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Part vV
Inequality-constrained optimization



15
Case studies of inequality-constrained optimization

(i) Production, at least-cost, of a commodity from machitiheg have
minimum and maximum machine capacity constraints
(Section15.]),

(i) Optimal routing in a data communications network ($&ctl5.2),
(i) Least absolute value estimation (Sectibi3),
(iv) Optimal margin pattern classification (Sectibb.4),



(v) Choosing the widths of interconnects between latchdsgaites in
integrated circuits (Sectiob.5, and

(vi) The optimal power flow problem in electric power systems
(Sectionl5.6).



15.1 Least-cost production with capacity constraints
15.1.1 Motivation

e Recall the least-cost production case study discussedchiingd 2.1

e For that problem we ignored the minimum and maximum machine
capacity constraints in order to formulate it as equaltpstrained
Problem (2.4, which we repeat here:

min{ f(x)|Ax=b!.
min { ()] Ax= b}
e |n this section, we will consider the case where the solutifon

Problem (2.4 does not satisfy all the minimum and maximum machine

capacity constraints so that these constraints must bédeved
explicitly.



15.1.2 Formulation
15.1.2.1 Objective

vx e R", f z fe(Xk

15.1.2.2 Equality constraints

n
D= z Xk
K=1
e \We represented these constraints in the fdvm= b with
A=—1"e R™"andb = [-D] e RL.



15.1.2.3 Inequality constraints

Vi=1,....n%X, <X <X

e \We summarize these constraints by writing x < X,
e wherex € R" andx € R" are constant vectors withith entriesq, andx,
respectively.

15.1.2.4 Problem

min{ f(X)|Ax=b,x < x < X}. (15.1)
xeRN



15.1.3 Changes in demand and capacity

¢ \WWe may want to estimate the change in the costs due to a change |
demand fronD to D + AD, say.

e If the capacity of a machinkchanges or it fails then the corresponding
entriesxy, andx, of X andx will change.



15.1.4 Problem characteristics
15.1.4.1 Obijective
e If x, > O then, for typical cost functiondy is convex orn X, Xx|.

15.1.4.2 Equality constraints

e \We have already discussed the equality constiiaty}_, X in
Section12.1.2.4

15.1.4.3 Inequality constraints and the feasible region

e The intersection of the box with the equality constraintniets the
feasible region to being a planar slice through the box.
e This is illustrated in Figurd5.1for n=3,D = 10, and:

el



Inequality constraints and the feasible region, continued

Fig. 15.1. Feasible set
for least-cost production
case study described in
section15.1.4.3




15.1.4.4 Solvability

e Problem (5.]) is convex.
e |t is certainly possible for there to be no feasible points fo
Problem (5.1).



15.2 Optimal routing in a data communications network
15.2.1 Motivation

e We consider a communications network consisting of comopaiians
links that join betweemodes

e Users desire to send data frargin nodesto destination nodesover
links between the nodes.

e Each link has a maximum capacity to transmit data and selekalmay
be incident to each node.

e Data is sent by users packetsof equal length.



Motivation, continued

e Inter-arrival time between packets is random, wekponential
distribution that may differ from node to node.

e We assume that the probability distributions of the inteival times do
not vary over time.

e We can therefore consider the average traffic on each linkaue

— the distributions of inter-arrival times, and
— arouting policy that is, a decision process for choosing the links on
which to send the data.

e We refer to the choice of links, with respect to a given criterand for
given traffic levels between origin—destination pairsppsmal routing .

e We will see that our formulation of the objective only apgroately
captures the criterion we discuss and so we might better teefaur
problem assatisficingrouting.



15.2.2 Formulation
e \We can represent the communications network as a graph.
e Each of the eight nodes in Figui®.2is shown as a bullet, while each

of the 12 links is shown as a line.
e As in previous case studies involving graphs, the typicahiper of links

is far less than in a complete graph.

8 1
7 2
Fig. 15.2. Graphical
representation of a data
6 3 communications  net-
work with eight nodes
5 4 and 12 links.



15.2.2.1 Links

e We writelL for the set of all links in the network, where each link is
represented by an ordered péirj) of node numbers.

L = {(1,8),(81),(1,2),(2,1),(13),(31),(1,6),(6,1),
(2,3),(3,2),(2,4),(4,2),(2,6),(6,2),(3,4),(4,3),
(3,6),(6,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,6) }-

e The capacity of link(i, j) is denoted by;; € R ;.

15.2.2.2 Nodes
e Nodes have three roles, as follows.

— Users put data into the network at nodes. These nodes caoumghtiof
as theorigins of data.

— A nodeswitchesarriving data onto one of the links incident to it.

— Users take data out of the network at nodes. These nodes ¢ahaumht
of as thedestinationsof data.



15.2.2.3 Origin—destination pairs

e A user might put data into the network at node 7 and desiratwinit it
to node 5:

node 7 is the origin for the data and node 5 is the destinatiothé data.

e \We assume that there areorigin—destination pairs and writ&/ for the
set of all origin—destination pairs.

e In our example, if 7,5) and(2,5) are the only origin—destination pairs
then:

W= {(77 5)7 (27 5)}7

with m= 2.

e In general, an origin—destination pai; ¢') € W might or might not be
joined directly by a link.

e If there is no link joining such an origin—destination pdien it is
necessary for the data between this pair to traverse searedssive
links.



15.2.2.4 Paths

e A collection of successive links that joins an origin—deation pair is
called apath.

e Two paths for the origin—destination p&i,5) are:
— links (7,6) and(6,5), and
—links (7,6), (6,3),(3,4),(4,5).

e For each origin—destination pdif, ¢') ¢ W, we writeP(, , for the set of
all allowable paths connectintto ¢'.

e We index the paths with consecutive integers.

e For example, for the origin—destination pér; 5) € W, we will denote:
— the path consisting of link&7,6) and(6,5) as path 1, and
— the path consisting of link&7,6), (6, 3),(3,4), (4,5) as path 2.

e For the origin—destination paiR,5) € W, we will denote:
— the path consisting of link&,4) and(4,5) as path 3, and
— the path consisting of link&,3), (3,4), (4,5) as path 4.



Paths, continued
e We summarize these assignmentys) = {1,2},P 55 = {3,4}.
e \WWe assign a different indexfor each allowed path in the network and
suppose that there angoaths in all.
e In our example, if we have described all the allowable pdikan = 4.

15.2.2.5 Variables

e To characterize the behavior of the network, we consideexpectedor
averageflow of packets and ignore variance of the distribution of flow

e We definex,k=1,...,n. to be the average flow of traffic, in packets per
second, on pathk.

e This flow represents the average amount of flow for a particula
origin—destination pair that has been assigned to kath

e We collect the set of all traffic assignments for all origiestination pairs
together into a vectar € R".



15.2.2.6 Equality constraints

e Let the input traffic arrival process for origin—destinatioair (¢,¢') € W
have expected rate of arrival bf, ., in packets per second.

¢ In general, we must choose how to share the traffic amongsteatiaths
that join/ to /.

V(f,gl) c W, Z Xk = b(g,gl).
kGP(évél)

e In our example, the constraints for the origin—destinapairs(7,5) and
(2,5) are, respectively:

X1+X2 = bs),
X3+X4 = bzs).

e We collect the entrieb, ; for (£,4) € W into a vectorb € R™.



Equality constraints, continued

e Also, defineA € R™" to be the path to origin—destination pair incidence
matrix.
e That is, define:

1, if ke ]P)(g,g/),

\V/(E,fl) € W,Vk = 1, cee n,A(g’g/)k = { O, otherwise.

e In our example:

(1100
A=loo1 1]7
b
b = <7’5>].
| Bi2s)
¢ With these definitions, we can write the equality constsaad:
Ax=h. (15.2)



15.2.2.7 Objective
Discussion

e Several criteria could be used to define an objective.

e Unlike the least-cost production case study in Sectidhdand15.], the
operating cost of a data network is generally relativelystant.

¢ In delivering servicdo customers, however, the quality of service
depends on a number of factors, including the delay betwesrdiisg data
and receiving it.

Delay

e The delay on a link depends on how much traffic is on the link.

e When the traffic is nearly as large as the capacity of the timixdelay is
longer.

e \We say that the link isongested

e |t is difficult to obtain an analytic model of the delay in awetk because
the packets interact as they traverse the links, so thanhlgss of their
statistics is complicated.



Delay, continued

e For example, consider an origin—destination pai¢’) that is joined by
one path, which consists of two successive litkg) and( j,¢).

e The inter-arrival time at the origihis exponentially distributed.

e The inter-arrival time at nodgcannot be exponentially distributed.

e The reason is that successive packets arrivingnatist be separated in
time by at least the packet transmission time for the firgt dind this
violates the assumption of exponential distribution.

Fig. 15.3. A net-
work with an origin—
destination pair joined
by a path consisting of
two links.

~
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Congestion model

e As aproxyto calculating the delay experienced by the packets in the
network, we define a measure of the congestion on each linkstha
convex function of the expected floyy through the link.

e We will sum the congestion measure across all the links aexyo the
average delay.

e Consider the functiom; : [0,V;;) — R defined by:

B Vi
Wyij € [0,%;), @j (¥ij)) = =——— +&ijVij, (15.3)
Yij —Yij

e where9j; is the sum of the processing delay and the propagation delay
through the router and link, and

e the termyijyfyij is due to queuing at the sending end of the link.

e The rapid rise in the congestion function as the expecteddlapvoaches
the capacity models the increase in the delay as the capsacégched:

— fluctuations about the expected value mean that the queule wou
become arbitrarily long if the expected flow equaled the ceypa




Flow

e The flowyjj on the link is equal to the sum of the flows on all the paths
that include link(i, j).

o We write[F; ) for the set of paths that include lirfk j), so that the flow
yij can be expressed as:

Vi) eLyij= % X
kEF(i,j)

e Define a matrixC € R by:

1, ifke F(i,j)’

V(i,j) e L,vk=1,....,n,Cjj )k = { 0, otherwise.

e For each(i, j) € L, letCy ;) be the(i, j)-th row ofC.
e Then the flowy;; can be expressed &, j) € L, yij = C; jX.

o Lety € Rl be a vector with entrieg;, (i, j) € L.
e Theny=Cx



Additive congestion

e \We have assumed that the congestion measure for each lidecaided
together to obtain an overall proxy for average delay thinaihg network.

o LetP = {yc R“|0<vyjj <V,,V(i,]) € L} and define the objective
¢@: P — R by:

WeP,oy)= > @) (15.4)
(i,])€L

e Paths between various origin—destination pairs will tgpychave some
links in common:

— path 3 consists of the link2,4), (4,5), and
— path 4 consists of the link, 3),(3,4), (4,5),

e and both of these paths are for the origin—destination(2a).

e Traffic on these paths must share the capacity of the(Unk) with traffic
on path 2, which consists of linkg,6), (6,3), (3,4), (4,5) for
origin—destination paif7,5).

e This means that there will be an interaction between trafitevben
various origin—destination pairs.



Additive congestion, continued
e The objective captures the issue that increasing the flowpatrathat is
incident to a particular link will increase the average gdta all paths

incident to that link.
e The objective does not exactly capture the average delayodhe flows

on the paths.
e It is a proxy to the average delay that is designed to caphigre t

gualitativedependence of average delay on the choice of routing.
e It may be sufficiently accurate to provide guidance to avad fouting

decisions.



15.2.2.8 Inequality constraints and feasible set
e All traffic flows must be non-negative:

x> 0.

e Since the capacity of each lirk j) € L is y;;, the instantaneous flow on
link (i, j) can never exceey;.

e Consequently, the average flow can never exggeduggesting
constraints of the form:

V(i,]) € L,yij <Vij-
e However, as discussed in Sectibh.2.2.7 the objective is unbounded if

anyy;j were to equay;;, so we must limit the values of the flowg with
constraints of the form:

\V/(l, J) < I["7ylj <y|j

e \WWe use the strict inequality because if the assigned flow teeegual the
capacity then the congestion function would be unbounded.



Inequality constraints and feasible set, continued

e To represent these strict inequality constraints expliaitterms ofx, we
note that:

Vi, elyj = > X
kGIF(i’j)
= C(m‘)X.
e If we definey € R" to be a vector with entrieg;, (i, j) € L then we can
write the strict inequality constraints as:

CX< V. (15.5)

e The inequality constraints for the problem therefore dyexset of the
form:

S={xeR"|x>0,Cx< y}.



