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Part |V
Equality-constrained optimization



12
Case studies of equality-constrained optimization

(i) Production, at least-cost, of a commodity from machjnésile
meeting a total demand (Secti@@.1), and

(i) State estimation in an electric power system where theqy
injections at some of the buses are known to high accuracy
(Sectionl2.2.



12.1 Least-cost production
12.1.1 Motivation

e Consider a machine that makes a certain product, requiongg £ostly
input to produce.

e If stock-piling of the product is costly or inconvenient or if demand for
the product varies rapidly, then to avoid over-supplies slmattages we
must vary production to follow variations in demand.

e An extreme example of this problem is in the production ottleity.

e Typically the fuel cost is non-zero and it is not practicastock-pile
electrical energy over even very short periods.

e Electric generators also have efficiencies that vary maykeidh output.

e In electric power, the problem of least-cost productionakeci economic
dispatch.



12.1.2 Formulation
12.1.2.1 Variables

e Suppose that we owmmachines or plants that are producing a
commodity or product.

e We consider the production over a particular period of time.

e The lengthT of this period of time should be chosen to be short enough
so that the productioper unit timefor the commodity or product by each
machine can be well approximated by a constant over the terie@r .

e That is, we are assuming that the plant igjuasi-steady state

e Definex, € R to be the total amount of the commodity produced by
machinek over the time period.

e We collect the production decisions of machikes 1,...,n, into a

X1
vectorx € R", so thatx =
Xn



12.1.2.2 Production costs

e We suppose that fdc=1,...,nthere are function$y : R — R such that
fk(Xx) is the cost for machink to producexy over the time period .

12.1.2.3 Objective
e \We want to minimize the objective: R" — R defined by:
n

vx e R", f(x) = Z f(Xk)- (12.1)
k=1



12.1.2.4 Constraints
Machine
e \We assume that machikéhas:

a maximum production capacity, s&)y and
a minimum production capacity, > O.

X < X < X (12.2)
e The feasible operating set for machies therefore:
Sk = {0} U [ X4, X

e The setSy is not convex ifx, > 0.

e In specifying (L2.1) we assumed that each functibpwas defined on the
whole of R; however, only the values df on Sy are relevant to the
solution of the problem.

¢ In defining f, we have implicitly extrapolated the cost function of each
machine from its operating range, as specifiedgyto the whole ofR.



Production

e Let us assume that during the time peribave face a total demand for
the commodity of quantityp.
e To meet demand, we must satisfy the constraint:

n
D= Z Xk- (12.3)
k=1

Y Fig. 12.1. Production
D from three machines.



Production, continued

e \We can write the constraint in the forAx = b with either of the
following two choices forA € R™" andb € R:
A=1" b= D], or
A=—1" b=[-D].

e For reasons that will be made clear in Sectl@5when we discuss an

economic interpretation of the problem, we prefer to usest#wmnd
choice forA andb.

Machine and production combined

e The feasible operating set for all the machineg3;_, Sx) C R", where
the symbol[] means th&artesian product, so that the feasible set for
the problem is:

n
S= <|_| Sk> N{x e R"|Ax=b}.
k=1



Relaxation

e For the discussion in this chapter, however, we are going to:

— assume that each machine is in-service and operating, and
— ignore minimum and maximum production capacity constgaint

e That is, we are going to relax the set of feasible operatingtpdor
machinek from the sefS to the whole ofR and correspondingly relax the
feasible set for the problem froghto:

S = {xe R"|Ax=b}.



Relaxation, continued

e Part of the feasible sé&tlying in the non-negative orthant is illustrated in
Figurel2.2for n= 3 andD = 10.

Fig. 12.2. Part of feasi-
ble setS for least-cost
010 production case study.




12.1.2.5 Problem
e Our relaxed optimization problem is:

)Eg]gr]] {f(X)|Ax=b}. (12.4)

e We have implicitly assumed that each functifyhas beemxtrapolated
to being a function defined on the wholel®f



12.1.2.6 Alternative formulation

e If the cost function for each machine increases monotayigath
production, we could also consider solving the inequalipstrained
problem:

min { f(X)

xcRN

D < i xk} , (12.5)
k=1

e which is a further relaxation of our constraints, but whiesthe same
minimum and minimizer as Problerti4.4) if costs are strictly
monotonically increasing.

e The flexibility in the choice of formulation can sometimesuseful in
adapting a problem formulation to an algorithm or in proviegults
about the problem.

e However, in this chapter we will only consider the equatibnstrained
version, Problem12.4).



12.1.2.7 Discussion

e Suppose that the solutioti of the relaxed Problenil@.4) happens to
satisfy the omitted minimum and maximum capacity constsa{i?.2).

e That iS,X?; € Sk.

e Then the solution of the relaxed Problef®(4) is optimal for the
complete problem including the machine constraints:

Te'é‘ f(X).

e If the omitted constraints are not satisfied, then we mussiden them
explicitly.

e We will explicitly consider inequality constraints suchtae minimum
and maximum production capacity constrairi.0) in PartV, but the
feasible sefy for machinek is non-convex since it includes the points 0
andx, but not any points between 0 argd



12.1.3 Change in demand

e \We can expect that demand will change over time.
e Consequently, it is important to be able to estimate the ghamthe costs
due to a change in demand frdinto D + AD, say.

12.1.4 Problem characteristics
12.1.4.1 Objective
Separability
e It is expressed as the sum of functiomg,each of which depends only on

a single entryy, of x.
e That is, the objective iadditively separable



Average production costs
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Average production costs, continued

e Consider theaverage cost per unit of productionfy(x) /X for machine
k producingxy.
e At low levels of production, we would expect the average patihn cost

to be relatively high.

e This is because there are usually costs that must be incwiredever the
plant is in-service and producing non-zero levels of output

e As Xy increases from low levels, the average production costsdilp
decrease because the costs of operating the auxiliaryraguipare
averaged over a greater amount of production.

e For somex, the average costig(Xx) /X« reach a minimum and then begin
to increase again for larger valuesxpf

e The point wheref(xk) /X is at a minimum is the point of maximum

efficiency of the machine.



Production costs

e If we multiply the values offy(Xk) /X« in Figure12.3by X, we obtain the
production costdy(xx) as illustrated in Figuré2.4

fie(%)

0af | Fig. 12.4. Production

L cost fi(xc) versus pro-
duction xi for a typical
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Production costs, continued

e Extrapolating the shape df from x, to valuesx < x, we find that at
Xk = 0 the extrapolated value of the production cost functionld/te
greater than zero due to the auxiliary operating costs.

Convexity

o If X, > 0 thenSx = {0} U [X,, X is not convex.

o If x, =0 thenSx = {0} U [X,X| = [ X, X] = [0, %] is convex.

e Even in this case, however, if there are non-zero auxiligerating costs
then fy is not a convex function ofd, ] because of the discontinuity in
fi.



Convexity, continued

e To identify a test set on which the objective might be congepose
that:

X, = 0 and consider the sBf = {xx € R|0 < xx < X¢} C Sk, or
X, > 0 and consider the sBf = {xx € R|x, < xx < X} C Sk.

e In both casesy, is a convex set.

e Moreover, for both these cases, Figd&4suggests thafy is convex on
Sy

e We will assume that the cost function of each machine has been
extrapolated to a function that is convex on Wineoleof R.

e \We have effectively redefinefy(0).

e It is often reasonable to assume tlfiat S, — R is quadratic:

1
¥k € Sy, Tk(Xk) = = Quk(Xk)* + CiXi + Ok (12.6)
2

e For convex costk > 0.
e With non-zero auxiliary costsl, > 0.
e \We also usually expect that > 0.



Convexity, continued
e Adding together the cost functions for all machines, we iobta

vx e R", f(x) = % TQx+c'x+d,

e whereQ € R™"is a diagonal matrix withk-th diagonal entry equal to

Qxks

e c ¢ R" hask-th entry equal tay, and
ed=5p ;dkeR.



12.1.4.2 Constraint
Eliminating a variable

e By Corollary3.7, we can use the equality constraft = b to eliminate
one of the variables, sag, by writing:

X1=D—Xo—--—Xp.

e Expressing the objective in termsxy, . .., X, yields an unconstrained
problem with objectivef (X) where:

D_XZ_"'_Xn
B
5 0 I o
| Xn A o
= X+Z8,
= T(&),



Eliminating a variable, continued

e Where:

. D

X = _0] €N,
F ot

Z — I ] eRnx(n—l)’
o

E = |:|erRM
| Xn

e and whera : R"1 — S is defined by:
VE € R™ 4 T(8) = R+ Z8,
e and we note that is ontosS.



Eliminating a variable, continued

e The pointXis a particular solution of the equatioAs = b.

e The matrixZ has columns that form a basis for the null spacé.of

e The objectivef (X) depends only of ¢ R,

e \We have transformed the equality-constrained problemanto
unconstrained problem with objectiye R"1 — R defined by:

VEER™ L g8) = f(X),
_ ( D—1"¢ )
g ;
= f(t(g)).
e The unconstrained problem:

min f(X) = min :
(min, (X) EeRn_lw(é)

e could then be solved using the techniques developed in EhHpt



Eliminating a variable, continued

e Elimination of variables is often an effective way to solvprablem with
linear constraints.

e If there were, sayn equality constraints eliminated, then there would be
(n—m) variables in the resulting transformed problem, assunhagthe
corresponding rows ok were linearly independent.

Treating the constraint directly
e We will also explore approaches that treat the equality tcaims directly.



12.1.4.3 Solvability
e Since:

(i) we have defined the objective functidron the whole ofR",
(ii) the objective increases with increasing valuesof 0O, for eaclk,
and
(i) the constraint has a particularly simple form,

e there will always be a solution to Probleh2(4).
e However, the solution might not satisfy the minimum and nmraxn
machine constraintd@.?.



12.2 Power system state estimation with zero injection buse
12.2.1 Motivation
12.2.1.1 Zero injection buses

e Recall the power system state estimation problem intradlute
Section9.2

e Consider the situation in Figut.5

e Bus 2 does not have any load nor generation nor any measuremen
devices.

e Such buses are common at intermediate points in electriepsystems
between generators and load.

e \We called this bus aero injection bus



12.2.1.2 Ignoring zero injection buses

e Suppose we use only the measurements shown explicitly ur&ig.5in

the objective of Problen®d(8).
e We do not have enough information to uniquely determine tige
magnitudes and angles at buses 2 and 3.

Y12
11 Y13 3 Yo3 5
P1,Q1,Us Fig. 12.5. Three-bus
electric power system
with a bus, bus 2,
neutral having neither load nor

generation.



12.2.1.3 Treating zero injection buses as accurate measemes

e Alternatively, we could think of the zero injection at bus2apair of
very accurate real and reactive power measurements hastogalue
and zero measurement error.

Y12
11 Yi3 3 Yo3 5
m P, Q.U P,=0,Q:=0m
Fig. 12.6. Zero injec-
@ tion bus re-interpreted
| neutral as an exact measure-
ment.




Treating zero injection buses as accurate measuremermsnced

e We pick a small but non-zero value of measurement errdor each zero
Injection bus measurement.
e \WWe must then compromise between:

(i) making o, small enough to approximately represent our certainty
that the measurement is zero, and

(i) making o, large enough so that the entries[m_1 are not too
large.

e The entry in[Z]_1 corresponding to the zero injection bus measurement
G,=0is (O'g)_l, which must be “approximately” infinity to enforce
satisfaction of the constraigg(X) = O.

e We are effectively using a penalty function approach, asudised in
Section3.1.2.1

e The optimality conditions and algorithms developed in ®ect1.2.3
involved factorizing eithed(x)"[2]2J(x) or [£] 13(x), whereJ is the
Jacobian ofy”

e The presence of widely differing valuesinwill lead to an
ill-conditioned coefficient matrix as discussed in Secoh?2.1



12.2.1.4 Treating zero injection buses as equality coinsisa

e The approach we will follow is to explicitly represent thea@njection
buses as pairs of equality constraints each of the fpiix) = 0.

