

lows that the system is feedback linearizable to order 2 if and only if for (i, j) =

(2, 3), (2, 4), (3, 4),

ω1

(
Djωi(0)−Diωj(0)

)
+ωj

(
Diω1(0)−D1ωi(0)

)
+ωi

(
D1ωj(0)−Djω1(0)

)
= 0 . (30)
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However, since the only nonzero derivative terms are D3ω2(0) = D2ω3(0) = 1 and

D4ω1(0) = 2, condition (30) is satisfied. Solving (23), we obtain

[r1 r2 r3 r4] = [0 0 0 − 2],

or, equivalently, an integrating factor r(x) = 1 − 2x4. Finally, with

ω̃(x) =
(1 − 2x4)
det U(x)

[−1 x3 − x2
2 x2 0],

and h̃(x) as defined in (13), we can linearize the system to order 2.
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