15.2.2.9 Problem
m}%@n {f(x)|Ax=Db,x > 0,Cx <V}, (15.6)
xeRN
e wheref : S — R is defined by:

vxe S, f(x) = @(Cx),
(15.7)

I
£
—
0
=



15.2.3 Changes in links and traffic

e We would like to be able to change the routing to respond togésiin
link capacity.

e Over time, we also expect that the traffic on the network wahlange.

e We would also like to be able to change the routing to respormth&nges
in traffic.



15.2.4 Problem characteristics
15.2.4.1 Objective

e The objective defined inl6.7) is convex and differentiable, since it is the
composition of a linear function with the sum of functiapg, which are
themselves convex.

e The objective becomes arbitrarily large as the flow on arly lin
approaches its capacity.

15.2.4.2 Equality constraints

e The equality constraints are indexed by ordered i) € W.

e This differs from our previous case studies were index setewubsets
of the integers.

e The equality constraints are affine and the coefficient matnsists of
only zeros and ones.



15.2.4.3 Inequality constraints

e There are non-negativity constraints and also strict ingtyuconstraints
due to the link capacities.

e The strict inequality constraints are indexed by the ordigaars
(i,j) e L.

e We discussed the potential difficulties with strict inedyadonstraints in
Section2.3.3

e We will see in Sectiord8.2that because of the form of the objective we
can avoid explicit consideration of the strict inequalipnstraints.

15.2.4.4 Solvability

e There may be no feasible solution if there is not enough agpiacthe
network.



15.3 Least absolute value estimation
15.3.1 Motivation

e Recall the multi-variate linear regression problem intrcicbn in
Section9.1, which was transformed into a least-squares problem in

Section11.1.1
e The objectivef : R" — R was defined in Sectiohl.1.1to be:

vxe B £(x) = 5 [IAx— b,
e Where:
A1
=1 : | eR™N A =[p@)" 1] eRV"¢=1,....m,

Am
by

b=|: | €eR™ b,=(¥),and
bm

(W(¢),L(¢)) are the ordered pairs of independent and dependent vaxiable

for trial 2.



Motivation, continued

e In some contexts, we may find the resulting solution isrobtist to
outliers in the data.

e That is, the quadratic objective allows data from a singéd to
significantly affect the resulting estimate of the affinedtion that best
represents the data

e For example, Figuré5.4repeats the data from Figu®el, except that the
data for one of the trialgp(6),{(6)), is significantly different, perhaps
due to a gross failure of a measurement device.



Motivation, continued

x (P(3).4(3)) Fig. 15.4. The values
of (Y(¥),¢(¥)), includ-

ing an outlier, (shown as
x) and least-squares fit
(shown as a thick line).
The thin line shows the
least-squares fit if the

data point (y(6),¢(6))
1) is ignored.




Motivation, continued

e The outlier(y(6),(6)) significantly affects the result of the least-squares
problem.

e The least-squares fit to all of the points in Figd&4, including the
outlier, is shown by the thick line.

e This least-squares fit is very different to the least-sgufitshown in
Figure9.1

e If we ignore the pointy(6),{(6)) then a least-squares fit to the rest of
the points is shown as the thin line in Figurg.4.

e The two least-squares fits are very different.

e That is, the fit is very sensitive to gross errors in individigta points.



Motivation, continued

¢ In these circumstances, we may prefer to use an objectivestless
affected by outliers.

e This provides the motivation faobust estimation.

e One objective that is used to reduce the effect of outlierslies thel ;
norm of AXx— b instead of the Euclidean norm.

¢ Instead of squaring thesidualse, = Ajx— by, as in the least-squares
problem, we take the absolute value of them.

e Oultliers, which have large values of residual, will conttérelatively
less to the objective when we use the absolute value ratheitiie square
of the residual.



15.3.2 Formulation
15.3.2.1 Unconstrained problem

¢ Instead of the least-squares objective defined in Sedtioh], consider
theL; norm objectivep: R" — R defined by:

vXeR" @(x) = [[Ax—bl|y,

m
- /z |A€X_b€|7
=1

e whereA ¢ R™"Mandb € RMare as defined in Sectidrl.1.1andAy, is the
¢-th row of A.

e Thatis:
A= [y 1],
by
b = :
bm



Unconstrained problem, continued
e We define an unconstrained problem:

min @(X). (15.8)

XeRN

e As we saw in Sectio3.1.4.4 the objective of this problem is
non-differentiable because of the absolute values.



15.3.2.2 Transformation

e Problem (5.8 can be transformed into an inequality-constrained
problem in several steps.
e Asin Sectiom.1.2.4 the residualgy, for the/-th measurement, is defined

by:
Vi=1,...,me = AxXx—Dby.

e Each absolute value of a residual can be obtained as:
e/ = max{e, —e/},0=1,...,m. (15.9)

e We then use a similar approach to that used in The@#to evaluate
the maximum in {5.9).
e First we define variables,/ =1, ..., mand linear constraints:

z > e l=1....m,
z > —e,l=1....m



Transformation, continued
e Then note that:

l&] = min{zl|z > e,z > &},
ZgER

m

xeR" @(x) = /Z|A£X—bz|,
=1
m

= /Z ey, wheree, = Ayx — by,
=1

m

= min{z/|z, > e,z > —ey}.
& 2ER

e Combining these observations, we consider the transfopraaem:
min  {1'ZAx—b—e=0,z>ez> —e}. (15.10)

ZeRM xeRN ecRM

e Problems 15.8 and (15.10 are equivalent.



15.3.3 Changes in the number of points and the data

e We could imagine adding a new trial and recalculating therede of the
least absolute value fit without starting from scratch.
e \We can also imagine modifying the data for a particular trial



15.3.4 Problem characteristics
15.3.4.1 Objective

e The objective of Probleml&.8 is non-differentiable.

e Transformation into Problenib.10 by representing each absolute value
using two inequality constraints then yields a differelliga in fact linear,
objective.

15.3.4.2 Constraints
e The “cost” of making the objective differentiable is that have
introduced a large number of subsidiary constraints.
e There aram equality constraints andi2inequality constraints in
Problem (5.10, whereas Problenlb.8 was unconstrained.
15.3.4.3 Variables
e \We have also increased the number of variables, figon -+ 2m.



15.3.4.4 Solvability

e Problem (5.8 has a minimum and consequently Probld&.(0 also
has a minimum.

15.3.4.5 Discussion

e If the number of trialsnis extremely large then it may be unattractive to
solve Problem15.10.
e In this case, we may prefer to, for example:

— solve Problem15.8 using techniques of non-differentiable
optimization,

— approximate the objective of Problets(8 with a smooth function
using the approach described in Secttoh.4.4 or

— use an iterative technique to successively approximtiesmooth
functions.



15.4 Optimal margin pattern classification
15.4.1 Motivation
e We will consider the problem of distinguishing between tiasses of
patterns on the basis of a linear decision function.

e Geometrically, we seek a hyperplane that separates thelasses of
patterns.



15.4.2 Formulation
15.4.2.1 Classes and training set

e Label the two classes as class A and class B.

e We will consider how to find the coefficients that specify a&han decision
function in such a way as to provide the best discriminatietwieen
classes A and B of patterns.

¢ In particular, we assume that we haveepresentatives in ouraining
set

e Potentially,r is very large.

e The training set is to be used to determine the best lineasidac
function to separate the classes.

e \We index the representives in the training sef asl,...,r.

e The/-th representative consists of two items:

— apattern, namely a vectof)(¢) € R"1, and
—avalue((¢) € {—1,1}.

B B 1, if Y(¥¢) is of class A,
Vi=1,....r{¢) = { —1, if Y(¢) is of class B.



Classes and training set, continued
e Patternsp(1),...,y(4) in the bottom half of Figurd5.5are of class A,
while the patterng)(5),...,Y(7) in the top half of the figure are of class
B.
e Thatis,{(1) ={(2) =1(3) ={(4) =1 and{(5) =(6) ={(7) = —1.

P2

Fig. 15.5. Seven exam-

ple patterns and hy-

perplane that separates
W1 them.




Classes and training set, continued

e The horizontal line in Figurd5.5perfectly discriminates between
classes A and B.

e The vectors representing each pattern may have a very largbear of
entries.

e That is,n— 1 may be very large.

15.4.2.2 Feature space

e In a variation on this formulation, the pattenp§/) aretransformed
versions of the-th original image.

e For the purposes of our discussion, it does not matter what@¢hink of
the patterns as being “raw” images or transformed imagdsifidature
space.



15.4.2.3 Decision function
e We consider an affindecision functionD : R"~1 — R defined by:

Ve R" L D(Y) =BTp+y.
e where the parametefise R"~1 andy € R are to be chosen so that:
Ve=1,....r, (DY) >0) < ({(¢)=1). (15.11)

e There are many choices of parametgendy that will satisfy (L5.17).
e Figure15.5shows a line, which is a hyperplanel®~! = R?, of the
form:

{Y e R"D(Y) =0},

e that dividesR" 1 into two half-spaces, one of which contains all the
patterns in class A and the other one of which contains alp#teerns in
class B.



Decision function, continued

e The parameter andy are calculated using the training set and the
function is then used to estimate the classes of new, unkipatarns for
which we do not know the class.

e \We must select a suitable criterion for choosing from ambtigsvalues
of B andy that satisfy 15.11).

¢ If we know the functional form of the probability distribot of the
patterns then we could estimate the paramdiensdy using a maximum
likelihood criterion, as discussed in the multi-variateelar regression
case study in Sectid®. 1

e Unfortunately, we usually do not have a lot of informatiorabthe
patterns that we must subsequently classify and do not khew t
functional form of the probability distribution from whidhey are drawn.

e Consequently, the criterion for choosing the paramdiensdy will be ad
hoc,aimed at finding a satisficing solution.



Decision function, continued

e We will seekf andy such that the corresponding hyperplane
{Q € R"1D(y) = 0} is as far as possible from all the patterns in the
training set.

e That is, we will find the values db andy that:

— maximize the minimum distance of any pattern from the hylaemg,
and
— allow classification of the two classes of patterns accgytin(15.11).

e We will use the notion of Euclidean distance to define distanc

e That is, we will use the norme||.

e We are trying to find the hyperplane between the two classtssiat the
middle of the thickest slab that separates the two sets ofgoi



15.4.2.4 Variables
e The decision vector for this problem consistaf R"~! andy € R.

e We collect these together into a vector 5 e R".

e That is, the parameters that specify the decision funddi@nme the
variables for the problem.



15.4.2.5 Objective

e \We must evaluate the Euclidean distance of a patpefin from the
closest point on the hyperplane:

{weR"ID(y) =0}.
e This distance is given by:
[D(w(0))]
IBll2

e assuming thaB = 0.
e Define the seP C R" by:

P={[3]

[37&0}.



Objective, continued
e If the decision functiorD satisfies {5.1]) then for each pattenpy(¢) and
classification((¢):
C(£)D(Y(L)) = [D(W(L))].

e If B~ 0 andy satisfy (L5.17) then the distance af(¢) from the
hyperplane is given by the functiam : P — R defined by:

D(Y(0))
Bl
_ 2(OD(W())

Bl

e The minimum distance of any pattegri/) to the hyperplane, over all the
patterne, is given byg: R" — R defined by:

vXe P, @ (x) =

vx e P,@(x) = gzrrllin rcpg(x).

e We call this minimum distance thmargin between the hyperplane and
the patterns.



15.4.2.6 Constraint

e In order for the objective to be well-defined, we must restrigselves to
choices ofx € P; that is, we must requir # 0.

e This constraint is not in our standard form of either an eyual an
inequality constraint.

15.4.2.7 Problem

e We seek the coefficienfs+# 0 andy such that the margin is maximized.
e Our problem is therefore:

max{ @(x)|[3 # O}. (15.12)

xeRN

¢ In the next section we will transform this problem to remdve t
minimization embedded in the definition of the objective.



15.4.2.8 Transformation

e By Theorem3.4, we can remove the minimization in the definition of the
objective@ by defining a subsidiary variabie

max{@(x)|B # 0}
xeRN
= Qg&tgf{ , :rg,{rj,rw(X) B# 0},
= max {z|g(X)>zVl{=1,...,r,3#0}, by Theorens.4,
ZeR xeRN
= max {z HORICIO) >zVe=1,....r,+# 0},
2ER XER" 18Il

= max {z[2()(BW(0)+) = |Bl,2 ¥ =1......B#0}.
(15.13)

e If the maximumz*® of Problem (5.13 is strictly positive then the optimal
margin is equal t@* and is strictly positive.