12.2.2 Formulation
12.2.2.1 Objective

e Let M be the set of measurements in the system, not including the
Injection measurements at the zero injection buses.
e The maximum likelihood objective can again be transfornmtal: i

(Ge(x) — Gy)?
(eM 207

vx e R", f(X) = (12.7)



12.2.2.2 Constraints

o Let MY be the set of real and reactive injections at the zero injediuses.

e For eacly € MO, letg, : R" — R be the function representing an injection
at a zero injection bus.

e The power flow equations require that € M°, g,(x) = 0, so that our
estimate of the stateshould be consistent with these constraints.

e \We can collect the functions associated with the zero igediuses
together into a vector functiop: R" — R™, wheremis the number of
zero injection bus measurements, which is the number oferiesinMO.

e Thatis,g: R" — R™Mis defined by:

vx € R",g(X) = (9r(X)) e (12.8)



12.2.2.3 Problem
e Our problem is therefore:

min{ f (x)|g(x) = 0}. (12.9)

XeRN

12.2.3 Change in measurement data

e Over time, the state of the power system changes as demarsiipply
situations change.

e Consequently, the measured data will change.

e We will consider how a change in measurement data affectetust.



12.2.4 Problem characteristics
12.2.4.1 Objective

e The objective of Probleml@.9 defined in (2.7) is approximately
quadratic.

12.2.4.2 Constraints

e The constraintg(x) = 0 are approximately linear.
e However, since they are not exactly linear we cannot eliteitizem and
re-write the problem as an unconstrained optimizationuvefevariables.

12.2.4.3 Solvability

e The constraints in the problem are consistent with Kircfieddws and
we know from physical principles that there are solutionKitgchhoff’s
laws.



13

Algorithms for linear equality-constrained
minimization

e In this chapter we will develop algorithms for constraingdimization
problems of the form:

min{ f(X)|Ax= b}, (13.1)

XeRN
e Wheref :R" - R, Ac R™" andb € R™.



Key issues

e Consideration oflescent directionsfor the objective that also maintain
feasibility for the constraints,

e consideration of thaull spaceof the coefficient matrixA to transform
the constrained problem into an unconstrained problem,

e optimality conditions and the definition and interpretatad thedual
variables and theLagrange multipliers,

e optimality conditions forconvex problems and

e duality andsensitivity analysis



13.1 Optimality conditions
13.1.1 Descent directions
13.1.1.1 Conditions for non-minimizer

Analysis

e Consider a feasible pointthat is a candidate solution to Probler8(2).
e By the discussion in Sectidn8.1.2 every feasible point is of the form
X+ X where:

e N(A) = {&xeR"AMX=0},
= {ZX|¥ e R"Y,

e whereZ ¢ R™" with ¥ > n— m, is a matrix with columns that form a
basis for the null space &.



Analysis, continued

e Suppose that a vectdx € A (A) happened to also satisfyf ()“()TAX < 0.
e By Lemmal0.], such a direction is a descent direction foat X,

e Thatis:
Jo e Ry suchthafO< a <@) = (f(X+alx) < f(X)). (13.2)
e \We also have that:

Vo € R,A(X+0AX) = b+ aALX,
= b

o If XX e A[(A) and Df()“()TAx < 0 thenx'cannot be a minimizer.



Example

X2

-1K

-2

L

IS

X1

Fig. 13.1. Descent di-
rections for a function at

a pointX'= _g , indi-

cated by the>, and one
descent direction that
maintains feasibility for
the equality constraint
corresponding to the
feasible set illustrated
by the line.



13.1.1.2 Minimizer
Analysis

e Supposet is a minimizer of the linear equality-constrained problem.
e Then for any directiodx € A'(A), that is, such thadAx = 0, we must
have that:

Of (x*) Tax # 0.

e Applying the same argument to the vecterx) € A(A), we must have
that:

0f (x)T(—x) £ 0.
e Combining these two observations, we have that:
Of (x)'ax = 0.

e If X* is a minimizer of the linear equality-constrained probldrart for
each/x € A((A) we must have thallf (x*)'Ax = 0.
e That is, A\ (A) C {x € R"|Of (x*)"'ax = 0}.



Example

Fig. 13.2. Descent

directions for a function

.13
at a pointx = | 3|,

-1K

indicated by thes, none
y of which maintains fea-
sibility for the equality
- / constraint correspond-
— ing to the feasible set
illustrated by the line.
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13.1.1.3 Geometry of contour set
Tangent plane

Definition 13.1 Let f : R" — R be partially differentiablex* € R", and

suppose thdilf (x*) = 0. Let f* = f(x*). Then thetangent plane to the

contour setCs(f*) = {x € R"|f(x) = f*} of f at the pointx* is the set:
P = {x € R"|Of (x*)T(x— x*) = 0}.

For brevity, we will often refer t@® as “the tangent plane to the contour set
of f atx*.” If a setS C R"is contained i then we say that “the contour
set of f istangentialto S atx*.” O



Example

X2

Fig. 13.3. Tangent
planelP (shown dashed)
to contour setCy(f*)
of f (shown solid) at
a point x* = 3

X1 =3
indicated by the.




Example in higher dimension

1
e Considerx = [1 and objective functiorf : R — R defined by:
0
YXERS F(X) = (x1)%+ (%) + (%3)?, (13.3)
[ 2X1
YxeR3,0f(X) = 2%,
| 2X3
2
Of (x*) = 2] ,
0

P = {_XER3|Df(x*)T(x—x*) =0},

2 T X1—1
X3—O

2
0
= {X c R3|X1—|—X2 = 2}.




Example in higher dimension, continued

e In R", the tangent plane istayperplane, that is, a space of dimension
n— 1 defined by a single equality constraint.
e Descent directions fof atx* point fromx* into the sphere.

Fig. 13.4. Tangent
plane P to contour set
C¢(f*) of f at a point

1
X = [1] indicated
0

by the e. The contour

” set is the sphere and
the tangent plane is the
plane.




13.1.1.4 Geometric interpretation
Analysis

e In Section13.1.1.2 we showed that iX* is a constrained minimizer df
then:

A (A) C {Bx € R"|Of (x*) T = 0}

e Translating both of these sets by addkigo every element in both sets
and noting thaAx* = b, we have that:

S = {xeR"|Ax=b},
= {XeR"x=x"+M&M&e N (A}, sinceAx* = b,
C {xeR"x=x"+ Of (x*)';x = 0},
sincex* is a constrained minimizer df,
= {xeR"|Of (x")T(x—x*) =0},
= P,
e which is the tangent plane to the contour sef @it x*.



Analysis, continued

e Geometrically, we can say that the feasible Set, {x € R"|Ax= b}, is
contained in the sék, which is the tangent plane to the contour sef ait
X",

e \We can also say that the contour seffa§ tangential to the feasible set at
X*.

e This observation is consistent with FigurE3.2and13.3



Example
e Recall the example equality-constrained Probl@mJ):

min{ f (x)|Ax= b},
xcR2
where:vx € R?, f(x) = (x1—1)°+ (x2 — 3)2,
A= [1-1],
b = [0O].
e The (unique) local minimizer is at* = g with minimum f* = 2.
e The tangent plane to the contour setfadtx* is:
P = {xeROf(x") (x—x) =0},

- feewt|[ 3] (- [2]) -o}.
= {x€R%x—x2 =0},

e Which is the same set as the feasible set.




Example, continued

Fig. 13.5. Descent

0 ] directions for a function
1R at a point x* = g :
. (indicated by the o),
a3 none of which main-

tains feasibility for

] ‘ % the equality constraint

25 4 3 2 0 1 2 3 4 5 X1 illustrated by the line.




Example of strict containment

¢ In higher dimensions, it can typically be the case that thsifde set
S = {x € R"|Ax= b} is strictly contained in
P = {x € R"Of (x*)"(x—x*) = 0}.

e For example, consider again the objective functiarR® — R defined
in (13.3:

¥x e R, f(x) = (x1)? + (x2)* + (xa)*.
e Moreover, suppose that the equality constrafts= b are defined by:

100
AZ[OlO]’
b = 1

e The constraints specify that = x» = 1, so that the feasible set is the line
in R3 that is parallel to thez-axis and that passes through= x, = 1.

1
e By inspection, the minimizer of mjpps{ f (X)|Ax= b} isx* = [1] :
0



Example of strict containment, continued
e In this case:

S

{x € R3|Ax= b},
{x e R3x = xp = 1},
P = {xeR%Df(x) (x—x*) =0},

_ {XGR?’ 220 (x— ED_ }

= {(XeR3x +x =2}

e That is, the tangent plane to the contour sef atx* is a planelP, in R3,
which strictly contains the feasible s&twhich is a line.

e The situation is illustrated in FigurE3.6 which repeats Figur#&3.4but
adds a line that represeriis

e Descent directions fof atx* point into the sphere.

e No descent directions point along the feasibleSset



Example of strict containment, continued

Fig. 13.6. Feasible set
strictly S contained in
tangent plané® to con-
tour setC¢(f*) of f at

1
a pointx* = [1] indi-

0
cated by the. The con-
tour set is the sphere;
the tangent plane is the
plane; and, the feasible
set is the vertical line.



13.1.1.5 Summary

e At a minimizerx* of Problem {3.1), every descent direction fdratx*
must lie outside the null space Af
e At a minimizer, the contour set df is tangential to the feasible set.



13.1.2 First-order necessary conditions
13.1.2.1 Transformation of problem

o LetZ ¢ R™ with ' > n— m, be a matrix with columns that form a
basis for the null space @&. Then:

N(A) = {xeR"AX=0},
— {ZM|X cR"}.
e Suppose that € R" is a particular solution té\x = b.

S = {xeR"|Ax= b},
= {xeR"x=X+LAMX =0, € R"},

= {R+ZME|¥ eR"}.

e We can define annto function t: R" — S by:

VE e RV 1(8) = R+ ZE.

e Varying ¢ overR" allowst(§) to explore over the feasible s&t



Transformation of problem, continued

e We use TheorerB.5to transform the equality-constrained Problelf. ()
into an unconstrained problem.

e In the hypothesis of Theore5, letP = R" and definep: R" — R by:

VE R, (&) = f(1(8)). (13.4)

e The function@is called thereduced function.



Transformation of problem, continued
e By Theorem3.5:
(i) minyern{ f(X)|Ax= b} has a minimum if and only if Mif) e o(&)
has a minimum.

(ii) If either one of the problems in Iterfl) possesses a minimum (and
consequently, by Iter(i), each one possesses a minimum), then:

min @&) = minf(x),
EcRY XeS

argxrgﬂérr]\{f(x)mx: b} = {T(E) ‘E cargming(§) } :

EcRY

o minEeRn/(p(E) IS anunconstrainegroblem.



Transformation of problem, continued

e The gradient ofp, Cp(e) = Z'Of (1(e)), is called theeduced gradientor
theprojected gradient.

e Consider the direction corresponding to the reduced gnadhdhe
original decision variables € R".

e Referred to the original decision variabbeshe reduced gradiemnip
corresponding to a point€ R" lies in the directiorz Z'0f (X) € R™.

e The vecto = —ZZ'[0f (R), which is opposite to the direction
corresponding to the reduced gradient, is a descent direfdir f atx
unless the reduced gradiefitf (R) = 0.

e Moreover, ifAX = b then, for anya, X+ ax also satisfies the equality
constraints.