15.4.3 Changes

e We could consider a change in the problem due to the addifian extra
pattern.

15.4.4 Problem characteristics

15.4.4.1 Objective
e The objectivez of Problem (5.13 is linear.



15.4.4.2 Constraints

e The inequality constraints in Problerh5.13 are non-linear.

e Each binding inequality constraint at a solution to the prob
corresponds to a pattern that is closest to the hyperplane.

e These are called thupporting patterns or support vectors

e The constrainf # 0in Problem (5.13 is not in the form of equality or
inequality constraints.

e The feasible set of Problemi%.13:

s—{ | 2] x| co@we +v = IBlzve=1...rp2o].

e is not closed and may not be convex.

e Feasible sets that are not closed can potentially presticutties.

e We will consider further transformation of Probledb(13 in
Sectionsl8.4and20.1




15.4.4.3 Solvability

e If there is no hyperplane that can separate the patterns then
Problem (5.13 has a maximum that is zero or strictly negative.
e Algorithms for solving this problem are callstipport vector machines



15.5 Sizing of interconnects in integrated circuits
15.5.1 Motivation
15.5.1.1 Hierarchical design

e The design of digital integrated circuits (ICs) is usualiyided into a
hierarchy of planning stages.

e For example, a specification of the functionality of the I@anslated
into the logic required to meet the specification.

e The integrated components to implement the logic must tledaild out
on the “floor-plan” of the chip.

e Once the layout is done, there are still various decisiomgtmade.

e For example, the widths of the “interconnects” that join gage to
another can be adjusted, within limits, to achieve perforceagoals.



15.5.1.2 Delay constraints

e One goal is to make sure that the propagation delay on eabHrpat the
output of one latch through combinational logic to the inplithe next
latch is within a limit.

e Adjusting the width of the interconnects affects the delay.

¢ Increasing the width of the interconnect decreases thstaesie and
increases the capacitance of an interconnect.

— Decreasing resistance tends to reduce delay because thatduom
the driving latch or logic is increased.

— Increasing capacitance tends to increase delay becausetbased
capacitance requires more current to charge or discharge.

15.5.1.3 Area of layout

e Another consideration besides delay is that the wider tteéonnects,
the more area may be required for the circuit.

e We will try to minimize chip area by adjusting the widths oéth
interconnects, while satisfying the delay constraints.



15.5.1.4 Otherissues
e There are many other goals, such as minimizing power digsipand
other constraints, such as guaranteeing noise immunéintist be
considered.
¢ In seeking a compromise between various goals, we are agkmg a
satisficing solution.

15.5.1.5 Interaction between design levels

e At each level of the hierarchy, we take as fixed the decisioadenat
higher levels and seek to optimize the remaining decisions.



15.5.2 Formulation
15.5.2.1 Variables
Interconnect widths and lengths

e Latch a drives gate b through a piece of interconnect, lakikle

e Gate b drives a branching interconnect, labeled 2, 3, 4,&b6awhich in
turn drives two more gates, labeled c and d.

e These gates drive the interconnect labeled 7 and 8, whiahmndrive
latches e and f.

S | C 7 Iat60h

| 1] 2 |
ac b

4 Fig. 15.6. Schematic

diagram of gates and
6 'y 8 Ia;ECh latches  joined by

interconnect.




Segments

e The interconnect can be thought of as consistingegiments
corresponding to the labeled pieces of interconnect showimgurel5.6

e We assume that the interconnect can be partitioned intoct set
segments

e Let thek-th segment have widtky, thicknessly, and length_y, as
illustrated in Figurel5.7.

| Lk |

Aluminum or Copper Ty

Fig. 15.7. Dimensions

of k-th segment of
Silicon interconnect. The figure
IS not to scale.

Silicon dioxide




Discreteness

e Because we can only dimension features to be an integemteutii the
minimum feature sizeg can only be chosen fromdiscreteset of
alternatives.

e In general, optimizing over a discrete set of alternatigasiuch more
difficult than optimizing over a continuous variable becaursthe
discrete case we:

— cannot use calculus to derive optimality conditions,

— cannot obtain descent directions from purely local firstvadive
information, and

— cannot make use of convexity to establish global optimality

e In this case study, we will neglect discreteness and assuaée widths
are continuously variable.



Alternative formulations

e As an alternative formulation, instead of optimizing overoatinuous
range of widths¢, for segmenk, we consider a finite collection of
possible widths, saj\i, ..., Wks} for segmenk.

e For example, these widths might correspond to the allowialbdger
multiples of the minimum feature size.

o A segment is then specified by a collection of sub-lengiisj = 1,...,s
such thallzJ$:1 Lxj = Lk. The valuelyj specifies how much of the total
length of segmerk is of widthW;.

e This is an example of a radical transformation of a problemgared to
its “natural” formulation.

e We will not pursue this formulation further.



15.5.2.2 Objective
e \We have indicated that our goal is to minimize the area ofcotenect.
e The areaf : R" — R is defined by:
vx e R", f z L Xk,

e WhereLy is the length of th&-th segment.



15.5.2.3 Constraints
Upper and lower bounds

\V/k: 1,...,n,)_(k§Xk§)_(k7

Bottlenecks

> X < Xa, (15.14)
kel

e WhereB is the set of segments involved in a particular bottleneckxan
Is the maximum total width available for the segments in #téBs



Delay constraints

e Consider gath from a latch through the combinational logic to the input
of the next latch.

e We assume that the paths are labéeledl,...,r.

e Our performance specification requires that, for each {addatch patly,
a signal can propagate from:

— the output of the latch at the beginning of péth
— through the gates in path
— to the input of latch at the end of path

e Within a maximum allowed time delay that depends on:

— the clock period,

— the delay from the&lock edgeto when the outputs of latches become
valid, and

— the set-up timefrom the input of latches to the clock edge.

e Latch-to-latch delay on each path will depend on the widfitbh®
segments.



Delay constraints, continued

e Therefore, the delay on thieth path is a functior, : R" — R depending
on the widths and we require that:

Ve=1,...,r,h(x) <hy, (15.15)

e whereh, is the maximum allowed latch-to-latch delay on péath

e We collect the delay functions for each path together intecor
functionh: R" — R".

e Similarly, we collect the maximum allowed delays into a wettc R".

e To evaluate the functioh, we must define “delay” more carefully.

e Normatively, delay is the time difference between:

(i) when the voltage at the output of the latch that is driviagh¢ can
be considered to have changed state, and

(i) when the voltage at the input of the latch that is driverplath/ can
be considered to have changed state.



Delay constraints, continued

e In practice, “changing state” is defined onahhocbasis as when, for
example, the voltage waveform has risen to or fallen to wig@%, say,
or 90%, say, of its final value. N

e The delay is often approximated by a functigrthat is easier to
calculate.

e We will approximate the gate delays by constants neglecthiageffect of
the load of the interconnect on the delay through the contiomal logic.

e \We can then re-interpréy, as being the delay through the interconnect
alone, neglecting the gate delays, and reduce the correésgpdelay
limit h, by the sum of the gate delays on péth

e That is, we re-define each inequality itb(19 by reducing the left-hand
side and the right-hand side by the sum of the gate delaystbrf pa

e A typical approximation used for the interconnect delayhesElmore
delay, which requires an electrical model of the interconnect.



Interconnect electrical model

e Each segment of the interconnect is a distributed resistyacitive

transmission line.
e Segmenk, fork=2,...,6, has been represented by a series resistance

and shunt capacitan€®, called anL-segment

Fig. 15.8. Equivalent
circuit of interconnect
between gate b and
gates c and d consisting
of resistive—capacitive
L-segments.




Interconnect electrical model, continued

e The resistance of segmdnis determined by theesistivity pk of the
segment and its thickness, length, and width:

Vk = 17 oo N, Rk - pkLk/(Tka)7

e Wherekrk = pkLk/Tk is a parameter.

e The capacitance of segmdais determined approximately by tisbeet
capacitanceper unit arexsy, its fringing capacitance per unit length
Kek, and its height and width:

Vk = 1,..., n7Ck = KsukX + KrkLk,
= KciXk +Crk, (15.17)

e WhereKck = Ksik andCgi = KLk are parameters.



Gate model

e \WWe can model the gate driving the interconnect by considgetsoutput
transistor.

e |t can be approximately represented by a voltage sourcengrav
resistance.

e The driving gate b is modeled in Figui®.8as the voltage sourdg and
the driver resistancBy,.

e The load presented lyomplementary metal-oxide semiconductor
(CMOS) gates at the sinks can be modeled by a capacitance.

e This is shown byC. andCy in Figure15.8for the inputs to gates c and d,
respectively.



Elmore delay

e Consider a constant voltage source charging a cap&ctimmough a
resistancedr.

e The voltage across the capacitor will exponentially appindae driving
voltage.

e The time-constant of the exponentiaRE, so that a reasonable
order-of-magnitude estimate for the rise time of the vadtagross the
capacitor iRC.

e The “Elmore delay” is an estimate of the time constant of glsin
exponential that approximates the true response.

e We use this time constant as an estimate of the delay; howavweer
certain conditions it can be a poor estimate of the delay.



Elmore delay, continued
e Given the lumped L-segment models, the EImore delay is dwen

9

Ve=1,...,r,¥xe R" hy(x) = S
JePy 1€l

R; Z Ck
keD(j)

e Where:

— Py is the set of sets afonnected segmenten path/. Two segments are
connected if there is a path of segments between them. Incd set
connected segments, each pair of segments is connecteexdrople,
for the path? from latch a to latch e in Figurg5.6,

P, ={{1},{2,3,5},{7}}, since the path from latch a to latch e consists
of three sets of connected segments, namigly{2,3,5},{7}. The
connected segments are separated by the latches b and cpaitthe
from latch a to latch e.

— ID(j) is the set olownstream segmentsncluding and between
segment and all sinks that are driven from segmegnhrough
connected segments. For example, in Fidlbes, for | = 2,

D(2) ={2,3,4,5,6}. Forj =3,D(3) = {3,5}.



Elmore delay, continued

e The Elmore delay is the sum of the resistive-capacitive tomestants of
each segment, where:

— the resistive-capacitive time-constant of a segment ialgqtthe
product of the resistance of the segment and all the caypatmiad on it,
and

— the capacitive load is defined to be the sum of the capacisanfcal the
downstream segments (including the input capacitancd of al
downstream gates and latches.)

e Using the lumped resistive-capacitive modEb (16—(15.17) for each
segment, we obtain:

Vi=1,....r,vxe R" hg KRJ z KCka—I—CFk)
Jem fer | X kebij)
(15.18)
e We can collect the EImore delay functions for each path tugento a
vector functionh : R" — R', which we use to approximate the actual
delay functionh: R" — R",



15.5.2.4 Problem

e The approximate model for minimizing the area subject taughyger and
lower constraints in segment widths and subject to the dedagtraints
can be written as:

mﬂ{{n{f(xﬂﬁ(x) <h,x<x<X}. (15.19)
xeRN
e The more accurate delay model is:
m]%gn{f(x)|h(x) <h,x<x<x}. (15.20)
xeRN



15.5.3 Changes

e We could consider changes in parameters such as the sheeger f
capacitance constants, due to a change in dielectric gregper
e We could also consider the effect of adding an additionad gaa path.



15.5.4 Problem characteristics
15.5.4.1 Objective
e The objective f(x), of both Problems15.19—(15.20 is linear.

15.5.4.2 Constraints
Upper and lower bounds

e The lower and upper bound constrairts x < X define a convex set.

Delay constraints

e We focus on Probleml6.19.

e The Elmore delay function is not convex.

e The constraint functions involve the sum of terms each oftWins a
positive constant times the product of powers of the enindise decision
vector.

e Such a function is called posynomial function.



15.5.4.3 Solvability

e If there is no selection of widths that yield delays satisfythe delay
constraints, then there may be no feasible solution.

e \WWe may need to insert a buffer to break a long segment into hoder
pieces.