13.1.2.2 Necessary conditions in terms of original problem
Analysis

Theorem 13.1 Suppose that fR" — R is partially differentiable with

continuous partial derivatives, & R™", and be R™. Let Ze R™" be
a matrix with columns that form a basis for the null space offA.
x* € R"is a local minimizer of the problem:

min{ f (X)|Ax= b},
xeRN

then:

Z'of(x") = 0, (13.5)
AX" = bh.



Example

e \WWe continue with the previous equality-constrained Pnob(2.13).
e By inspectionZ = 1 e R?*1 is a matrix with columns that form a
basis for the null space:
N(A) = {&x € R7|AX = 0},

e Since:
AN = 0if and only if Ay = Mo, and

foré e R,Z¢E = E]



Example

e Also:
vx € R2,0f (x) = g&; - %;] ,
Of (x) = _g] |

e SO thatx* = g IS not anunconstrainedninimizer of f.

e Using these calculations, we obtain:
Z'ofx) = [1 1][_2],
= [0].

e consistent with the conclusion of TheordrB.1



13.1.2.3 Lagrange multipliers
Analysis

Theorem 13.2 Suppose that fR" — R is partially differentiable with
continuous partial derivatives, AR™" and be R™ If x* e R"is a
local minimizer of the problem:

min{ f (X)|Ax= b},

xeRN
then:
IN* € R™such thatf (x) + AT\ = 0, (13.6)
AX = b (13.7)
Proof By Theoreml3.l
Z'of(x*) = o, (13.8)

AX° = b,

whereZ € R™" is a matrix with columns that form a basis for the null
space ofA. Any vector inR" can be written in the forrdu— AT for



someu € R™ andA € R™ In particular, sincélf (x*) € R", we have:
Ju* € R™, 3\ € R™ such thalf (x*) = Zu* — ATA*,
Multiplying this expression through B we obtain:
Z'0f (x*) = ZTzu — ZTATI*,
But Z'0Of (x*) = 0 by (13.8), so:
Z'zu - ZTATN =0.

Also AZ =0, soZ"TAT\* = 0 andZ'Zu* = 0. But this means that* = 0
sinceZ has linearly independent columns. That is,

I\ € R™ such thatlf (x*) +ATA* =0,
which is (13.6). We already have th#&x" = b, which is (13.7). O

e A vectorA* satisfying (L3.6), given anx* that also satisfiesl@.7), is
called a vector oLagrange multipliers for the problem.

e The conditions 13.6—(13.7) are called thdirst-order necessary
conditions (or FONC) for Problem (3.]).



Example

e Continuing with the previous equality-constrained Prabl2.13), we
obtain:

Of (x) +AT[-2] = [_g] + [_ﬂ —2],
= 0,

e which is consistent with Theored8.2for A\* = [—2)].



13.1.2.4 Analytic interpretation
The Lagrangian

e Recall Definition3.2 of the Lagrangian.

e For a problem with objectivé : R" — R and equality constraintdx = b,
with A€ R™"andb € R™the LagrangiarC : R" x R™ — R is defined
by:

vx e R" YA € R™ £(x,A) = f(x) + AT (Ax—b), (13.9)
whereA is called the vector oflual variables for the problem.

e We also define the gradients 6fwith respect toc andA by, respectively,

t t
L = [gTL andh L = [%] .

oA
e Thatis:

k(X A) = Of(x)+AM,
hL(X,A) = Ax—Dh.

e \We can interpret the first-order necessary conditid®sg—(13.7) in two
ways using the Lagrangiaf.



Minimization of Lagrangian over primal variables

e The first-order necessary conditions imply tkats a critical point of the
function L (e, A*) that also satisfies the constraids= b.

e \We seek a point* that minimizesL (e, \*).

e The vector of Lagrange multiplieps® “adjusts” the unconstrained
optimality conditions byA"™A* to “balance” the minimization of the
objective against satisfaction of the constraints.



Critical point of the Lagrangian

2%
e The first-order necessary conditions also imply t{%}] IS a solution of
the simultaneous equations:
L(X,A) = 0, (13.10)
hL(X,A) = 0. (13.11)

e The second set of equations requires idie feasible and are linear
equations.

o We seek[;\(*] satisfying[lL(x*,A*) = 0, where[lL = [S;‘i] :

e Thatis, [;\(*] is a critical point ofL.

ok

e However, [;\(*] IS nota minimizer ofL(e,e) over values of{;\(] :



Algorithms

e As in the unconstrained case, these two interpretatiomsusdo two (of
several) classes of algorithms for solving Probldr®.)):

(i) minimize the Lagrangian ovetfor a fixedA and then adjusk
until feasibility is obtained, (Sectiorts3.3.1.4and13.3.2.4, and

(ii) solve the necessary conditionk3(10—(13.11]) for x andA,
(Sectionsl3.3.1.3and13.3.2.3.



Example

e Continuing with the previous equality-constrained Prabl@.13), the
LagrangianZ : R? x R — R is defined by:

YXERZVA ER, LX) = (X1 — 1)%+ (X2 — 3)° +A(X1 — X2). (13.12)

e Setting the value of the dual variable in the Lagrangian Etquidne
Lagrange multiplierA* = [—2], we have:

VX € R? L(X,A*) = (X1 — 1)%+ (X2 — 3)% + (—2) (X1 — X2).

e The first-order necessary conditions for minimizingx, A*) with respect
to x is that:

o [20q-1)-2
BLAT) = [2&;—3;+2]’

= 0,

e which yields a solution ok* = [g] :



Example, continued

Fig. 13.7. Contour sets
for Lagrangians(e,A*)
evaluated at the La-
grange multipliers\* =
-2




Example, continued

e For other values of the dual variablesiot equal to the Lagrange
multipliersA*, the corresponding minimizer af(e,A) will differ from
the minimizer of Problem2.13). .

e ForA = [-5], the contour sets aof (e,A) are illustrated in Figuré3.8

e The unconstrained minimizer of this function |s><atc'{gg] . illustrated

with ao in Figure13.8 which differs fromx*.



Example, continued

X2

5 L
4/

3

G

= N

Fig. 13.8. Contour sets
for Lagrangian L(e,\)
evaluated at_value of
dual variables\ = [—5]
not equal to Lagrange
multiplers.



13.1.2.5 Relation to geometric interpretation

e To see that the first-order necessary conditions imply tloengdric
observation made in SectidB.1.1.4 suppose that € R" satisfies:

e S ={xeR"Ax=Db}.

e ThenA(X—x*) = 0 and soA*]TA(R— x*) = 0.
e The necessary conditions require thd(x*)" + [A*]TA= 0.
e Multiplying by (X— x*) on the right we obtain:

0 = (Df(x*)TJr[)\*]TA) (R—x),
= Of ()T (R=xY).
e Therefore:
xeP={xeR"Of (x")(x—x*) = 0}.

e The contour set of is tangential to the feasible sgtatx*.



13.1.2.6 First-order necessary conditions are not sufficie
Discussion
e As with unconstrained problems, it is possible for a paitd Satisfy the

first-order necessary conditions3(6—(13.7) and yet not be a local
minimizer of Problem 13.1).

Example
e Consider the case of Problet3(1) with n=2 andm=1 and:
1 1
Vx € R?, f(x) = _§<X1)2 — E(Xz)z,
A= [1 1],
b = [0O].

e X = 0is not the minimizer of the problem.



Example, continued

Fig. 13.9. Contour sets

3] : for non-convex objec-
. tive. The objective de-

/ creases away from =
P54 3 2 1 o0 1 2 s 4 5 X1 0.



Example, continued
e The pointX'= 0 satisfies {3.6—(13.7) with A = 0 since:

~

Of (R) + AN = —x+ [_1] A,

1
1
_ o+[_1] 0.
— O’
AR = AO,
— 07
— b

e Thatis,x=0andA =0 satisfy the first-order necessary conditions for
Problem (3.1), butX= 0is not a minimizer of this problem.
e In fact, it is amaximizerof f over the feasible set.



13.1.3 Second-order sufficient conditions
13.1.3.1 Null space basis
Analysis

Theorem 13.3 Suppose that fR" — R is twice partially differentiable
with continuous second partial derivativescAR™" and be R™. Let

Z € R be a matrix with columns that form a basis for the null space
of A. Let X € R" and suppose that:

Z'of(x*) = o,
AX" = b,
Z'0% (x)Z s positive definite.
Then x € R" is a strict local minimizer of the problem:
min{ f (X)|Ax= b}.

XeRN



Proof The conditions follow from the second-order sufficient
conditions presented in Theorelfl.5for unconstrained minimization

applied to the problem of minimizing the reduced functdp)ﬂR“' — R
defined in (3.4):
vE € R", (&) = f(1(8)).

O



Example
e Continuing with the previous equality-constrained Prabl@.13),

wx e R2, 0% (x) — [2 0],

0 2
Z'0% (x)Z = [1 1] [(2) g] m
)

e Which is positive definite.
e Applying Theoreml3.3 we conclude that* is a local minimizer of
Problem 2.13).



13.1.3.2 Lagrange multipliers

Analysis As previously, we can also develop second-order sufficient
conditions in terms of Lagrange multipliers:

Corollary 13.4 Suppose that fR" — R is twice partially differentiable
with continuous second partial derivativescAR™ ", and be R™. Let
x* € R"andA* € R™ satisfy:

Of (x) + AT\ = 0,
AX" = b,
(ADx=0andMX#0) = (MX'0% (x")Ax > 0).
Then x € R" is a strict local minimizer of the problem:

min{ f (X)|Ax= b}.

XeRN

Proof The hypotheses of this corollary imply the hypotheses of
Theoreml3.3 O

e We refer to the conditions in CorolladB.4as thesecond-order
sufficient conditions (or SOSQ.



Example
e Continuing with the previous equality-constrained Prabl@.13),

% (x*) — [(2) g] |

e which is positive definite ofR? and, in particular, on the null space
N (A) = {&x € R"|AMx = 0}.

e Applying Corollary13.4, we conclude that* is a local minimizer of
Problem 2.13.



13.2 Convex problems
13.2.1 First-order sufficient conditions
13.2.1.1 Analysis

Theorem 13.5 Suppose that fR" — R is partially differentiable with
continuous partial derivatives, AR™", and be R™. Consider points
x* € R"andA* € R™M. Suppose that:

(i) fisconvex ox € R"|Ax= b},
(i) Of (x) +AfA* =0, and
(i) Ax-=Dh.
Then X is a global minimizer of the problem:
min{ f (X)|Ax= b}.

xeRN



Proof Consider any feasible pointe {x € R"|Ax= b}. We have:

f(x) > f(x*)+0f(x)T(x—x*), by Theoren®.6, noting that:

f is partially differentiable with continuous partial deatives
f is convex on the convex sgx € R"|Ax= b} by Iltem(i); and
x,X* € {x € R"Ax= b} by Item(iii) of the hypothesis,

f(x*) — M]TA(X—x*), by Item(ii) of the hypothesis

= f(x*), sinceAx= Ax* = b by Item (iii) and construction.