15.6 Optimal power flow
15.6.1 Motivation
15.6.1.1 Generalization of economic dispatch

e When applied to electric power systems, the problems de=sitin
Sectionsl2.1and15.1are calledeconomic dispatch problems

e The equality constraintl@.3 requires that electric generation equal the
demand; however, this does not fully characterize the tstian an
electricity network.

e For example, if generators are remote from demand centenstiiere
will be losses incurred in moving power along transmissioaed.

e At the least, {2.3 should be modified to account for losses in this case.



15.6.1.2 Constraints on operation

e Transmission lines between generation and demand canmaisthie
feasible choices of generation.

15.6.1.3 Power flow equations
e To check whether or not the line flow and voltage constrairéssatisfied,
we must expand the detail of representation of the networkdpyicitly

incorporating Kirchhoff’s laws, as described in the eleghower system
case study in Sectiof.2.2.4

15.6.1.4 Other controllable elements

e Besides real power generations, we can also consider edjusty
controllable elements in the system so as to minimize costsreeet
constraints.



15.6.2 Formulation
15.6.2.1 Variables
¢ In the decision vector, we need to represent:

— real and reactive power generations at the generatorshwiaawill
collect together into the vectosandQ,

— any other controllable quantities in the system, such asdttengs of
phase-shifting transformersand capacitors,

— the voltage magnitudes at every bus in the system, which Wecto
together into the vectar, and

— the voltage angles at every bus in the system except for feeeree
bus, which we collect together into the vectr(The voltage angle at
the reference bus is constant since, as previously, itsepts an
arbitrary time reference.)



Variables, continued
e \We collect all the variables into the vector:

P

_|Q n
x_ueR.

0

¢ In the power flow case study in Secti6r®, the generations at the
generators were fixed parameters, except at the referesce bu

¢ In this case study, the real and reactive power generaticasgenerator
buses are variables.

e This is similar to the least-cost production case studieSaationsl2.1
and15.1, where the real power generations were variables.

e This case study generalizes all of these earlier case stad
exemplifies the process of starting with only a few varialaled many
parameters and gradually re-interpreting the parameidss variables.



15.6.2.2 Objective

e A typical objective is to minimize the total cost of power geation.
e Let f : R" — R represent this cost.
e Typically:

f depends only on the entriesxtorresponding to real power
generations; however, in some formulatidnalso depends
somewhat on the entries pftorresponding to reactive power
generations, and

f is separable since the decisions at one generator do ndiyusifiact
the costs at any other generators.



15.6.2.3 Equality constraints
e We expressed Kirchhoff’s laws as equations in the form:

Ve, pe(x) = 0,
Ve, qu(x) = 0,
e Wherep, : R" — R andg, : R" — R were defined in§.12—(6.13):
VXeERY p(x) = uk[Gucog6, — Bk) +Baucsin(6, — )] — P,
keJ(OU{L}
XERYNQ(X) = Y uu[Gacsin(8; — Bk) — Buccog B — 6)] — Q,
keJ(£)u{l}

e WhereJ (/) is the set of buses joined by a line to lus



Equality constraints, continued

e We collect the equations together into a vector equatiomnaino the
form of (6.14):

g(x) =0,

e Where a typical entry afj is of the form of 6.12 or (6.13, but the
decision vectok includes the real and reactive generations as well as the
voltage magnitudes and angles.



15.6.2.4 Inequality constraints
e Limits on the entries ix:
X< X< X
e A voltage magnitude limit at buscould be 095 = u, < u, < T, = 1.05.
e A generator real power limit could belb=P, <P, <P, =0.7.

e There are also constraints involving functions<of
e For example, there are typically angle difference constsanf the form:

Ve, VK € J(6), —T/4 < 8, — 6y < TU/4, (15.21)

e and there might be limits on angle differences between hihsg¢sre not
joined directly by a line.



Inequality constraints, continued

¢ In addition, transmission line flow constraints can be esped via the
power flow equations in terms af
e That is, we will also have functional constraints of the form

h<h(x) <h.

e A typical constraint might limit the flow on a line that joins$¢ to busk.
e Neglecting shunt elements in the line models, the line fleal aad
reactive power flow functionpy : R" — R andqy : R" — R are defined

by:
Vx e R", pi(X) = upk[Gpcog 0, — B) + By sin(B, — Bx)] — (Ug)ngk,
(15.22)
VX e Rn, ng(x) = Uguk[ngSin(eg — ek) — ngCOieg — ek)] + (Ug)ngk.
e If there is a real power flow limit op,, on the line joining bug andk

then we represent this limit as an inequality constrainhefform
Pek(X) < Py In the inequality constraints(x) < h.



15.6.2.5 Problem

min{ f(x)|g(x) = 0,x < x <X, h < h(x) <h}. (15.23)

XERN



15.6.3 Changes in demand, lines, and generators

e \We can consider changes in demand at buses and also corisatees in
the system:

— failure or return to service of a transmission line, and
— failure or return to service of a generator.



15.6.4 Problem characteristics
15.6.4.1 Convexity
Objective

e As argued in the least-cost production case study in Setfidh the
objective of this problem is typically convex.

Equality constraints

e Because the functiogis non-linear, the sefx € R"|g(x) = 0} is not
generally convex.

e \We can argue from two perspectives that this non-convexigsaot
necessarily create multiple local minima of the problem.

e First, following the discussion in Secti@?2.4 we observe that the
Jacobian] of g can often be well approximated by a constant; that is, the
equations are approximately linear.

e Since the equations are approximately linear, the feasddle
{x € R"|g(x) = 0} is not very different from a set defined by a linear
equality constraint.



Equality constraints, continued

e Second, if we can “throw away” real and reactive power, thercan
replace the power flow equalities with inequalities.

pe(x) < 0, (15.24)
q(x) < 0. (15.25)

e That is, we have relaxed the constraints to requiring treh#t power
flowing out of a node is at most zero.

e That is, we allow power to flow into a node or to be generatednaicke
and be “thrown away.”

e Consider solving the relaxed problem having inequalityst@nts as
specified in 15.29 and (5.25 at each bug, but with all the other
constraints as represented in Probldrh.23:

min{f(x)g(x) <0.x<x<Xh<h(x) <F}. (15.26)
XeRN



Equality constraints, continued

e In Problem (5.26, the feasible set B
S ={xeR"g(x) <0,x < x <X h<h(x) <h} is arelaxed version of the
feasible set of Problen1b.23:

S = {xeR"g(x) =0,x <x <X h < h(x) <h}.

e Suppose we obtain a solutiah € S to Problem 15.26 such that at bugé
we havep,(xX*) < 0 orgy(x*) < 0.

e In this case, so long as we can dispose of real or reactivernavizels/,
then we can consider “throwing away” the difference andstadaishing
equality to construct a solutiott™ € S to the original equality-constrained
problem with the same value of objective and all constraatssfied.

e From a practical perspective, if there is a generatdrtaéen to “throw
away” power at bug we can consider reducing the output of the
generator to enable satisfaction of the constraint withagtyu

e This would reduce the objective of the problem since cogisajly
increase with output.



Equality constraints, continued

¢ In summary, the inequality-constrained Problel.29 has essentially
the same solution as Probledb(23.

e Now we will show that the feasible set defined by the relaxed
constraints 15.24 is convex under the assumption that all voltage
magnitudes are constant.

e We will not consider the reactive power constrairitS.295 nor the case
where voltage magnitudes can vary.



Equality constraints, continued
e Recall thatp, is defined in 6.12) to be:

Vx e R",
Pe¥) = > U[Gucog B —Bx) + Bucsin(8, — )] — P,
keJ(£)U{¢}
= > Uk[Gucog B — Bx) + Bycsin(6, — Bi)] + (Up)°Gye — P,
kel(?)
= z {Uguk[ngCOieg — ek) + ngSin(eg — ek)] — (Ug)Zng}
kel (¢)

+ (up)? <G££+ > GZk) — Py,
keJ(¢)

on adding and subtractir(glg)zzkej(g) Gk,

= > Pek(X) + (Up)? <G££‘|‘ > G£k>P£7
kel(?) kel (?)

e Where for eaclk € J(¢), the functionp, was defined in15.22).



Equality constraints, continued

e Since all voltages are assumed constant, we can definedoacti
Pk - R — R by:

vke J(€), V8 € R, Pr(Brk) = UrUk[ Gk COSByk) + Bk Sin(Bpk) | — (U ) G,
e and we obtain that:

VEYXER, pp(x) = Pu(6r—Bi) + (up)? <G££‘|‘ > sz> — Py
keJ(¢) kel (0)

e Thatis,p; is equal to{ (uy)*(Gy + ¥ key(r) Gex) — P} plus the sum of
termspyk (8, — Bx) each of which depends only on a linear function of two
of the entries ok.

e We will find conditions forpy, to be convex, which will therefore
guarantee thgp, is convex.

e We calculate the second derivativemf.”



Equality constraints, continued
d?p .
VO € R, dGij (Bek) = —UpUK |G cOH Ok ) + BucSiN(Byk)]-
e Recalling thaGy < 0,By > 0 fork € J(¢), this expression is positive if:
vk € J(€), |G| cogB8uk) — [Buk|Sin(Be) > O.
e This will be true if:

—TT+ arctan(lGM) <0,—06 < arctan(| gk')
B |Byk|

e Considering power balance at bus J(¢) as well, the functions will be
convex if for each line joining a busto a busk we have:

|eg9k|<m|n{arctan<| gkl) T— arctan(| gk')} (15.27)
Bk Bk



Equality constraints, continued

e Typically, |G|/|Bew| ~ 0.1 so (L5.27) requires that
18, — Bk| < O0.1lradian~ 6°.

e This is a little more restrictive than the angle restrici¢bb.21) that we
previously mentioned for stability limits in Sectid®.6.2.4



Inequality constraints

e Similarly, if a flow constraint betweefiandk requires thapk(X) < P
then the constraint defines a convex sel8.27) holds.

Discussion

e \We have provided sufficient conditions under which the ogtipower
flow problem is convex.

e If these assumptions are violated then there may be mulopd
minimizers.

15.6.4.2 Solvability

e There are a variety of constraints in the optimal power floabpgrm and
it is easily possible for there to be no solution.



16

Algorithms for non-negatively constrained
minimization

e In this chapter we will develop algorithms for constraingdimization
problems of the form:

min{ f (x)|Ax=b,x > 0}, (16.1)

XeRN

e Wheref : R" = R, Ae R™" andb e R™M



Key issues

e Optimality conditions fomon-negatively constrained problemsased
on the results for equality-constrained problems,

e thecomplementary slackness conditions the optimality conditions,

e optimality conditions forconvex problems and

e active setandinterior point algorithms to seek solutions.



16.1 Optimality conditions
16.1.1 First-order necessary conditions
16.1.1.1 Analysis

Theorem 16.1 Let f: R" — R be patrtially differentiable with continuous
partial derivatives, Ac R™" and be R™. Consider Problemi(6.1),

min{ f (xX)|Ax=b,x > 0},

XeRN

and a point X € R". If x* is a local minimizer of Probleml@.1) then:
I\ € R, 3 € R" such that:Of (x*) + ATV —pr = 0;

AX" = b;

M*xX* = O;
X* > 0; and
>0, (16.2)

where M = diag{|y } is a diagonal matrix with diagonal entries equal to
;. The vectora™ and |t satisfying the conditionsl6.2) are called the
vectors of Lagrange multipliers for the constraints-A and x> 0O,



respectively. The conditions that' = 0 are called the
complementary slackness conditionsThe complementary slackness
conditions together with the conditions X 0 and | > 0 imply that, for
each/, either thel-th non-negativity constraint,x> 0 is binding or the
¢-th Lagrange multiplier ftis equal to zero (or both).



Proof This is a special case of Theorel.1to be presented in
Chapterl7. We will only sketch the proof of this special case.
Consider theequality-constrained problem:
mﬂi%n{f(x)|Ax: b, —x, = 0,V¢ € A(X")}, (16.3)
xeRN
whereA(x*) = {£ € {1,...,n}|x; = 0} is the active set corresponding to
the non-negativity constrainis> 0 for the pointx*. That is, the
equality-constrained Problera§.3 includes as equality constraints the
following:

e all of the equality constraints from Problerig(1) and

e all of the non-negativity constraints of Problef6(1) that were
satisfied with equality by*.

That is, the active non-negativity constraints from Prob(@6.1) at its

minimizer have been included agualityconstraints in Problent@.3).

The representation of the constraintag = O rather than ag, =0 is

for convenience in interpreting the Lagrange multipliens f

equality-constrained Probler§.3).