Thereforex* is a global minimizer off on {x € R"|Ax=b}. O



Corollary 13.6 Suppose that fR" — R is partially differentiable with
continuous partial derivatives, A R™", and be R™. Let Ze R™"
have columns that form a basis for the null spdée € R"|AAx = 0}.
Consider a point xe R". Suppose that:

(i) fisconvex ox € R"|Ax= b},
(i) Z'Of (x*) =0, and
(i) Ax*=Db.
Then X is a global minimizer of the problem:
min{ f (X)|Ax= b},

XeRN



Proof Items(i) and(iii) of the hypothesis of this corollary are the same
as the corresponding Itenfi$ and(iii) of the hypothesis of

Theoreml3.5

ltem (ii) of the hypothesis of this corollary says tidOf (x*) = 0. In the
proof of Theorenl 3.2 it was proven that:

(Z2'0f (x) = 0) = (IN* € R™ such thatdf (x*) + AT\ = 0.)

That is, Item(ii) of the hypothesis of TheoretB.5holds. Therefore, the
result then follows from Theoret3.5 O



13.2.1.2 Example

e Continuing with the previous equality-constrained Prabl@.13), we
have already verified that = [g] andA\* = [—2] satisfy the first-order
necessary conditions.

e \We also have that is convex.

e By Theoreml13.5 x* is a global minimizer of Problen2(13).



13.2.2 Duality

e The discussion in SectidlB.1.2.4suggests that if we knew the vector of
Lagrange multipliera* we could avoid explicit consideration of the
equality constraints if was convex.

e Here we discuss one method to find the Lagrange multipliedfsradicate
some of the issues that arise.

e In particular, we will see that we generally require stricheexity of f to
yield useful results.



13.2.2.1 Dual function
Analysis

e As we discussed in Sectid@4, we can define a dual problem where the

role of variables and constraints is partly or fully swapped
e Recall Definition3.3 of thedual function andeffective domain
e For Problem 13.1), the dual functionD : R™ — RU{—o} is defined by:

YA ER™ D(N) = inf L(x,\), (13.13)

XeRN
e While the effective domain is:
E={Ae€R"DA) > —oo},

e SO that the restriction ab to E is a function?D : E — R.



Example

YXERZYAER, L(XA) = (X1—1)2+ (Xo—3)2+ (X1 — X2),
VAER,D(A) = inf L(XA),

xeR?2

= inf {(xg —1)?+ (%2 —3)?+A(x1 —x2)}.

xeR?

e L(o \)is partially differentiable with continuous partial deatiwes and
Is strictly convex.

e By Corollary 10.6the first-order necessary conditions are sufficient for
global optimality:

2(X1 —1)+A
LX) = lzgﬁi_ggt)\la

= 0.



Example, continued

e For any giverh € R, the unique solution is® = [%;%g] .

A 2 A 2 A A

— o) (13.14)



13.2.2.2 Dual problem
Analysis

e Under certain conditions, Lagrange multipliers can be tbas the
maximizer, over the dual variablés of the following problem:

maxD(A). 13.15
maxD(A) (13.15)

e Problem (3.19 is called thedual problem to Problem 13.1).
e Problem (3.]) is called theprimal problem .



Theorem 13.7 Suppose that fR" — R is convex and partially
differentiable with continuous partial derivatives AR™", and
b € R™M. Consider primal problem, Problend 8.1):

min{ f (X)|Ax= b}.

xcRN

Also, consider the dual problem, ProbledB8(15. We have that:

(i) If the primal problem possesses a minimum then the dual @nobl
possesses a maximum and the optima are equal. That is:

min{ f(X)|Ax= b} = r{\%xﬂ)()\). (13.16)

xeRN
(i) If:
e AcE,
e Minyrn L(X,A) exists, and

e f istwice partially differentiable with continuous second
partial derivatives and1%f is positive definite,

thenD is partially differentiable af\ with continuous partial
derivatives and

ODA) = AXN — b, (13.17)



where XV is the unique minimizer afinggn L(X,\).

Proof This is a special case of Theorei.4be presented in
Chapterl?7. O

e For some\ € RMit is possible for infern L(X,A) to be a real number, so
thatA € [E, yet for there to be no minimum of miggn £(x,A) or for 0%
to fail to be positive definite so that there are multiple mmizers of
MiNyern L(X,A).

e In either case, the dual functiagh may be non-differentiable atc E.

e Recall from Theoren3.12that the effective domaiR of the dual
function is a convex set and that the dual function is concanvE.



Corollary 13.8 Let f:R" — R be twice partially differentiable with
continuous second partial derivatives and witkf positive definite,

Ac R™N and be R™. LetE be the effective domain of the dual
function.

If:

e £E=RM and

e VA € R™ minycrn L(X,A) exists,

then necessary and sufficient conditionsXore R™ to be the maximizer
of the dual function are that:

AXN) —p=0,

where{x*")} = argminern L(x,A*). Moreover, if\* maximizes the dual
then ¥*") and\* satisfy the first-order necessary conditions for
Problem (3.1).



Proof Note that the hypothesis implies that the dual function i$din
for all A so that Problem13.15 is an unconstrained maximization of a
real-valued function and, moreover, by Theorgr2 — D is convex and
partially differentiable with continuous partial derivegs. By
Theoreml10.3and Corollaryl0.6 OD(A) = 0 is necessary and sufficient
for A to be a global maximizer ab. By Theoreml3.7,

OD(N) = AXY — b, so the necessary and sufficient conditions for
maximizing the dual are th#x» —b = 0. Direct substitution shows

thatx®") and\* satisfy the first-order necessary conditions for
Problem (3.1). O

e Theoreml3.7shows that an alternative approach to finding the minimum
of Problem (.3.1]) involves finding themaximunof the dual function over
A eRM

e Theorem3.12shows that the dual function has at most one local
maximum, with necessary and sufficient conditions for th&imeer
specified in Corollaryl3.8



Example

e Continuing with the previous equality-constrained Prab(@.13), we
note thatd%f is positive definite and, for eadh) L(e,\) has a unique
minimizer, specified by the solution &£ (x,A) = 0, so that, by
Theoreml3.7, E = R and the dual function is partially differentiable with
continuous partial derivatives on the wholekaf

e Moreover, since the dual function is concave, the first-orgeessary
conditions to maximizeD are also sufficient.

e Partially differentiating? we obtain:

ODAN) =[-A—2].
e This is consistent with Theored8.7, since:

1-)\/2

AXN —b = [1 —1] [3H/2] —[0],

— [-A-2).



Example, continued

e Moreover,[ID(A) = [0] for A* = [-2].
e Also, D(A*) = 2, which is equal to the minimum of Probler2.13 and

xN) = [g] , which is the minimizer of Problen®2(13).



Wolfe dual

e In some cases we can write down conditions characterizegalue of

the dual function more explicitly than iri8.13.
e Suppose that is partially differentiable with continuous partial

derivatives and that it is convex @i
e Then by Corollaryl0.6 the first-order necessary conditions
[kL(X,A) = 0 are sufficient for minimizing_(e,A).

e GivenA € R™, if there is a solution tal.(x,A) = 0 then we can evaluate
the dual function by:
D(N) = {L(XN)|BL(XA) =0},

e Where by the notation on the right-hand side we meawaheeof £(x,A)
evaluated for a value ofthat satisfie§ k2 (x,A) = 0, assuming a solution

for x exists.



Wolfe dual, continued

e Using Theoren 3.7, this observation means that under the same
assumptions, we can solve for the minimum of Probléf1) by using
the Wolfe dual:

min{ F(x)|Ax=b} = max{.L(x,A)[LhL(x,A) = O}, (13.18)

e Where we again use the equatidg’ (x,A) = 0 to evaluatex and have
tacitly assumed thaik.(x,A) = 0 has a solution for each



Discussion

e Itis essential in Theorer3.7for f to be convex on thevholeof R", not
just on the feasible set.

e The reason is that the inner minimizationofe,A) is taken over the
whole of R".

e Unfortunately, iff is notstrictly convex thenZ(e,A) may have multiple
minimizers overx for fixed A.

e In this case, it may turn out that some of the minimizer£0é, \*) do
not actually minimize 13.1).

e Even when the objective is not strictly convex we can stilttr solve the
dual problem to obtait* and extract a corresponding valuexdf ).

e This approach forms the basisladgrangian relaxation, the
sub-gradient method and other methods to solve non-differentiable
problems that result from “dualizing” a problem that has bjective that
IS not convex or which has a feasible set that is not convex.



13.2.2.3 Separable objective
Analysis

e Suppose thaf : R" — R is additively separable, so that:
n

VXeRMT(Xx) =% fi(x0),
=]

e Wherefy:R—-R,k=1,...,n.
e \We consider the dual.



Analysis, continued
VAEE,D(A) = inf L(XA),

XeRN

= mlerrl]L(x A), assuming that the minimum exists,
Xe

= min f(x) +AT(Ax—b), by definition of ,

XeRN

I S A —
- ma{g e (Fanr)}

whereA is thek-th column ofA,

= )@ﬁQ{ Z (fk(Xk) +)\TAka> } ~'b,

k=1

- me{fk %) + A Ax —ATh. (13.19)

XkGR



Analysis, continued
e For each fixed € R™, the dual functionD(A) is the sum of:
a constant{—ATb), and
n one-dimensional optimization “sub-problems” that canheae
evaluated independently.
e \WWe havedecomposedhe problem by exploiting the separability of the

objective.
e If there are relatively few constraints but many variabled the objective

Is separable then maximizing the dual problem involveshoigation in a
smaller dimension than minimizing the primal problem.



Example
e Continuing with the previous equality-constrained Prabl@.13), note

that the objective is separable.
e The dual function is:

VAER,D(A) = minL(XA),

XeR?2
= min{(xg — 1)?+Axe} 4+ min{(x2 — 3)? — Axz}.
x1€R xo€R

(13.20)

e Each of the two convex sub-problems can be solved sepagatdlthe
result is the same as obtained previously.



13.2.2.4 Penalty functions and augmented Lagrangians
Discussion

e In Section3.4.5in discussing duality, we interpreted terms in the
Lagrangian as functioning as a penalty.

e In Section3.1.2.1 we discussed an approach to approximately solving
constrained problems by defining an unconstrained problemav
penalized objective

e In Section3.1.2.1we also observed that we could consider the penalized
objectivef + M||g||* for some suitable value of the penalty coefficient
M € R, and retain the constraints.

e Here we will consider the combined use of penalty functiams duality.



Example
¥x € R2, f(X) = —2(x1 — X2) + (X1 + X2)2.

e The objective is not convex and is not bounded below.

Fig. 13.10. The non-

convex objective
function defined in
5 s section13.2.2.4



Example, continued

A =
b
¥x € R? VA € R, L(X,\)

1 1],
0],
f(x)+AT(Ax—b),

= —2(x1—%2)? + (X1 +%2)? + A (X1 — X2).
e For any givem\ € R, L(e,A) is not bounded below.
e Therefore:

VA € R, inf L(X,A) = —oo,

XER

e andE = 0.
e We cannot usefully apply Theorei3.7.



Example, continued

e However, we know that the solution to the equality-constdi

optimization problem:
min{ f (x)|Ax= b}
xeRN

o isx*=0.

e Substitution into the necessary conditions shows thaesponding value
of the Lagrange multiplier ia* = [0], so thatL(e,A*) = f(e).

e The primal problem is well-defined, the first-order necegssanditions
hold at the minimizer, ang* andA* satisfy the second-order sufficient
conditions.

e The difficulties in applying Theorerh3.7arise here because the objective
is not convex oR".



Example, continued
e Suppose that instead we consider a penalized objective.
e That is, we modify the objective to bie+I1f,, wherel1 € R and
fp: R" — R, is defined by:
VX) fp(x) - ||AX_ b”%a
= (Xl — X2)2.

e For example, suppose that we chobke- 3.



Example, continued

Fig. 13.11. Convex pe-
nalized objective func-
tion f +f, for N = 3.




Example, continued

e The Lagrangian of the corresponding problem is callechtigmented
Lagrangian, L : R? x R — R, defined by:

YX € RZVA € R, Lp(X,A) = L(X,A)+Mfp(x),
= (Xg+X2)? F A —X2) + (X1 —X2)?,

e Which is strictly convex as a function affor fixed A.

e Moreover, for eaclA € R, the minimizer ofL,(e,A) exists, so thak = R,
and the minimizer is unique, so that the dual function isiplyt
differentiable.

e In particular, for the example shown, minimiziag (e, A*) overx now
yields the optimak*.

e We must picK large enough so that:

— the augmented Lagrangiaiy(e, ) is strictly convex for each givek
(so that there is at most one minimizerQf(e,A) for each giver)), and
— there is a minimizer of the augmented Lagrangiafe, A) for eachA.



Analysis

e Consider a quadratit : R" — R with quadratic coefficient matrix
Q € R™" and the use of a penalty functiéh||Ax— b|5.

e The Hessian of the augmented Lagrangiage,A) for fixed A is
Q-+ 2NATA.

Theorem 13.9 Suppose that @ R™" is positive definite on the null-space
of Ac R™™", Then there existd > 0 such that Q- 2MA'A is positive

definite.O

e Theoreml3.9shows that we can find such that the augmented
Lagrangian is strictly convex as a functionyofor fixed A.
e We typically must apply an adjustment procedure to find aabletvalue

of IN.



Separability and the augmented Lagrangian

e Augmented Lagrangians have a drawback for separable olgesince
the penalty function adds “cross-terms” between varialsch prevent
decomposition into sub-problems.

e One approach to preserving separability while maintaitinegadvantages
of augmented Lagrangians involves linearizing the cress:s.



13.3 Approaches to finding minimizers

e For each case considered, we will tacitly assume that a mimimnd
minimizer exists.

e The algorithms will either be:

— direct, typically involving solution of a linear system afwations, or

— iterative, typically requiring at each iteration the sautof a linear
equation representing a Newton—Raphson update for sahanginear
equations or an approximation to the Newton—Raphson update

e We will proceed as though these Hessians are available ahthh
resulting linear systems can be conveniently factorizeéagube basid U
factorization.

e However, in practice, it may be necessary or desirable to:

— use a variation on the basic Newton—Raphson update alonmése
described in Sectioh0.2.3.3to avoid the computational effort of
evaluation and factorization of the Hessian at each i@matr

— use a different factorization method such@Rif the equations are
ill-conditioned.



13.3.1 Convex quadratic objective
13.3.1.1 Problem
n 1 T )
vxeR" f(x) = Ex QX+ C'X,
e with c € R"andQ € R™" and symmetric.

e We assume thd is positive semi-definite, or at least positive
semi-definite on the null spack(A) = {& € R"|AAx = 0}.



13.3.1.2 Null space basis
Optimality conditions

o LetZ € R™M pe a matrix with columns that form a basis for the null
spacel (A) = {&x € R"|AAx = 0}.

Ztox = —Z'c, (13.21)
AX" = b (13.22)

Algorithm

e Equations {3.2]) and (13.22 are linear and involve’ + mequations im
variables.



Example
min{ f (x)|Ax= b},
x€R2
vx e R?, f(x) = %XTQX—F c'x,
2 0 —2
@[5 8= 5]
A=[1 —1],b=10].

_ 1 2x1
2 - [t]exs

z'Q = [1 1] [0 5



Example, continued

o >
I
= o
|
L

Discussion
e The main drawback of this approach is the need to constraanttrixZ

+
and then form and factorize the coefficient mat{rFXAQ] .



13.3.1.3 Lagrange multipliers
Optimality conditions
QX + A\ = —c, (13.23)
AX = h. (13.24)

Algorithm

e Equations {3.23 and (13.29 are linear and involva+ m equations in

n+ mvariables.
e The coefficient matrix of this system:

a- [(A? %T], (13.25)

e is indefinite, so that a special purpose algorithm for fazégion of
indefinite matrices should be used, as mentioned in Sebt#id
e Performing a single forwards and backwards substitutien golves:

Sl

A O
[meree | [4€]0p] [C][>7 [118or202] [Teabesk | [Pursesn | [[Toose | [Tow ]




Example
1
VX € RZ, f(x) = EXTQX—l— ch,

Q= [cz) g})cz [iél

A=[1 —1],b=]0].

e bl



Discussion

e The coefficient matrixd in (13.25 is sparse ifQ andA are sparse.

e Although (13.23—(13.29 has more equations thah3.210)—(13.22),
if (13.23—(13.29) is sparse then it can be much easier to solve
than 3.21)—(13.22.

e If Qis positive semi-definite but not positive definite, then &nbe the
case that the minimizer of Problerh3.1) is non-unique. AQR
factorization of4 specialized to indefinite matrices can be used. (See
Section5.4.7)

e If Q = 0so that the problem is actually linear, then it is usually¢hse
that no minimum exists.

¢ If some of the rows oA are linearly dependent, then the Lagrange
multipliers are not unique.



13.3.1.4 Dual maximization
Optimality conditions
e The dual functionD : R™ — RU {—o} is defined by:

VA ER™, D(A) = inf {%XTQX+ c'x+AT(Ax— b)} . (13.27)
xeRN
e The dual problem is:
max?D(A).
AeE

e The first-order necessary conditions for the unconstramiedmization
problem on the right-hand side df3.27) are:

L(XA) = Qx+c+ATA =0, (13.28)



Optimality conditions, continued

e For the rest of the analysis of dual maximization, we willlass thatQ is
positive definite so that the unconstrained problem on tjig+4hand side
of (13.27) is strictly convex andX3.28 has a unique solution:

XN = —Q7c+AM).
e The necessary conditions for maximizing the dual are that:
ODA) = AXN —b=0.

e Each entry in\ can be increased or decreased depending on whether the
corresponding entry ofx®) — b is greater than or less than zero.



Algorithm
e A steepest ascent algorithm:
xV) = —QYc+ANW), (13.29)
M) = AxV) —p, (13.30)
AVHD — V) +a<V)A7\(V),
e wherea (V) should be chosen to ensursuficient increasa Q)()\(V“))

compared toD()\(")) using, for example, the Armijo criterion described
in Section10.2.4.2

Stopping criterion

e By Theorem3.13 D(A+1) provides a lower bound on the value of the

minimum.
e This lower bound can be incorporated into a stopping cateri



Example

1
vx e R?, f(x) = EXTQX—i— c'x,

o5 9] e=|78]

A=[1 —-1],b=]0].
o Let\(O)

0].



Example, continued



Example, continued

A — A0 4 g OO,
— [0]+1x[-2], pickinga® =1,
— [_2]7

XU = —QYc+AMND),

N EEER)
-]

MO — AXD _p,
— [0]7
e and the dual algorithm has converged in one iteration.
e Usually, the dual iteration using steepest ascent reqoies than one

iteration to converge, even if an optimal step-size is chpbecause the
level sets of the dual function are elliptical and not sptari



Discussion

e The algorithm adjusta until the optimality conditions for the dual are
satisfied.
e Maximizing the dual involves:

— choosingx to satisfyf (x) + ATA(Y) = 0 at each iteration, given the
current estimate of the Lagrange multipligf), and

— updating the Lagrange multiplier estimate at each itenagmas to more
nearly satisfy the constraint8.7), that is,Ax= b.



13.3.2 Non-quadratic objective
13.3.2.1 Problem

e Suppose that the objectiie: R" — R is partially differentiable with
continuous partial derivatives.
e We will consider several approaches to this problem.



13.3.2.2 Null space basis
Optimality conditions

o LetZ € R™M pe a matrix with columns that form a basis for the null
spacel (A) = {&x € R"|AAx = 0}.
Z'of (x) = 0, (13.31)
AX* = b (13.32)



Algorithm

e Suppose we construct an initial gueds that satisfies the equality

constraints.
e The set of all solutions to the linear equations is given by:

(X0 1 zEg e R},
e \We can now proceed to minimize the reduced functpor]R”' —R
defined by:
Ve e R", @) = f(xO +Z8).
e Any of the unconstrained minimization methods developed in

Sectionl0.2can be used to minimize this function.
e A natural initial guess fok is £(9) = 0, corresponding to an initial guess

of x(0,



Algorithm, continued
e A steepest descent algorithm using the reduced gradigniould involve
the following recursion to define the iterates:
gvil) —g(v) _qv) D(p(E(")),
e Or equivalently:
gV — (V) ) ZTDf(x(O)—i—ZE(")),
= £V _qWv) ZTDf(X(V))7

e wherex¥) = x(0 1 7&(V) and the step-size!¥) should be chosen to

achieve sufficient decrease in the reduced funapi@v 1)) according to,
for example, the Armijo criterion.



Algorithm, continued
e A Newton—Raphson algorithm would involve:

thp(E("))AE(V) _ —D(P(E(V)),
gV — gV) 4 qAE(v)
e Or equivalently:
ZTo (xWhzae™) = —zTof (xV)),
gD — g V) L qMasv),



Example
e Considerf : R? — R defined by:

vxeR2 f(x) = 0.01x (x1 —1)*+0.01x (xo —3)*+ (x1 — 1)%+ (xo — 3)?
—1.8(x1 —1)(x2—3).

e Consider the problem mjpg2{ f (x)|Ax= b}, whereA € R and
b € R! are defined by:

A= [1 -1],
b = [g].

e By inspectionZ = [ﬂ Is a matrix with columns that form a basis for the

null space ofA.



Example, continued

e Consider the initial guesg? = [ 3] , which is feasible for the equality

-5
constraint.

e We perform one iteration of a steepest descent algorithmromwze the
reduced function with initial guess® = [0].

f(x9) = 13777,

() = [0.04x (X3 —1)°+2x (X —1) —1.8x (xop — 3)
T 0.04x% (x2—3)>—1.8x (X1 —1)+2x (x—3) |
)y _ [ 1872
HHCT) = | _a008) -
Z'0f(x9) = [-21.34].



Example, continued
e Using a step-size of 1, we obtain a tentative update of:

g — E(O)—ZTDf(X(O)),
= [21.36)],

(0) 1) _ 24.36
XTHZeT = [16.36’

f(x?4+zg) = 34588,

e This is larger tharf (x(9), so we must consider a step-size rule.

e \We use the Armijo rule, with the step-size halved until thenfjo
condition (L0.149) is satisfied.

e Fora(® = 0.25, the Armijo condition is satisfied and we obtain:

¢ = (534,
1 _ |834
X = [0.34]7

f(xY) = 1256.



Stopping criterion

e The algorithm involved unconstrained minimization of teeuced
functionq.

e Stopping criteria for unconstrained problems as discussed
Section10.2.5can be used for this algorithm.

Discussion

e Whatever algorithm is used for minimizing at each iteration the iterate
x(V) = x(0) 4+ 7&V) is feasible for the equality constraints.

e In summary, we generate iterates that are:
— feasible at each iteration, satisfyint3(32, and
— in principle, become closer to satisfying the conditi@8.31).