The proof involves applying our earlier results quality-constrained
problems to Probleml@.3 to prove the theorem. The proof is divided
into three parts:

(i) showing thatx* is a local minimizer of equality-constrained
Problem (6.3,

(if) using the necessary conditions of the equality-caiséd
Problem (6.3 to defineA* andp” that satisfy the first four lines
of (16.2, and

(i) proving thaty* > 0 by showing that if a particular Lagrange
multiplier were negative, say; < 0, then the objective could be
reduced by moving in a direction such tlxaincreases and so
becomes strictly feasible for the constraint> 0. The intuition
behind this observation is that if the second-order sufficie
conditions held for Probleni@.3 atx* then we could apply the
sensitivity analysis Corollar§3.11 If we consider changing the
constraint from—x, = 0 to —x, = —y, with y > 0, then, since
Wy < 0, Corollary13.11lindicates that the minimum of the
changed problem would be lower ardwould be strictly
positive. This means that the constratnt> 0 could not have



been binding at a minimizer of Problerh§.1) since a positive
value ofx, would reduce the objective.



16.1.1.2 Example
e Consider Problem2(15):

min{x; — Xa|X1 + X2 = 1,X1 > 0,%2 > 0}. (16.4)
xeR2

18-
161

141

Fig. 16.1. Feasible set

(shown as line) and min-

imizer x* (shown ase)
X1 for example problem.

I I I I
12 1.4 16 18 2



Example, continued
e Consideration of the objective and inspection of Figlel shows that

X = [2] Is the unique minimizer of Probleni§.4).

e We apply Theoreni6.1to this non-negatively constrained problem.
e The objective is linear, and hence partially differenteabith continuous
partial derivatives.

YxeR? f(X) = X —Xo,

Wx € R2,0f(x) = [_1] |

1
A= [11],
= 1T
b = [1].

e We claim that\* = [1] andp* = [S] satisfy (L6.2).



Example, continued

crgerea—y = [ 1+ [Hm-[Z].
|2 0]]0
M=o o] H
AX: = [1 1] [(1)],
- [1]7
X = 0]
— _1_ :
> 0; and
" (2]
P- - 0 9
> 0.



16.1.1.3 Discussion

e As in the equality-constrained case, the Lagrange mudtipladjust the
unconstrained optimality conditions to balance the camsts against the
objective.

e We will refer to the equality and inequality constraintsdfied in (16.2)
asthefirst-order necessary conditions.

e There are inequality constraints on both the minimizesind on the
Lagrange multipliersr* in the first-order conditions for inequality
constraints.



Discussion, continued

e The complementary slackness conditions requireNhat = 0.

e Consider linearizing/Ix aboutu) andx¥) and using the linearized
equations to construct an update.

e This approach is not effective unless we are careful to aledoundary
of the set defined by > 0 andu > 0.

e For example, suppose that at iteratiowe hadxév) = 0.

e In this case, for the particular entfylinearizing the complementary

slackness conditions involves linearizipgx, aboutu?’) andxév).

e \We obtain:
W+ o) 06" +8¢7) =~ " " ) g,
— uév)mév), sincexév) — 0.
o Setting this equal to zero yields\" = 0.

e If we ever were at an iterate for whidév) = 0, then the Newton—Raphson
update would prevent us from ever moving from this value.



Discussion, continued

e Linearizing the complementary slackness conditions doéygield a
useful approximation in these cases.

e We will see in Sectiori6.4.3.3that an effective linearization of this
constraint requires us to carefully avoid the pOSSibﬂiﬂHﬁtXév) =0or

(V) —0

e We will see that one way to do this is tiost approximate the constraint
W X, = 0 by a hyperbolay x, =t, wheret € R, ,, and then linearize the
hyperbolic approximation.

e Then, we gradually redude

e Figurel6.2shows a hyperbolic approximation to the set of points
satisfying the complementary slackness constraint fagrs¢values of.

e Ast is reduced, the set of ordered pa r%] satisfyinguwy x, =t, x, > 0,

andpy > 0 approaches the union of the non-negagiv@xis and the
non-negativey-axis.



Discussion, continued

0.9
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Fig. 16.2. The complementary
slackness constraint for the en-
try ¢ requires that the point

e

X¢
axis or on thex,-axis. The hy-
perbolawx, =t approximates
the set of points satisfying the
complementary slackness con-
straints.  The dashed curve
shows the hyperbola fdr= 0.1;
the dash-dot curve shows the hy-
perbola fott = 0.05; and the dot-
ted curve shows the hyperbola
fort =0.01.

€ R? lie either on they-



16.1.2 Second-order sufficient conditions
16.1.2.1 Analysis

Theorem 16.2 Let f: R" - R, Ac R™"N and be R™M. Consider
Problem (16.1),

min{ f (X)|Ax=b,x > 0},

XeRN
and points X € R",A* € R™, and g € R". Let M* = diag{|fj }. Suppose
that:

(i) f is twice partially differentiable with continuous secqpaltial
derivatives,

(i)

Of (x*) + ATV — e 0
M*X* = 0

AX* b;
0

0

AVARAVAR



and
(iii) O%f (x*) is positive definite on the null space:

Ny = {Dxe RMAMX = 0;0¢ = 0,Y0 € A, (X, 1)},

whereA | (X, ") = {¢ € {1,...,n}|x; = 0,; > O}.
Then X is a strict local minimizer of Problenig.1). O

e The conditiongi)—(iii) in the theorem are called tilsecond-order
sufficient conditions

¢ In addition to the first-order necessary conditions, thesderder
sufficient conditions require that:

f is twice partially differentiable with continuous secorafal
derivatives, and
0% (x*) is positive definite on the null spad¢, defined in the theorem.



16.1.2.2 Example
e Consider the objectivé : R? — R defined by:

vx e R?, f(X) = (x1)%+ (%2 — 1)2.

Fig. 16.3. Contour sets
of objective function de-

I fined in sectiorl6.1.2.2
The heights of the con-

1 tours decrease towards

: 0
the point x* = [1]
which is indicated with
‘ / thee.

s X1

25F

)

0 0.5

15

0.5

0



Example, continued
e Consider the problem:

min{ f (x)|x > 0}.
x€R?2

e The objective is twice partially differentiable with comtious second
partial derivatives.

e We claim that the second-order sufficient conditions hotdkfo= [(1)]

andy* = 0, which is illustrated as the in Figure16.3



Example, continued
e The second-order sufficient conditions are that:

N 2y x
Df(X)—H = [2(X§£1)]_u’

M*X* = O;
X* > 0
w > 0;

e and thatJ%f (x*) = 2l is positive definite on the null space:
N = {Ix e R?|Ax = 0,V0 € Ay (X', 1) }.



Example, continued

A(X*) = {1},
Ap(X 1) = {0e{1,2}x; =01 >0},
= @7
N, = {IXeR?MX =0,V0 € Ay (X, 1)},
= {AX - R2|AXE — O,Vf S 0}7
— R?
0% (x*) = 2,

e which is positive definite o\, = R2.
e The second-order sufficient conditions holdcat= 2 andu* = 0.

e Note thatA . (x*, ") = Qs a strict subset ok (x*) = {1} for this
example.



16.1.2.3 Discussion
e The setA, (x*, ") can be astrict subset ofd\ (x*) sinceA ;. (x*, u*) omits
those constraintéfor whichx; = 0 andy; = 0.
N = {x e R"AMX =0,/ = 0,v¢ € A, (XU},
e can strictly contain the null space:
N = {Ix € R"AMX = 0,4 = 0,V¢ € A(X")},
e corresponding to the constraints of equality-constraipexblem (6.3):
AX = b,
—xy = 0,V¢ e A(X).

e By Corollary13.4 if x* satisfies the first-order necessary conditions for
equality-constrained Probleri.3 and if 0% (x*) is positive definite on
the null space\ thenx* is a strict local minimizer of
equality-constrained Probler@.3).

e However, this ignsufficientto guarantee that® is a strict local minimizer

of the corresponding inequality-constrained Probléé ]) if there are
any constraintg for which bothx; = 0 andy; = 0.



Discussion, continued

e Constraints for whick; = 0 andy; = O are callediegenerate
constraints.

e Intuitively, a degenerate constraihis only “just” binding.

e The sensitivity of the minimum to changesxnis zero.

e There exist feasible movemernis away fromx*, namely those in which
Axy > 0, for which the constraint, > 0 is no longer binding.

e Such feasible movements do not sati&ky = 0, so to guarantee that is
a minimizer of ProblemX6.1) we must test for positive definiteness of
the objective in the larger subspace that allows movemethit@ctionsAx
such thaidx, > 0.

e If the Hessian is positive definite in these directions thendbjective
must increase in these directions as we move away k'oamd
consequently we are indeed at a local minimizer of Probk6nl).

e That is, if 0% (x*) is positive definite o\, then there can be no feasible
descent directions fof at x*.



16.1.2.4 Example of not satisfying second-order suffi@entitions
e Suppose that we have the objectiveR? — R defined by:

Vx e R?, f(X) = —(x1)3+ (%o — 1)2.

Fig. 16.4. Contour sets of ob-
jective function defined in sec-
tion 16.1.2.4 The heights of the
contours decrease away from the

point x = |3 |, which is indi-

cated with theo, in the direction
of increasing values af;. The
heights of the contours increase
away from the poink in the di-
rection of increasing or decreas-
ing values ofx,.

2 2i5 3 X1



Example of not satisfying second-order sufficient conastj@ontinued
e Consider the problem:

min{ f (x)|x > 0}.
x€R?2

e The problem is unbounded below on the feasible set and has no
minimizer.

e However, consider the candidate minimizet {2] and candidate value
of Lagrange multipliergt= O:
Of (X)

~

X T
I

>
AVARAVAR|

M

e ele

~

0,

e so that'and|i satisfy the first-order necessary conditions, where
M = diag{jy } is a diagonal matrix with diagonal entries equajio ~

—



Example of not satisfying second-order sufficient conaje@ontinued
e The active set fok > 0 atX includes the first non-negativity constraint.

AR) = {1},

A_|_()2, ma

(e {12} =0, > 0},
0.

LI N

e Therefore, ifX'= 2 andi = 0 werethe minimizer and corresponding

Lagrange multipliers of this problem, then the constraiatiig be
degenerate.



Example of not satisfying second-order sufficient conastj@ontinued
e The Hessian of the objective is:

02

e The subspace corresponding to the constraints of equalitgtrained
Problem (6.3 is:
N = {IxeR3AMNX =0, =0,¥/c AR},
= {MxeR?Mx, =0,7¢ e {1}},
— {Mx e R?|Ax; =0}.

% (%) = [0 0].

e Note that:
VX € N, (X #0) = (Ma =0,M # 0),
= (X'O% ()X = 2(x)? > 0).

e The Hessiaris positive definite o\ and, by Corollaryl3.4 X is a local
minimizer of the equality-constrained problem ig2{ f (x)| — X1 = 0}.



Example of not satisfying second-order sufficient conastj@ontinued
e But positive definiteness aiy is insufficientto guarantee local optimality
for Problem (6.1).
e In fact, 0% (X) is not positive definite on the null spadé specified in
Theoreml6.2
N = {IXeRIAMX=0,¢=0,Y0 € A+ (R, )},
{Ix € R?|Mw = 0,V( € 0},
= R2
e The second-order sufficient conditions do not hold arminot a
minimizer of the problem.



16.2 Convex problems
16.2.1 First-order sufficient conditions
16.2.1.1 Analysis

Theorem 16.3 Let f: R" — R be partially differentiable with continuous
partial derivatives, A R™" and be R™. Consider Problem16.1),

min{ f (X)|Ax=b,x > 0},

XeRN

and points x € R", A* € R™, and it € R". Let M* = diag{|; }. Suppose
that:

(i) fisconvex ofx € R"Ax=b,x > 0},
(i) Of (x*) + AN — - =0,

(i) M*x* =0,
(iv) AX=band x >0, and
(V) ¥ > 0.

Then X is a global minimizer of Problenil.1).



Proof By Item(iv), xX* is feasible. Consider any other feasible point
x € R". That is, considex such that:

Ax=Db,x> 0.
We haveAx = Ax* = b, SOA(x—x*) = 0 and:

MTAGX—x*) = 0. (16.5)

We now consider constraints= A(x*) and constraintg ¢ A(Xx*)
separately.