13.3.2.3 Lagrange multipliers
Optimality conditions
Of (x) +ATA = 0, (13.33)
AX'—b = 0. (13.34)

Algorithm

e Equations {3.33—(13.39 are non-linear w{ﬂ , involve n+ m equations

in n+ mvariables, and can be solved iteratively using the
Newton—Raphson method.

e |ldeally, convergence is quadratic.
e Since the constraintdx = b are linear, we can construct an initial point

x(9) that satisfied\xX? = b using the techniques discussed in
Section5.8.1



Algorithm, continued

e At each subsequent iteration, we try to solve for the NewRaphson

step direction using:

Ax(V)
7| aw] -

[Of (xV) + ATAM) ]

[Of (xV)) + ATAV) |

AxV) — b

e where4 € R(MM*(n+M) js defined by:

|

0
% (x(V)) At
A 0

e and where we have assumed tAat’) —b = 0.

(13.35)



Example

e Continuing with the non-quadratic objectife R? — R we consider the

initial guessx(©) = _g andA(© = [0].

e We perform one Newton—Raphson update.
e The coefficient matrix2 and right-hand side inl@.39 is given by:

A

[ Of(x) 4 ATAV)

(0% (x(0) AT
A 0
T 248 -18 1
~1.8 968 —1],
1 —1 0
—18.72
4008].
i 0



Example, continued
e Solving (13.39 for these values yields:

(V) 2.495
[A"(V)] — [ 2.4953| .
M\ 204168

e Using a step-size of one, we obtain:

(1) 5.4953
X e

—2.5047|°
AV = [-204164,

e with objective valuef (x'1)) = 1083163.



Stopping criterion
e Suppose that:

f Is convex,
there is a known bound on where the minimizer can lie of thenfor

Hx* —xV) H <p, and
we want to ensure thdt(x(")) is within £¢ of the minimum.
e Then we should iterate untHIDf (X)) + ANV || < &5 /p.

Discussion

e As in the case of the quadratic objective, eve%f(xW)) IS positive
definite, the coefficient matrid in (13.39 is indefinite.

e To factorize it, we should use a special purpose algorithmestioned in
Section5.4.7.

e The iterates are:

— feasible at each iteration, satisfyint3(7), and
— in principle, become closer to satisfying the conditia8.¢).



13.3.2.4 Dual maximization
Optimality conditions
e The dual function in this case 8 : R™ — RU {—oo} defined by:

VA ER™, D) = inf {f(x) +AT(Ax—Db)}.

e The dual problem is:

max?D(A).
AcE

¢ If we assume that there is a minimum and minimizer of the prima
problem and that there is no duality gap, then maximizingoiine
function yields the minimum of the primal problem.

e If the conditions of Corollaryl3.8hold then the optimality conditions for
the dual problem are that:

ODA) = AXN —b,
= 0,

e wherex™ is the unique minimizer of miggn{ f(x) + AT(Ax—b)}.



Algorithm

xV) e argmﬂén{f(x)qt[)\(V)]T(Ax—b)}, (13.36)
XeRN
MV = AXY) b,

AVHD AW 4 g0,



Example
e Continuing with the objective defined ia@.9,
vxeR?, f(x) = 0.01x (x1—1)*+0.01x (xo —3)*+ (x1 — 1)% 4 (xo — 3)?
—1.8(x1 —1)(x2—3),
e and constraints defined by:
A= [1 -1],
b = [8]7

e we letA\(0) = [0], and perform one (outer) iteration of a dual maximization
algorithm.



Example, continued

e Since\® = [0], Problem 13.36 is equivalent to unconstrained
minimization of f.

e The minimizer isx(©) = [%] . and we have:

MO — AxO _p

- 1 -u3| -

_ [-10.
e Using a step-size af(9 = 1, this yields:

A = AO 4 OO
0] +1[-10],
= [-10.



Stopping criterion

e Again TheorenB.13can be used to show that(AV*1) provides a lower
bound on the value of the minimum.

Discussion

e Maximizing the dual involves:
— satisfyingOf (xV)) + ATA(Y) = 0 at each outer iteration, given the
current estimate of the Lagrange multipligf), and

— updating the Lagrange multiplier estimate at each outeatiten so as to
more nearly satisfy the constrairit3.7).
e For each update of there are a number of inner iterations to solve
Problem (3.36 to sufficient accuracy.
e Once a minimizer of Problen18.36 is obtained then, to update a)

should be chosen to yieldsaufficient increase the dual function using,
for example, the Armijo condition as described in Sectior?.4.2



13.4 Sensitivity
e \We imagine that we have solved the problem:

mini Fax)IAX)x=b(X)},

e for the base-case value of the paramegersO.
e \We now consider the sensitivity of the minimizer and minimtam
variation of the parameters arougd-= 0.



13.4.1 General case

Corollary 13.10 Let f:R" x R® — R be twice partially differentiable with
continuous second partial derivatives and letl&° — R™" and
b: R — R™ be partially differentiable with continuous partial
derivatives. Consider the minimization problem:
min{ f (X X)|A(X)x = b(X)}, (13.37)

XeRN

wherey is a parameter. Suppose that& R" is a local minimizer of
Problem (13.37 for the base-case value of the parametees 0 with
corresponding Lagrange multiplie’s' € R™. We call x= x* a base-case
minimizer and callh = A* the base-case Lagrange multipliers. Define
the (parameterized) Hessiatg, f : R" x RS — R"™" by:

2
vx € R", VX € R® O5f (X X) = g—xg(x;x)



Suppose that:

e [2f(x*;0) is positive definite on the null space oft, so that x and

A* satisfy the second-order sufficient conditions for the b=ese
problem, and

e A(O) has linearly independent rows.

Then, for values ok in a neighborhood of the base-case value of the
parametery = O, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problerh3.37. Moreover, the
local minimum, local minimizer, and Lagrange multiplierg partially

differentiable with respect tg and have continuous partial derivatives
in this neighborhood.



We consider the sensitivity with respeciio the j-th entry ofx. The
sensitivity of the local minimizerand Lagrange multipliera* to xj,
evaluated at the base-cage= 0, is given by the solution of:

ox* oA 1",

a a_xi(o) I ["XJ( )] )\ (13.38)
9N (0) _9A oy 90 o |
0X; 0Xj 0Xj

where:

- [E&xf (x*;0) [A(O)]*]
A(0) 0 |
and Kj : R" x R®>— R" is defined by:

62f
n S



The sensitivity of the local minimunt fo X, evaluated at the base-case
X = 0, is given by:
of* 0L
ox =™
whereL : R" x RMx R® — R is the parameterized Lagrangian defined
by:

¥x e R" YA € R™ v € RS, £(x,A;X) = T X) +AT(A)x—b(X)).

If f (e;X) is convex fork in a neighborhood oD then the minimizers and
minima are global in this neighborhood.

A0,



Proof The sensitivity of the local minimizer follows from
Corollary 7.5, noting that:

e the Hessiaml% f is positive definite on the null space Afy) for xin a
neighborhood of the base-case minimixeandy in a neighborhood
of x =0, and

e the coefficient matrix4 is non-singular in a neighborhood of the
base-case minimizer and parameters,

so that the first-order necessary conditiot3.§—(13.7) for

Problem (3.37 are well-defined and satisfied in a neighborhood of

X = 0 and the sensitivity of the first-order necessary conditans= 0

Is given by the solution ofl(3.38. Moreover, the second-order sufficient

conditions for Problem1(3.37 given in Corollaryl3.4are satisfied in
this neighborhood.



The sensitivity of the local minimum follows by totally defentiating
the value of the local minimunfi*(x) = f(x*(X);X) with respect tg and
noting that the first-order necessary conditions for thallagnimizer

mean that(%f (x;0) = —[)\*]TA(O). But:

g—)’(‘*(O) _ g)'?‘(O) X + gf(’ (0), (13.39)

by the second block row ofL3.38 evaluated forj = 1,...,sand where,

abusing notation, we interpréz)((6 (0)x* € R™S as having/ j-th entry

equal toy 1g£€k(0)xk

A(0)



Therefore,

g;*(o) = %(X O)g))(( (O)Jrg)lc (x%;0), sincef*(x) = f(X*(X);X)
— [)\*]TA(O)g))(( (0) “‘%(X*;O),
— grxi0)— ' (g + 320)) by @339,
= $ 0]

L]

e The sensitivity of the local minimum is again called #mvelope
theorem.



13.4.2 Special case

Corollary 13.11 Consider ProblemX3.1), a perturbation vectoy € R™,
and a perturbed version of Problerh3.1) defined by:

min{ f (X)|Ax=b—vy}. (13.40)

XeRN

Suppose that fR" — R is twice partially differentiable with continuous
second partial derivatives, AR™" and be R™, with the rows of A
linearly independent. Letx R" andA* € R™ satisfy the second-order
sufficient conditions in Corollary3.4for Problem (3.1):

Of (x)+ AN = 0,
AX® = b,
((ADX = 0) and (A #£ 0)) = (AX'0% (x")x > 0).
Consider ProblemX3.40. For values ofy in a neighborhood of the
base-case value of the parametges 0, there is a local minimum and

corresponding local minimizer and Lagrange multipliers fo
Problem (13.40. Moreover, the local minimum, local minimizer, and



Lagrange multipliers are partially differentiable withspect toy and
have continuous partial derivatives in this neighborhodte sensitivity
of the local minimum tqg, evaluated at the base-cage- 0, is equal to

[)\*]T. If f is convex then the minimizers and minima are global.



13.4.3 Discussion

e A significant part of the effort in proving Corollard3.10and
Corollary13.11is using the implicit function theorem to show that the
sensitivity of the minimizer is well-defined.

e If we assume that the minimizer and minimum are partiallfedé@ntiable
with respect tg, then the following argument explains why the
sensitivity is given by the value of the Lagrange multigier

e Consider Problemi3.40, a perturbatiory, and the corresponding change
X in the minimizer of the perturbed problem.

e The change in the minimum is:

f(X"+¢) — F(x) ~ OF(x) &%, with equality asx* — 0,
= —[\*]"AAX, by the first-order
necessary conditiofif (x*) + ATA\* =0,
= My,
e SinceA(X" +x*) = b—vy, so that—AAX* =Y.
e But this is true for any such perturbatignin the limit asy — 0, the
change in the minimum approacHéé]Ty.



Discussion, continued

e \We can interpret the Lagrange multipliers as the sensitofithe
minimum to changes iw.

¢ In many problems, the specification of constraints reptsssyme
judgment about the availability of resources.

e Then we can use the Lagrange multipliers to help in tradifithef
change in the optimal objective against the cost of the @selof
additional resources.



13.4.4 Example
e Consider the equality-constrained Probleiil @ from Section2.3.2.2
min{ f(x)|Ax= b},
XER2
YXER? f(X) = (x1—1)%+ (x2—23)%
A = [1 _1] )
b = [0].
e Suppose that the equality constraints changed #am bto Ax=b—V.

e Then, ifyis small enough, the minimum of the perturbed problem dsffer
from the minimum of the original problem by approximately

ATy=(—2)y.



13.5 Solution of the least-cost production case study
13.5.1 Problem

min { f (X)|Ax= b} .

XeRN
e Suppose that = 3.
e Then the coefficient matrix and right-hand side can be spgekc#s:
A=[-1-1-1],
b = [-D].
¢ In summary, this problem has a convex separable objecti®@aly one
equality constraint.

e Furthermore, the equality constraint is linear.
e That is, the problem is convex.



13.5.2 Algorithms
13.5.2.1 Null space basis

e We first construct an initial gues&? that is feasible for the equality
constraint:

D
X0 = [ 0
0
e A matrix Z with columns that form a basis for the null space is

-1 -1
z_[ : o].
0 1

e We can form the reduced gradient and updgate decrease the reduced
objective.

e This is equivalent to expressing in terms ofx, andxs as discussed in
Sectionl2.1.4.2



13.5.2.2 Lagrange multipliers

dfic, .
vk =1, ,n,d—X:(xk)—)\* = 0,
n
D—zxﬁ =0



13.5.2.3 Dual maximization

szl,...,n,xl((") € argmiﬂg{fk(xk)—)\(")xk}, (13.41)
Xke
MV = AXY) —p,
n
- D-§% X\,
=]
AVHD W) g

e If fx is quadratic then, at each iterationthek-th sub-problem on the
right-hand side of13.41) can be solved directly in one step by solving
the linear necessary conditions.

e If fx is not quadratic therl@3.41) can be solved by applying the

Newton—Raphson update until a value@'f) is obtained that satisfies the
necessary conditions to within a tolerance.

e That s, if fx is non-quadratic, then at each outer iteraticend for eaclk
we must perform several inner iterations to solve the necgs®nditions
of (13.41D).



13.5.3 Discussion

e Maximizing the dual has a suggestive economic interpiatatiwe think
of A as the price paid for producing the commaodity.

e The values\V) are tentative prices that are suggested at each iteration by
a central purchaser.

e The goal of the central purchaser is to pick prices such tnalg
matches demand.

e The Lagrange multipliex* is the final price that matches supply to
demand.

e Each cost functiorfy is associated with a decision-making agent that
makes decisions based on:

its own cost function, and
the tentative prices.



Discussion, continued

e Each decision-making agent sells a quantity of proatd maximize its

profits, which is equivalent to minimizing the differenceween:
the costof productionfy(xx) for the quantityxy, minus
therevenues @ (Y), based on the current value of the dual variab{¥),

e The solution of £3.41) maximizes the agentjsrofit, that is, revenues
minus costs, for the given value of the dual variable.

e At each iteration, the central agent adjusts the tentativep based on
comparing the sum of offered productions by the agents ttatiget
valueD:

— price is raised or lowered to encourage or discourage ptmaiuc

e At the optimum, the “marginal cost of production” for eacleag that is,
the derivative of its cost function, is the same for all agent

e The value of the Lagrange multiplier is sometimes calledstiedow
price.



13.6 Summary

e We have discussed descent directions for linear equabigtcained
optimization problems.

e Analysis of descent directions yielded optimality coralis, which in
turn led to algorithms.

e We also discussed sensitivity analysis.

e Finally, we discussed solution of the least-cost productiase study.



14

Algorithms for non-linear equality-constrained
minimization

e In this chapter we will develop algorithms for constraingdimization
problems of the form:

min{ f (x)|g(x) = 0}, (14.1)

XeRN
e wheref : R" — R andg: R" — R™.



Key issues

e The notion of aegular point of constraints as a characterization of
suitable formulations of non-linear equality constraumtdtions,

e linearization of non-linear constraint functions and d¢dagation of the
null space of the coefficient matrixof the linearized constraints and the
associatetingent plane

e optimality conditions and the definition and interpretatad the
Lagrange multipliers,

e algorithms that seek points that satisfy the optimalitydibons,

e use of amerit function in the trade-off between satisfaction of
constraints and improvement of the objective, and

e duality andsensitivity analysis



14.1 Geometry and analysis of constraints

¢ In the case ofinear equality constraints, the convexity of the feasible set
allowed us to consider step directions such that successrates were
always feasible.

e With non-linear constraints, movement from a feasible palang a line
segment will usually take us outside the feasible set.

e Nevertheless, our approach to non-linear equality comssravill be to
linearize the equality constraint functigrabout a current iterate.

e We must explore conditions under which this linearizatiaids a useful
approximation to the original feasible set.



14.1.1 Regular point of constraints
14.1.1.1 Definition

Definition 14.1 Letg: R" — R™. Then we say that* is aregular point of
the equality constraintg(x) = O if:
() 9(x*) =0,
(i) gis partially differentiable with continuous partial deatives atx*,
and
(iii) the mrows of the Jacobiad(x*) of g evaluated ax* are linearly
independent.



14.1.1.2 Example
e Consider the functiog : R3 — R defined by:

VX € ]R3, g(x) = (x1)2 + (X2 + 1)2 — X3 — 4,

1

e and the poink* = [ 3] :
13

1

e \We observe that" = [ 3

13

is a regular point of the equality constraints

g(x) = 0 because:
(i) 9(x) = (1)*+(3+1)*~13-4=0,
(i) gis partially differentiable with Jacobiah: R® — R*3 defined
by Vx € R3,J(x) = [2x1 2(x2+1) —1], which is continuous at
x*, and
(iii) the one row of the Jacobial(x*) of g evaluated ax* is
J(x*) =[2 8 —1], which is a linearly independent row.



14.1.2 Tangent plane
14.1.2.1 Definition
e \We make the following generalization of Definitid3.1

Definition 14.2 Letg: R" — R™ be partially differentiable ang" ¢ R".

LetJ: R" — R™M be the Jacobian af. Suppose that* is a regular point

of the constraintg(x) = 0. Then thetangent planeto the set

S = {x € R"|g(x) = 0} at the pointx* is the set

T ={xeR"I(x*)(x—x*) =0}. O

e The tangent plane at is the set of points such that the first-order Taylor
approximation tay aboutx* has valueo.



14.1.2.2 Example

Fig. 14.1. Tangent
plane T to a set
S in R3 at the point

1
X = 3] € S, shown
13
as ae




14.1.2.3 Affine case
¢ In the case thaj is affine of the form:

Vx € R", g(x) = Ax—b,

thenJ(x) = A and the tangent plariéat a point
x* € S = {x € R"Ax= b} is given by:

T = {xeR"JA(x—x") =0},
= {xe R"|Ax= b},

e sinceAx" = b at a feasible poirt*.

e That s, in the case thatis affine, the tangent plarigis the same as the
feasible sef = {x € R"|g(x) = 0}.

e In contrast, for non-lineag such as shown in Figurk.1, the tangent
planeT to {x € R"g(x) = 0} atx* is usually different to
S = {x € R"|g(x) = 0},



14.1.2.4 Discussion

e The concept of a regular point will help us to characterizemvtihe
tangent plan& is a good approximation to the feasible Set



14.1.3 Relationship of regular points to seeking minimizer
14.1.3.1 Movement from a feasible point
e If x* is a regular point 0§(x) = 0 then we will be close to satisfying the
constraints so long as we stay neaxt@nd in the tangent plane
T = {xe R"|I(x*)(x—x*) = 0}.
e Considem =2 andf : R?> — R andg : R? — R defined by:

YxeR? f(X) = —xq, (14.2)
Yx e R%,g(X) = Xz —sin(xy). (14.3)

e Figurel4.2shows part of the set of poinfssatisfying the equality
constraing(x) = 0 as a solid curve.

e Also shown is the feasible point = , sShown as &, and the

5
sin(5)
tangent pland to the feasible set atx*, shown dashed.
e For this problem, the tangent plafias only a good approximation to the

feasible for points that are closext



Movement from a feasible point, continued

Fig. 14.2. Feasible

1 pointx* € S and tangent

. X1 planeT (shown dashed)
to S atx* (shown solid).




14.1.3.2 Descent

e Figurel4.3shows the same feasible set as illustrated in Figdta

e The arrows emanating from the feasible points illustrateafions along
the tangent plane at these points.

e Moving along these directions takes us outside the feasdilbut
reduces the objective.

e Paths that stay on the feasible set must follow the cgxg= 0 and
therefore depart from straight line segments.

e Nevertheless, we will consider paths that, at least ihyti&llow the
tangent plané.



Descent, continued

Fig. 14.3. Feasible
points and directions

X1 along the corresponding
tangent planes.




14.1.3.3 Movement from an infeasible point

e We will again approximate the feasible points by a set defineéedrms of
linear equalities:

T={xeR"IR)(x—%) = —g(R)}. (14.4)

e Linear independence of the rowsband proximity ofx'to the feasible
set will guarantee that this set closely approximates tasilide set in the
vicinity of X.

e Figurel4d.4again shows the part of the set of points satisfying the
equality constraing(x) = O.

e Also shown is an infeasible poirt= [ and the sef defined

5
—1.5]
according to 14.4).
e In this particular case, the s&tis tangential to the feasible s&t
however, in general this is not the case.



Movement from an infeasible point, continued

Fig. 14.4. Movement
from an infeasible point
X € S and approxima-
tion T (shown dashed)

X1 to feasible sef (shown
solid).




14.1.3.4 Linear constraints
e If gis affine andy(x*) = OthenT = {x € R"|A(Xx—x*) = 0} is the same
as the feasible set, whether or #ohas linearly independent rows.
e However, if the linear coefficient matrix does not have Inga
independent rows, then a slight perturbation of the coefiitcmatrix will
make the linear approximation to the feasible set empty.

14.1.3.5 Formulation of problems

e Whether or nog is affine, we should try to formulate the problem to
avoid linear dependence of the rowsJlaince, analogously to the case of
simultaneous equations, redundant linearized constraiake the
linearized problem ill-conditioned.



14.2 Optimality conditions
14.2.1 First-order necessary conditions
14.2.1.1 Analysis

Theorem 14.1 Consider Problemi4.1) and a point X € R". Suppose
that:

(i) f is partially differentiable with continuous partial deatives,
(if) x* is a regular point of the equality constraint$xg = 0. That is:

(@) g(x*) =0,

(b) g is partially differentiable with continuous partial
derivatives, and

(c) the m rows of the Jacobianx*) of g evaluated at*are
linearly independent.

Then if X is a local minimizer of Probleml@.]) then:
I\N* € R™ such thatdf (x*) + J(x*)'A* = 0. (14.5)



Analysis, continued

e The vector\* is again called the vector dlagrange multipliers for the
constraintg(x) = 0.
e We will refer to:

Of (x) + I(x) ™\ = 0, (14.6)
g(x) = 0, (14.7)

e as thefirst-order necessary conditionsor FONC.



14.2.1.2 Lagrangian

e Recall Definition3.2 of the Lagrangian.
e For Problem 14.]) the Lagrangiart : R" x R™ — R is defined by:

vx e R" VA € R™ L£(x,A) = f(x)+ATg(x).

e As in the linear case, we can reproduce the first-order napess
conditions (4.6—(14.7) by setting the gradients af with respect to
andA, respectively, equal to zero.



14.2.1.3 Relationship to linearly constrained problems

e The condition {4.5 is the same as the corresponding first-order
condition for thelinearly constrained problem:

)[Qli@&rrlw{f(x)p(x*)(x—x*) = 0}. (14.8)

e Reqularity ofx*, in addition to the hypotheses for the linear case, ensures
that (14.5 characterizes the necessary conditions in the non-linear
equality-constrained case.

e Unlike in the linear case, the assumption of regularity ipantant to
ensure that there are Lagrange multipliers satisfyidg5).



14.2.1.4 Geometric interpretation

¢ In the linear equality-constrained case, we interpreteditit-order
necessary conditions as requiring that the feasible seshbset of the
tangent plane to the contour set of the objective.

e We said that the contour set bfwas tangential to the feasible setxat

¢ In the non-linear equality-constrained case, we can siiyila
interpret 4.5 as requiring that the feasible set and the contour set be
tangential ak*.



14.2.1.5 Example
e If the objective is non-convex then a maximizer can satisé/riecessary

conditions.

¢ In the case of non-linear equality constraints, howevemag have an
objectivef : R" — R that is convex ofR", but have a non-convex feasible

set.
e For example:

Yx e R? f(x) =

¥Yx e R? g(x) =

%(Xl)z + %(Xz)Z’ (14.9)
%(xl)2 + (x0)? — 1. (14.10)



Example, continued

Fig. 14.5. Points X",
X, X, andX that satisfy
the first-order necessary
conditions but which
may or may not be
E 2 a o 1 > s X1 minimizers.