For/ ¢ A(x*), we have thak; > 0. Consequently, Iteriii) implies that
W = 0. Therefore,

V& AK), (% —XF) = 0. (16.6)

For/ € A(x*), we have thak; = 0. Moreover, since, > 0 for all /, we
have:

V0 e AX), X —X; Xy — 0,

0.

AVANI



Therefore, sincg; > 0, we have:

Ve e AXY), W5 (xe—x;) > 0. (16.7)
Combining (6.6 and (L6.7), we have:
K (x=x) = 5 B=X)+ 5 Kx—X),
(e A(x) (& ATX)
= > M ), by (16.6),
(e A(X*)
> 0, by (16.7). (16.8)



We have:
f(x) > f(x*)+Of(x) (x—x*), by Theoren?.6, noting that:
f is partially differentiable with continuous partial deatives;
f is convex on the convex séx € R"|Ax= b,x > 0},
by Item (i) of the hypothesis; and
X, X* € {x € R"Ax=b,x > 0},
by Item(iv) of the hypothesis and construction,
f(x) — A — ] (x—x),
by Item(ii) of the hypothesis
f(x) = VA=) + ] (x =),
f(x) + W] (x—x"). by (16.5),
f(x*), by (16.9.

Therefore x* is a global minimizer off on {x € R"|Ax=b,x > 0}. O

IV



16.2.1.2 Example
e Consider again the problem from Sectib.1.2.2

min{ f(x)|x > 0},
XeR?2

e With objectivef : R? — R defined by:
Vx € R?, f(x) = (X1)2 + (X2 — 1)2,

e The objective is partially differentiable with continuopartial derivatives

and convex.

e We have already verified that = [2] andy* = [0] satisfy the first-order

necessary conditions.
e By Theoreml6.3 x* is a global minimizer of the problem.



16.3 Approaches to finding minimizers: active set method
¢ In theactive set method we consider a tentative list of the constraints
that we believe are binding at the optimum.
e This tentative list is called theorking set and typically consists of the
indices of the binding inequalities at the current iterate.

e Since our tentative list may not be the correct list for thieitson, we
must consider how to change this tentative list, either by:

— adding another constraint to the list, which is calé®ehpping in, or
— removing a constraint from the list, which is callegapping out

e Geometrically, active set algorithms tend to step alondothendary of
the region defined by the inequality constraints.



16.3.1 Working set

e We write W) for the working set.

e The constraints in the working set are treateahporarilyas equality
constraints.

e A search direction is calculated that seeks the minimizemnof
equality-constrained problem where the equality constraints sbosi
— all the equality constraints in the original problem, and
— the binding inequality constraints listed Wi(V).

e If W) happens to coincide with the active set for the minimizeof the
inequality-constrained Probler.1) then, by the proof of
Theoreml6.], the solution of the equality-constrained problem using
W) will be x*.

¢ Inequality constraints are “swapped” in and out of the wogkset as
calculations proceed.



16.3.2 Swapping in
16.3.2.1 Descent direction
e Consider iteratiow, the current value of the itera®’), and a working
setW V).
e Suppose that!V) is feasible with respect to all the constraints.
e \We consider the problem:

min{ f (x)|Ax= b, —x, = 0,v¢ € W)}, (16.9)

xeRN

e We can use the algorithms from Chapi&to find a descent direction
M) atxV) for this equality-constrained problem.



16.3.2.2 Step-size

e We seek a step-size for the update that will maintain felsilvith
respect tall of the constraints in Probleni§.1).

e In particular, consider any inequality constraththat is not in the current
working set.

e Thatis, considef’ ¢ W) so thatxé)’) > 0.

e For simplicity, first suppose that the objective functiorcm@dases along
the descent directiofxV) for arbitrary step-sizes.



Step-size, continued

e Suppose that an update“) based on the current working set and a
step-size of 1 would cause inequality constrdinib be violated because
xé)’) +Ax§)’) <0.

e Then:

— the step-sizelV) of the update should be chosen to make constraint

just binding at the next iteratxé)’) + O((V)Axé)’), and
— the working set should be updated by including constréisb that

WD =Wy {¢}.

e We may find that the function evaluatecb<§’t) +0((")Ax§)’) does not satisfy
a sufficient decrease criterion.

e In this case, we should decrease the step-size further @ratid the
constraint’’ to the working set.)



16.3.2.3 Example
e Consider the feasible séx € R3|1"x = 10,x > 0}.

Fig. 16.5. Change in
1010 working set.




Example, continued
e This feasible set is an example of a set of the form:

{x e R"|Ax=b,x > 0}, (16.10)

e whereA= —1" € R™" andb = [—~10] € R™, for m= 1 andn = 3.
e This is the same form as the equality constraint in the least-
production case study of Secti@2.1and we know from Sectioh2.1.4.2

-1 -1
thatZ = [ 1 O] Is a matrix with columns that form a basis for the
0 1
null space ofA.
1
e Also illustrated in Figurel6.5is a current iterataV) = [3 € R3 thatis
6

feasible for the equality constraint.
e Sincex(¥) > 0, we suppose that the current working set is empty,
W) — 0.



Example, continued
e Consider a partially differentiable objectife R3 — R such that

2
O (X)) — [_1] |
11

e The vector:
MV = —zZ'0f (xV)),

14

e is a descent direction fdr that lies in the null space of the equality
constraint.

e Moving fromx") in the direction™") will simultaneously:
— improve the objective, and
— maintain satisfaction of the equality constralfx = 10.



Example, continued

e Suppose that the objective decreases along the diresti¥nfor
step-sizes up to at least 1.

va™ e (0,1], f (xX¥) + oMMy < £(xV).
e To maintain feasibility, the update cannot progress past4b- 0 plane.
e We must choose ") such that:
XV = V) 4 aMVaxV),

1 6
3 3] ,
-9

6

+aV

1V

0.



Example, continued
e To satisfyxV*1 > 0, a step-size ofi") = £ is chosen so thatV Y

5
satisfiesd” ™ = 0 and, thereforegV+1) = [5] .
0

e Constraint 3 is added to the working set so &t +1) = {3}.



Example, continued
e \We now consider movement in a directiaxV*+1) such that:
MV is a descent direction for the objectiveat xV*+L),
moving in the directiod Y maintains feasibility for the equality
constraintl’™x = 10, and

moving in the directiodx" ™) maintains satisfaction of the equality
constraint—x3 = 0 implied by the current working set.

e Suppose that atV*+1 the objective decreases with increasing values, of
and decreasing values xf.
e Then a suitable update direction is shown in Figléebas the arrow

10
labelledAx(VtD) having its tail axV ™Y and pointing towards = [ 0] .
0)



Example, continued

e We update along the directidxV*1) until a sufficient decrease in the
objective is achieved or another constraint becomes kgndin

e In the former case, a point suchx%2? in Figure16.5would be
obtained.

¢ In the latter case, another constraint would be added to tnkimg set
and the procedure would continue.

e The iterates typically lie on the boundary of the region dediby the
inequality constraints.



16.3.3 Swapping out
16.3.3.1 Descent direction

e \We can also consider swapping a constréimut of the feasible set.

e Suppose that for som# ¢ W) we find that a Lagrange multiplier for
the constraint-x,» = 0 is negative for Problen@.9.

¢ In this case, we can potentially reduce the objective by nmpin a
direction that makes the constraint non-binding and we Ishooansider
removing?” from the working set.

e This approach follows the proof of Theorelf.1where a negative value
of a Lagrange multiplier corresponding to an inequalitystoaint
allowed us to reduce the objective by moving in a directiochsihat the
constraint became strictly feasible.



Descent direction, continued

e In practice, the equality-constrained problems may notobees to
optimality, so that the Lagrange multiplier estimate mayrberror.

e Consequently, the working set approach can be prone tozamgsing”
where constraints repeatedly move in and out of the activeviieout
significant progress.

e Various strategies have been devised to avoid erroneowslp@sng a
constraint out.

e Nevertheless, suppose that we choose to swap out congtramntipdate
the working set at iteration.

e Then we revise the working set to &™) \ {¢"}.

e That is, we remové” from the working set. A descent direction is sought
for the corresponding equality-constrained problem:

min{ f(x)|Ax= b, —x; = 0,¥¢ € W)\ {¢"}}.

xcRN



16.3.3.2 Example

min {X1 —Xo|X1 + X2 = 1,X3 > 0,x2 > O}.
X1,X0€R

181
161

141

Fig. 16.6. Trajectory of
iterates using active set
algorithm for example
problem. The feasible
set is indicated by the
W w2 Xg solid line.




Example, continued

e Suppose that we start with the initial guesx8f = (1) for this problem.

e This initial guess is feasible with respect to all the caasts, is strictly
feasible with respect to the inequality constraint> 0, and the inequality
constraintx, > 0 is active at this initial guess.

Working set

e Since the inequality constrairt > 0O is active for the initial guess, the
initial working set isW(© = {2},



Descent direction atx(©)
e \We consider the equality-constrained problem:

min_ {x; —xz|x1 + % = 1,—x = 0,/ € WO}
X1,X2€R

= min {X3 —Xo|X1 +X2 =1, —xp = 0}, (16.11)
X1,X0€R
e and seek a descent direction for it.
e In fact, howeverx©) is optimal for this problem, but the sign of the
Lagrange multiplier for the constraintx, = 0 is negative.
e That is, we are at the minimizer of the equality-constraipezblem but
have not found the minimizer of inequality-constrainedifem (16.4).



Update working set

e \We update the working set by removing constraint 2 from it.
e That is, we now have the revised working 58t = 0.

Descent direction atx(?

e Since the objective increases wikhand decreases witty, a descent
direction atx(%) for the objective that maintains feasibility for the equali

constraintsg + x2 = 1 is given byAx(©) = [_ﬂ .



16.3.4 Alternation of swapping in and out
e \WWe must solve a sequence of problems, alternately swappiagd out.

e We continue with Probleni§.4), starting ax(?) = [cl)] and using

descent directionx(©) = [_ﬂ .



16.3.4.1 Swapping in

e If we move along the descent direction according®-+ a©@Ax©@, we
find that fora(®) = 1, the constraink; > 0 becomes binding.
¢ \We obtain the next iterate:

XD — xO0 g0
I -1
+1[ 1],

Y

X
_0_
3

1_

e and we update the working set¥(!) = {1}.



16.3.4.2 Descent direction

e We consider the equality-constrained problem corresponidi the
working setW() = {1}

min_{X; — Xo|X1 + X = 1, =X, = 0,V¢ € W}
X1,%€R

= min {X;—Xo|X1+X2 =1 —x3 =0}, (16.12)
X1,X0€R

e and seek a descent direction for it.

e In fact,x(V) is the minimizer of this equality-constrained problem amel t
sign of the Lagrange multiplier for the constraink; = 0 is positive.

e That is, we are at the optimum of the equality-constrainethlem and
have also found the optimum of the inequality-constrained
Problem (6.4).



16.3.4.3 Discussion

e Since there were only two inequality constraints we took qgune
swapping out operation and one swapping in operation to ffied t
minimizer.

¢ In general we will find that we will have to successively swa@aind out
various of the constraints and solve several equality{caim&d problems
before reaching the minimizer of the original inequalitynstrained
problem.



16.3.5 Finding an initial feasible guess

¢ To find an initial feasible guess for Probled®(1), we define another
optimization problem that ielatedto Problem 16.1) and having the
following properties:

— itis easy to find an initial feasible guess for the relatedjmm,

— if Problem (@6.]) is feasible, then a minimizer of the related problem
yields a feasible initial guess for Probled6(1), and

— if Problem (@6.]) is infeasible, then the minimum of the related problem
signals this fact.

e The related problem includes the variabes R" from Problem 16.1)
and, additionally, includeatrtificial variables w ¢ R™.



Finding an initial feasible guess, continued

e Suppose thab > 0 (or, swap the sign of any negative entryhiand the
signs of the entries in the corresponding rowAof

e Consider the following problem, related to Probleb.q):

min_ {1'w|Ax+w = b,x > 0,w > 0}. (16.13)
XeRN weRM

e Note thatx(® = 0,w(9 = b > 0 satisfies the equality and inequality
constraints of Problenl.13 and is therefore a feasible initial guess for
this problem that can be used by an active set method.

e We solve this problem using the active set method and thslikainitial
guess.



Finding an initial feasible guess, continued
2%

e Suppose thaEv)\j*

e Then the minimum of Probleni6.13 is 1'w* = 0 andx* is a feasible
initial guess for Probleml1.1), since:

] is a minimizer of Problem1(6.13 with w* = 0.

k

b = AX"+WwW, since[v)\j*] Is feasible for Problem16.13,

= AX', sincew* =0,
23

X > 0, since[v)\j*] is feasible for Problem16.13.

k

e If the minimum is non-zero (so that the minimiz%rx*] satisfiesv* £ 0)

W
then Problem16.]) is infeasible.

e The process of finding a feasible initial guess for Probl&é]) is called
phase lof optimization.

e The feasible initial guess is then used as a starting poiainbgigorithm
to minimize the objective of Probleni§.1) in phase 2



16.3.6 Linear and quadratic objectives
16.3.6.1 Linear programming

Analysis

e Consider a non-negatively constrained linear programrmolem:
min{c'x|Ax= b,x > 0}. (16.14)
xeRN

e Except for:

— the complementary slackness conditids = 0, and

— the inequalitiesx > 0 andpu > 0,
e the necessary conditions dngear simultaneous equations.
e The linearity facilitates:

— the calculation of descent directions for the correspamdin

equality-constrained problem,
— avoiding zig-zagging, and
— maintaining feasibility as successive iterates are catedl



Analysis, continued

e The linear minimization Probleni6.14 is equivalent to maximizing the
objective—c'x over the same feasible set.

e By Theorem?2.5, there is a maximizer of-c'x (and therefore a minimizer
of ¢'x) that is an extreme point of the feasible set.

e \We can restrict attention to points that are vertices of dasible set and
do not need to consider points suchx&s? in Figure16.5that are on the
boundary but not at a vertex of the feasible set.

e Geometrically, contour sets of the objective are paralpnplanes.

e The minimum of the linear program corresponds to the hypamlvith
minimum height that intersects the feasible set.

e The intersection will contain a vertex of the feasible set.



Discussion

e The active set strategy applied to linear programming jgoisl
represented in the form of Problerhg(14), together with various
techniques to make the constraint swapping and calculafidescent
directions more efficient, leads to teanplex algorithm.

e The simplex algorithm was developed in the 1940s by Georgediap

e The vertices of the feasible set of Probleb®.(14) are points that satisfy
equations of the form:

Ax=Db,—x,=0,V/ ¢ W,

e with W havingn — mmembers (foA € R™" havingm linearly
independent rows.)



Discussion, continued
e For example, for the feasible set illustrated in Figliées, the vertices are:

8L gl

e corresponding, respectively, to the three choices:
W=1{2,3},W={1,3},W = {1,2}.

e Each of these choices of working set mlesm=3—1 =2 members.

e The form of the feasible set leads to important simplifiaagitor
updating iterates and swapping in and swapping out.

e Swapping in and out is performed simultaneously and cdicumaf a
descent direction is facilitated by maintaining and uptafactors of an
appropriate square sub-matrix of the coefficient matrixhefd¢onstraints
Ax=Db,—x, =0,V/ ¢ W,

e The MATLAB functionl i npr og uses the simplex algorithm under some
circumstances.



Discussion, continued

e For some problems, the simplex algorithm must examine & larg
proportion of the possible combinations of active inediesi

e However, the simplex algorithm usually finds a solution & gnoblem in
relatively few iterations.

e The simplex algorithm and its variants remain the most useldoaactical
optimization algorithms.

e If an optimization problem can be formulated as a linear paogthen it
is worthwhile to do so.

e Many special issues arise in linear programming that allow
simplifications of hypotheses and sharpening of conclissadrihe theory
we have discussed.

e For example, some linear integer optimization problem®smple
solutions in terms of linear programming.



16.3.6.2 Quadratic programming

e As with linear programming, there are also simplificationssble in the
case of quadratic objectives.

e Moreover, there is a large body of active set-based softexagable to
solve quadratic programming problems.

e The MATLAB functionquadpr og uses an active set algorithm under
some circumstances.

16.3.6.3 Further details

e \We have only introduced active set algorithms briefly heosyédver,
much software written for optimization problems uses soonmfof
active set algorithm.



16.4 Approaches to finding minimizers: interior point algorithm

e A very different approach to solving inequality-constedproblems is
not based on identifying the active constraints directly.

e Conceptually, a “barrier” is erected that prevents violatf all the
inequality constraints so that the sequence of iterateairestrictly
feasible with respect to the inequality constraints.

e The iterates remain in the interior of the set defined by tkequmlity
constraints.

e |deally, the iterates step directly towards the minimizenoas the interior
of the feasible region, rather than stepping along its bagnds in the
active set algorithm.

e For this reason, the technique is calledmterior point algorithm .



16.4.1 lllustration

e To illustrate the interior point algorithm, consider thgeative f : R — R
defined by:

Vxe R, f(X) =X,

e and a non-negativity constrairt> 0.

e \We add &arrier function for the constraintg > 0 to the objectivef (x)
to form thebarrier objective, @: R, . — R.

e The essential characteristic of the barrier function is itha partially
differentiable on the interior of the feasible set but beesmanbounded as
the boundary of the feasible set is approached.

¢ Define the logarithmic barrier functiofy : R, . — R for the constraint
x>0 by:

Vx e Ry, fp(x) = —In(x).

e Lett € R, be a parameter, called tharrier parameter .



lllustration, continued
e Define the barrier objectivg: R, — R by:

VXeER,@Xx) = f(X)+tfy(x),
= f(x)—tinx

F(x), 000 = f(x) —tIn(x)

1

0.8

| Fig. 16.7. Barrier ob-
°or ': 1 jective for the constraint
| X > 0,x € R. The

0.4r

solid curve shows the

02} ] objective f while the
dashed curve shows the
or 1 barrier objective@ for
t = 0.1 on the interior
032 o1 0 01 02 03 04 05 o6 o7 o8 X Of the feaSible region_



lllustration, continued
e Asx— 01, @(x) — oo.
e An algorithm that is trying to minimize will avoid the vicinity of the
boundary of the feasible region.
e That is, it will produce iterates that are interior to thedefined by the
inequality constraint.



lllustration, continued
e For any fixedx > 0, the value of-tIn(x) approaches 0 ds— O.

—tIn(X)

Fig. 16.8. Effect  on
| barrier  function for
the constraintx > 0
| ast — 0. The dashed
NS ’ curve shows —tIn(x)

| fort = 0.1; the dash-dot
T | curve shows —tIn(x)
for t = 0.05; and the
wro dotted curve shows
LT ]y ~tIn(x) for t = 0.01.



16.4.2 Outline
16.4.2.1 Logarithmic barrier function

o We define the logarithmic barrier functidg : R , — R for the
constraint > 0 by:

n
VxeR",, fy z (). (16.15)



16.4.2.2 Barrier problem
e Given an objectivef : R" — R, a barrier functionf, : R , — R, and a
barrier parametdre R, |, we form thebarrier objective ¢: R, — R
defined by:

vxe R, @(x) = f(x)+1tfp(X).

e Instead of solving Probleni6.1), we will consider solving théarrier
problem:
min{@(x)|Ax= b,x > 0}. (16.16)
XeRN
e We discussed the potential disadvantages of an open feasibsuch as
{x € R"|x > 0} in Section2.3.3
e However, in practice, for suitablg Problem (6.1 can be solved by a
technique that considers only tkqualityconstraints when seeking a
descent direction.



16.4.2.3 Slater condition

e For Problem 16.19 to be useful in finding a solution of Problerhq. 1),
we need to assume that:

{x e R"|Ax=Db,x> 0} # 0,

¢ so that Problem1(6.16 has a non-empty feasible set.

e This is called theSlater condition.

e This condition requires the existence of a feasible poiat ihstrictly
feasible for the inequality constraints.

e That is, there must be a feasible interior point.

e Many constraint systems arising from physical systemsfydtie Slater
condition.



Slater condition, continued

e A simple example of constraints that do not satisfy the $ladadition is
defined by the following:

A= [11]
b = [0],
x>0

e The set{x € R?|Ax= b,x > 0} is empty.



16.4.2.4 Solving the barrier problem

e To find the minimizer of Probleml6.16 for any particular value dof, we
can start with an initial guess? that satisfieg\x = b andx > 0.

e We then search from? using an iterative algorithm that seeks the value
of x that minimizesp(x) subject toAx= b.

e Since the objective functiog@ of Problem (6.1 becomes arbitrarily
large as its argument approaches the boundaxy00, we only need to
prevent the iterates from going outside the region0 by controlling the
step-size appropriately.



16.4.2.5 Sequence of problems

e We solve Problem1(6.19 not just at one value df but for asequencef
values oft that approach 0.

e The trajectory of minimizers of Problemi§.19 as a function of is
called thecentral path.



16.4.2.6 Example
e Consider again Probleni§.4), which we analyzed in Sectid6.3.3.2

min_{x; — Xo|X1+ X2 = 1,x1 > 0,x2 > O}.
X1,X%2€R

e The interior point algorithm involves solving the barrigoplem,
Problem (6.16, for a sequence of values bthat decrease towards zero.
e For Problem 16.4), the barrier problem is:

min {x; —xo —tIn(x1) —tIn(x2)|X1+X2 = 1,x1 > 0,2 > 0}. (16.17)
X1,%€R



Example, continued

e \We can calculate the minimizer of Proble@6(17) explicitly as a
function oft.

e We can eliminatex; using the equality constraint to express the objective
as a function oky:

2x1 —1—tIn(xg) —tIn(1—x1). (16.18)
e \WWe now have an unconstrained problem:
min{2x; —1—tIn(xy) —tIn(1—x1)}.

x1€R

e Differentiating (L6.18, setting the derivative equal to zero, and
re-arranging we find that:

(x1)? —xq(1+t) +t/2=0, (16.19)

e Where we note that botky andx, = 1 — x; must be greater than zero for
the objective and derivative to be defined (and for the inkigua
constraints to be strictly satisfied.)



Example, continued

e The quadratic equatiori6.19 has two solutions, both of which are
positive.
e However, only one of the solutions:

L1t — /14 (1)?
— 5 :
yields a value ok, = 1 — x; that satisfies the strict non-negativity

constraint forx,.
e Substituting, we obtain:

(16.20)

X1

:1—t+\/1+(t)2 (16.21)
5 : .

¢ In general, we may not be able to conveniently eliminatealdes and
solve for the minimizer of the barrier problem explicitly @asunction oft
as we have done for Problerbhg.17).

e Nevertheless, we can think, in principle, of solving therieaiproblem
for a sequence of decreasing values. of

X2



Example, continued

e Figurel16.9shows the minimizer given irn@.20 and (6.21) of
Problem (6.17 versug fort =1.0,0.9,...,0.1.
e The minimizers are always in the interior of the $ee R"|x > 0}.

X2

Fig. 16.9. The tra-
jectory of the min-
imizers of Prob-
lem (16.17 versus t
X for t = 1.0,0.9,...,0.1
s minimizer fort = 0.1 shown as o The
minimizer fort = 1.0 ] minimizer x* of Prob-

0.6

lem (16.4) is shown as
ae. The feasible set is
indicated by the solid
%oz or o5 o5 i 1z 1 15 1 2 X1 line.

0.4

021




Example, continued
e For large values df, the minimizer of Problem16.17) is far away from
the minimizen* = (1) of the inequality-constrained Probleig(4).
e However, ag decreases towards zero, the minimizer of Probl&énl(7)
approacheg* = 2 :

e We will explicitly discuss a stopping criterion in Secti®6.4.6.4



16.4.2.7 Reduction of barrier parameter

e Because we evaluated the minimizer explicitly as a funabion we
could just pickt = 10719, say, and evaluatd 6.20—(16.21) to obtain:

o A 5x 1011
~ 1.0000 |-

¢ In general, we cannot solve for the minimizer of Probldi.16
explicitly and we will have to use an iterative algorithm.

e It is very difficult to solve Problem1(6.16 from scratch for a small value
of t because the initial guess that we can provide for the iterati
algorithm leads to a poor update in seeking an unconstramseinizer.

e Instead of trying to minimize the barrier problem from schator a small
value oft, we start with a large value ¢fand use the Newton—Raphson
update to seek a minimizer for this valuetof



16.4.3 Newton—Raphson update
16.4.3.1 Discussion of the barrier problem
e \We seek a minimizer of the problem:

@Rﬂ {o(x)|AX= b}. (16.22)

e By Theoreml3.2 the first-order necessary conditions of Probldi®.22
are:

Cp(x) + AT = 0, (16.23)
Ax—b = 0. (16.24)

16.4.3.2 Primal interior point algorithm

e \We first investigate a straightforward approach to applyireg
Newton—Raphson update to solving the first-order necessary
conditions (6.23—(16.24.