-2+




Example, continued

e There are four points that satisfy the first-order necessamgitions.
_2 , both with Lagrange
multiplier A* = A** = [—0.5], which corresponds tominimum f = 0.5

of the objective over the feasible set. The poiitandx*™ are
illustrated withe in Figure14.5

— Two of the points are* = 2 andx*™ =

— The other two points anre= [(2)] andx = [_g] , both with dual

variables\ :i = [—2], which corresponds tomaximumf = 2 of the

objective over the feasible set. The poirtsntx are illustrated withp
in Figurel14.5



14.2.2 Second-order sufficient conditions
14.2.2.1 Analysis

Theorem 14.2 Suppose that fR" — R and g: R" — R™ are twice
partially differentiable with continuous second partiadrd/atives. Let
J:R" — R™M pe the Jacobian of g. Consider Problet#(1) and points
x* € R"andA* € R™M. Suppose that:

Of (x) +J3(x") A = 0,
g(x’) = 0,

m
0% (x) + Y A;07(xX") is positive definite on the null space:
=

AN = {IXeR"I(X)Mx=0}. (14.11)

Then X is a strict local minimizer of Problenid.1). O



Analysis, continued

e Compared to the first-order necessary conditions, the secater
sufficient conditions in addition require that:

— the objective and constraint functions are twice partidifierentiable
with continuous second partial derivatives, and
— X* andA* satisfy (14.11).
e In (14.1), the functiond2L : R" x R™ — R™" defined by:

vx € R" VA € R™ O2L(x,\) = 0% (x) +/§ A0%gy(x),
=]

e is called theHessian of the Lagrangian

e The condition {4.1]) is analogous to the corresponding condition in
Corollary13.4for linear constraints.

e It requires that the Hessian of the Lagrangian evaluatdueatinimizer
and corresponding Lagrange multiplielg.L(x*,A*), be positive definite
on the null spacé\’ defined in the theorem.



14.2.2.2 Example

e Continuing with the example from Sectid4.2.1.5 the two minimizers
x* andx™* satisfy the second-order sufficient conditions.

e However, both of the other points andX, that satisfy the first-order
necessary conditions do not satisfy the second-order uificonditions.



14.3 Approaches to finding minimizers

e If the constraints are non-linear, we cannot expect to éxaatisfy them.

e \We can consider algorithms that attempt to satisfy the dirder
necessary conditions or use step directions based on theoheRaphson
update for solving the first-order necessary conditions.

14.3.1 Solution of first-order necessary conditions

Of (x) +I() ™ =
g(x) = 0.

o



14.3.1.1 Newton—Raphson step direction

TRLY) AN I [AX(V)] _ | D) + 3 A
IxV) 0 g(x¥))
(14.12)

e An indefinite factorization algorithm should be used.
e As discussed for the unconstrained case in Sedtibd.3.2 zero and
negative pivots in the top left-hand block should be modifeete

positive to ensure thax"“) is a descent direction fof + A()] g atx¥).
e \We can approximate the solution di4.12.
e The approximations will, in principle, inherit the corresyling
convergence rates described for the solution of non-liegaations.
e The update is then:



14.3.1.2 Selection of step-size

¢ In choosing a step-size, we cannot just seek reductidrnbecause if we
are far from satisfying the constraints then we may have teatcan
increase inf to obtain a feasible point.

e \We must trade-off the tension between satisfaction of tmstcaints and
improvement in the objective.

e A standard approach to this trade-off is to defimaexit function
¢@: R" — R of the form, for example:

vx € R, @(x) = f(x)+M[jg(x)||°, (14.13)

e for some nornj|e|| and somd1 € R, and use a rule analogous to the
Armijo rule or variants to seek a step that leads to suffiaiedtiction in
the merit functionp at each iteration.

e We will discuss the choice dil in the context of the power system state
estimation with zero injection buses case study in Sed#h



Selection of step-size, continued

e A variant on the merit function approach is to replace thedie in
Problem (4.1) with the merit functiorp: R" — R defined in (4.13.

e In this case, the Newton—Raphson update will explicitlykseedirection
that reduces the merit function.

e There are other approaches including:

— afilter, where the step-size is selected to improve satisfactidineof
constraints or the value of the objective or both at eachti@n, and

— awatchdog where the merit function is allowed to increase for a
limited number of iterations.



14.3.1.3 Feasibility

¢ In some applications, we might want to be able to terminasaat
iteration with an iterate that is close to being feasible.

e In this case, at each iteration we can first updatereduce the objective
or reduce a merit function and then do a subsidiary searciy asi
iterative technique to return to the feasible set.

e This approach is used in tlgeneralized reduced gradientlgorithm.

14.3.1.4 Stopping criteria

e We iterate until the first-order necessary conditions atisfgad to
sufficient accuracy.

e Unless the second-order sufficient conditions hold or apprately hold,
we cannot be certain that we are at or close to a local optimum.



14.3.2 Dual maximization

e Recall Definition3.3 of thedual function.
e For Problem 14.1), the dual functionD : R™ — RU{—o} is defined by:

YA €R™, D(A) = inf L(X,\),
XeRN

e WhereL : R"x RM™ — R is the Lagrangian.
e Although the problem is not convex, we can try to maximizedbal
function.
e The following recursion can be used to define the iterates:
XY € argmin(f()+ ] g0},
MY = g(xV)),
AVFD — A0 L qMaV),
e If f Orgis non-quadratic then we will have to perform several inner
iterations to approximately minimize the Lagrangian focleauter
iteration to update.



Dual maximization, continued

e There can be a duality gap.

e Nevertheless, by Theore&13 the maximum of the dual is a lower
bound for the minimum of the primal problem and the solutibthe dual
can be a useful guide to the solution of the primal.



14.4 Sensitivity
14.4.1 Analysis

e Suppose that the objectiieand equality constraint functiapare
parameterized by a paramejee R,

e \We imagine that we have solved the non-linear equality-caimed
minimization problem:

min{f(xx)g(xx) = 0}, (14.14)

e for a base-case value of the parametersxsay0, to find the base-case
local minimizerx* and the base-case Lagrange multipliers

e \We now consider the sensitivity of the local minimum of Peybl(14.149
to variation of the parameters abgut O.

e That is, we also consider perturbations R™ and the problem:

min{f (91909 = —v}. (14.15)

e For the parameter valugs= 0, Problem (4.15 is the same as
Problem (4.1).



Corollary 14.3 Consider Problem4.14 and suppose that the functions
f:R"xR%— R and g: R" x RS — RM are twice partially differentiable
with continuous second partial derivatives. Also consider
Problem (4.15 and suppose that the functions R" — R and
g: R"— RMare twice partially differentiable with continuous second
partial derivatives. Suppose that & R" andA* € R™ satisfy:

e the second-order sufficient conditions for Probleiy.(4 for the

base-case value of parameters- 0, and
e the second-order sufficient conditions for Probleid.(5 for the

base-case value of parametgrs: O.
In particular:
e X" is a local minimizer of Probleml@.14 for x =0, and
e X" is a local minimizer of Probleml@.15 for y= 0,

In both cases with associated Lagrange multiplistfsMoreover,
suppose that the rows of the Jacobiarig*JO) and Jx*), respectively,
are linearly independent so that is a regular point of the constraints

for the base-case problems.



Then, for values ok in a neighborhood of the base-case value of the
parametery = O, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problerh4.14. Moreover, the
local minimum, local minimizer, and Lagrange multipliers gpartially
differentiable with respect tg and have continuous partial derivatives
in this neighborhood. The sensitivity of the local minimuntofy,
evaluated at the base-cage= 0, is given by:

of* 0L
ax (O =ax

whereL : R" x R™x RS — R is theparameterized Lagrangiandefined
by:

X*,A%;0),

vx e R" VA € R™ Wx € RS, L(x,A;X) = F(xx) +ATg(x x).



Furthermore, for values of in a neighborhood of the base-case value of
the parametery = 0, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problerh4.15. Moreover, the
local minimum, local minimizer, and Lagrange multipliers gpartially
differentiable with respect tpand have continuous partial derivatives.
The sensitivity of the local minimumypevaluated at the base-case
y=0, is equal to[)\*]T.

O



14.4.2 Discussion

e As in the case of linear equality constraints, we can intdribre Lagrange
multipliers as the sensitivity of the minimum to changeg.in

e Again, this allows us to trade-off the change in the optinigéotive
against the cost of changing the constraint.



14.4.3 Example

e Consider the example equality-constrained Probl2i4 first
mentioned in SectioR.3.2

min{f(x)[g(x) = 0},

XeR2

e wheref : R? — R andg: R? — R were defined by:

YXER? f(X) = (x1—1)%+ (x2—3)%,
YXeR2,g(X) = (x1)%+ (x2)24+2x2—3.

e The minimizers and Lagrange multipliers of Problezrild) satisfy the
second-order sufficient conditions and the minimizers egelar points
of the constraints.

e If the equality constraint changesg@x) = —y, wherey = 0.1, then we
can use Corollarg4.3to approximate the change in the minimum by
0.1A™.



14.5 Solution of power system state estimation with zero iegction
buses case study

14.5.1 Problem
e Recall Problem12.9:

min{f(9la(x) = 0},

e wheref : R" — R andg: R" — RMwere defined in12.7) and (12.8),
respectively:

SRV
(eM 207

vxe RN g(X) = (9¢(X))sepo-



14.5.2 Algorithms
14.5.2.1 Newton—Raphson step direction

e The most straightforward way to solve this problem is to sesklution
of the necessary condition$4.6—(14.7) using the Newton—Raphson step
direction given by the solution ofLé.12 or some approximation to it that

ensures that a descent direction is foundffar A(*)] 'g.
e Possible approximations to the coefficient matrix for the
Newton—Raphson step direction include:

— using the fast-decoupled or other approximations to theklan of the
power flow equations, as in the discussion of the solutiohefower
flow equations in Sectio@.2.4.2 and

— using the Gauss—Newton or Levenberg—Marquardt approxaméd the
Hessian of the objective, as in the discussion of the staitma&tson
problem in Sectiori1.2.3.2



14.5.2.2 Merit function and step-size

e f consists of (half of) the sum of squares of terms each of wi@phesent
a measurement error for measuremedivided by the standard deviation
o, of the measurement error.

e Consequently, each term has expected value of 1 if evalaatbe true
value of the voltage angles and magnitudes in the system.

e The terms irg represent real and reactive power values that are exactly
equal to zero when evaluated at the true value of the voltagkes and
magnitudes in the system.

e We can use a merit functior14.13 with theL, norm|e||, and a value of
penalty coefficienf] that is somewhat larger than the inverse of the
square of a typical real and reactive power measurementsteedard
deviation.

e \We can interpret the merit function as being a penalizedobbp as
discussed in Sectioh2.2.1.3 that uses modest values of the penalty
coefficient.

e The step-size should be selected to ensure sufficient iedunt(14.13
using the Armijo rule.



14.5.2.3 Observability

e To ensure that there is a unique maximum likelihood estintagre must
be enough measurements and zero bus injections spreadidhaun
system to make it observable.



14.6 Summary

e In this chapter we considered the notion of a regular poimbostraints
as a bridge between equality-constrained problems widaliconstraints
and equality-constrained problems with non-linear camsts.

e We developed optimality conditions, algorithms, and densi analysis.

e We then applied the algorithms to the power system stat@mattn with
zero injection buses case study.
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