Primal interior point algorithm, continued
e Consider the first term inlG.23:

Oe(x) = LX) +tfu(x)],
= Of(X) +tOfp(X),
S

= [Of(x)+t

~

= Of(x) —t[X] ™1,
D%p(x) = 0% (x)+t[X] >



Primal interior point algorithm, continued
e The Newton—Raphson update to sol¥é.23—(16.249 is given by:

O%p(xV)) AT] [T [—Op(xV)) — ATAW)
A o™ T] boa™ |
e OF:
2f (xV) 44X W) 2 AT [V | —0f (x¥) +1[X V)] 71— AIW)
A 0 [V |~ b— AxY)

(16.25)

e This update leads to th@imal interior point algorithm .

e \We are not going to investigate this algorithm further, gxtce
Sectionl8.2.1in the discussion of enforcement of the strict inequality
constraints in the case study of optimal routing in a datarnamication
network.

e Instead of discussing the primal interior point method, wiéaensider a
variant in the next section.



16.4.3.3 Primal—dual interior point algorithm

e Instead of the primal interior point algorithm, we will debe an
algorithm that incorporates linearization of a hyperbaliproximation to
the complementary slackness constraints, as first intextiuc
Sectionl16.1.1.3



New variable and equation

e WWe are going to introduce a new varialplevhich will turn out to
correspond to the dual variables for the inequality comgigan
Problem (6.1).

e \We incorporate the equations:

Vi=1,....n WX =t. (16.26)

e The approximation inX6.26 allows [%] to lie on a hyperbolic-shaped

set as shown in Figur6.2

e Linearization of (6.29, together with an explicit requirement to avoid
thex,- andpy-axes, yields a useful update that can approximately
represent the kink in the complementary slackness conditio

e We have remarked that we will solve Problet® (16 for a sequence of
decreasing values of

e Ast — 0, points that satisfyl6.26 will approach satisfaction of the
complementary slackness conditions:

Mx = 0.



New variable and equation, continued
e \We can re-write 16.29 as:
Xu—t1=0, (16.27)

e which we can re-arrange @s=t[X] 1.
e Recall thatp: R} | — R"is defined by:
vxe RN, Op(x) = Of (x) —t[X] 1.
e Substituting the expression fokpinto (16.23 and making the
substitutionu = t[X] 1, we obtain:
Of(X)+AA—p = 0. (16.28)
Ax = b. (16.29)

e Equations 16.279—(16.29 are equivalent t01(6.23—(16.24 in that:

— a solution of 6.23—(16.24) satisfies 16.28—(16.29, given thatfuis
defined by 16.27, and
— a solution of 6.27—(16.29 satisfies 16.23—(16.24).



New variable and equation, continued

e The hyperbolic approximation to the complementary slaskmm®nditions
together with 16.28 and (16.29 are equivalent to the first-order
necessary conditions for minimizing Problef6(22, ignoring the strict
inequality constraints.

e Moreover, (6.28 and (16.29 are two of the lines of the first-order
necessary conditions for Probled6(]).

e The condition 16.27) becomes more nearly equivalent to the
complementary slackness conditions for Problég1) ast — O.

e Instead of seeking” andA* that satisfy 16.23—(16.29), we will seekx*,
A*, andpy* that satisfy 16.27—(16.29.



Step direction
e The Newton—Raphson step direction to sol¥/6.27)—(16.29 is given by:

XV MW 0 AV XMV 411
—1 0% (xvV)) AT MV | = | —Of (xV)) = ANV 4y |
0 A 0| |mW —AXY) +b

o whereM(¥) = diag{i"'} andX(¥) = diag{x\"'}.



Symmetry

e The Newton—Raphson update equations have a coefficieniriet is
not symmetric.

e By multiplying the first block row of the equations through HyM "]
on the left, we can create the symmetric system:

-1

—MOXO o] [ xV) M) 1
— (1% (X(V)) AT MV | = | — f (X(V)) — AW + u(V)
0 A 0] [V “AxY) 4+ b
(16.30)

e This system is symmetric, but indefinite.
e In general, to factorize it we must make use of the speciabferation
algorithms for indefinite matrices as mentioned in Sectighy.



Block pivoting of Jacobian and sparsity issues

e Unfortunately, the top left-hand block of the coefficienttrmaof this
system may have entries that are very large and entriesréhaesy
small, depending on whether or not the corresponding cainsk; > 0 is
binding.

e This means that the coefficient matrix can be ill-conditabne

e We can deal analytically with the entries in the top left-thdéock of the
coefficient matrix because of its simple structure.

e We will do this by block factorizing the Jacobian using thaghnal

matrix —[M(")]_lx(") as block pivot, noting that we can explicitly invert
~IMM] XM 1o obtain—[X)] MW,



Block pivoting of Jacobian and sparsity issues, continued

e \We obtain:
| 0 0] [—mM0 x™) 0
CXOTTIMO) |0 ] 0% (x(V)) AT
0 0 I 0 A 0
_[M(V)]_lx(\)) — 0
= 0 092f (X)) +[x(v)]—1M(v) Af |- (16.31)
0 A 0



Selection of step-size

pv+1) V) A
xV+D) | = [ xW) | £ | ax(W
A(V+1) AV) MV

e We may violate the non-negativity constraintsjoar Xx.
e To avoid this we may have to take a step that is less than thetéyl-size

of one:
H(V+1) H(V) A“(V)
x| = | x) | ™) | AxW) :

o If we set:

9

A(V+1)

e The strict non-negativity constraints are somewhat prohle.
e For example, suppose that we implement the requirementicif st

non-negativity by choosing a toleranee- 0 and requiring that the next

iterate satisfies)’ "~ > g v¢ andul’ Y > ¢, ve.



Selection of step-size, continued

e A serious drawback of this approach is thagtriori we do not know how
close the minimizer of Probleni6.22 is to the boundary.

Xy
€
Fig. 16.10. Using a
fixed tolerance to en-
VW e fo_rce non-negativity
X} will prevent conver-
e gence to a minimizer.




Selection of step-size, continued

e \We must adjust the tolerance so that iterates can, asymgitgti

approach the boundary.
(v+1)

e One scheme is to pick() < 1 at each iteration so th%J v+1) | Isno
closer than a fixeftaction, say 0.9995, of the distance from the current

(V)
iterate [t(l(v)] to the boundary ok > 0,4 > 0 under theL,, norm.

e With this choicep) andx() canapproach any point that satisfies the
complementary slackness condition.
e There are many variations on the choice of step-size.



Selection of step-size, continued

e Itis also possible to use a different step-size for:

— the primal variablesx, and
— thedual variablegu andA.

e That is, we can update according to:

XU = X)) )

T v ) [
AV T V) T Agal N2
e Where:

O(S;i)mal is chosen to preserve the strict non-negativitk,aind

a&‘f}al Is chosen to preserve the strict non-negativityLof

e However, we will not take advantage of this flexibility.



16.4.3.4 Example

e Let us apply the primal—-dual interior point algorithm to @xample
Problem (6.4).

Terms in update
YxeR? f(X) = x1—Xo,

vx e R2 0f (x) = _ﬂ
vx e R, 0% (x) = 8 8],
A= [1 1],

= 1"

b = [1].



Factorization

[ IMVTTIXO) 0
A = — 0% (x) AT|,
] 0 A 0
[ IMVTTIXO) o]
= i 0 1].
] 0 1f o

e This matrix is indefinite and, in general, we should use aigpparpose
factorization algorithm.

e Here, we will simply appLU factorization, using the symbolg'}) and
a1 () for the matrices created at thieh stage of factorization.

o Note thatM ") = diag{{"}.



Factorization, continued

e Block pivoting of 4 using its top-left block-[M™)] "X (") as pivot yields
M and 4 given by:

| 00
MY = | x0M™ | o],
] 0 01
MV W) 10
AW = 0 XV TTMM) 1
] 0 1 0



Factorization, continued

| 0 0
a2 — |0 I 0],
0 —1T MM XM |
| 0 0
_ |0 | 0|
0 XY MM
22 — 9@ 40,
MV]TTXW) 0
= 0 XV IMO) 1 ,
] 0 0 ~1f MO X1
MO 0 _
_ 0 XV IMO) 1 ,
-1 -1
o o W




Factorization, continued
e so that we can factoriz4 into:

| 0 0
L= [ XMW | 0|,
0 XV Mo gt
MV 0 '
U = 0 X IMO) 1
_ 0 T -




Initial guess
e As an initial guess, we pick:

x = 05,

xgo) = 0.5,
A0 = 2

t© = 0.25
1Y = % —025/05=05,
1Y = /Y = 025/05=05.

e The value ot(© is large enough to yield a useful update direction for the
initial guessx(9, A9, andp(©.

e We chosex9 to satisfyAx9 = b.

0) — 82 is in the “middle” of the regiorAx = b,x > 0 and

Is not close to the minimizer of Problerh@.4).

e Howeverx



Step direction




Step direction, continued

Ay
)
A | = B,

N
M\(0)

| A -

0

¥y = |-25

05

L 3 -




Step direction, continued

0
YINES
I -1

0)
X
o | L-18]




First iterate
o If we set:

e we will obtain:

e which will not satisfy the non-negativity constraints or L

“Eli)
&)

(

x(11
X5

=

)
)
)

A

" 15

—0.5
— | -05
15
0.5

(16.32)



First iterate, continued
¢ Instead, we will update according to:

@) u© NO)
XD | = | xO|+a® | ixO0 |
AL A0) M)

e where 0< a9 < 1 is chosen to prevent the iterates from going outside
n>0,x>0.

0.5
i u© 0.5 . . .
e For the initial gues 0| = los] the boundary is ® unit away in

0.5
the L, norm.



First iterate, continued

e Using the rule suggested in Sectibd.4.3 we picka(® < 1 to come no
closer tharn0.9995) x 0.5 units of the distance towards the boundary:.

e We choose the largeat? such that:

wy .
a® [ 221 > _0.9995| "2 |
h o
|8 ] % |
e which yieldsa(®) = 0.49975 and:
W] _
L 0.99975
by 0.00025
X! | = |0.00025
(1) 0.99975
;\‘gl) | 1.250375|




16.4.4 Adjustment of the barrier parameter
16.4.4.1 Sequence of equality-constrained problems

e In principle, we could continue iterating with a fixed value t(© until
we approach a minimize¢?* of equality-constrained Probleri§.22.

e We could then usg(?* as the starting point for the Newton—Raphson
method for Problem1(6.22 for a smaller value of.

e That is, we would be accurately solving a sequence of
equality-constrained problems for points that are on timtraépath.

e However, we want to redudeas quickly as possible so that the iterates
converge quickly to a minimizer of the inequality-congtied
Problem (6.1).



16.4.4.2 Reduction of barrier parameter at every iteration
e The minimizer of Problem1(6.1) can typically be approached more
quickly by reducing aftereveryNewton—Raphson update.
e For Problem 16.4), we started far from its minimizer with an initial guess

of x(0) = [8 g] and used a relatively large valuetof t(9) = 0.25.

e NeverthelessxV is actually very close to the minimizer of
inequality-constrained Problertg.4).

e That is,xY) can be thought of as being close to a minimizer of
Problem (6.17 for a much smaller value dfthant(©.



16.4.4.3 Effective value of barrier parameter

e We would like a measure of how close the current iterate isnanamizer
of the original inequality-constrained problem and adfiestcordingly.

e Instead of interpreting!) as arapproximateminimizer of
Problem (6.22 fort =t(9, we will see if we can interpret?) as an
exact(or nearly exact) minimizer of Problem .22 for some other,
hopefully smaller, value df.

e We think of this value of as the effective valugp, . for whichx® is

nearly the minimizer of Probleni6.22.

o We will then pickt™® <t} for the value ot to apply in the next
Newton—Raphson update to calculat®.

e By continuing in this way we will construct a sequer{d:g,)ective}(’fzo and

corresponding (approximate) minimize¢¥) of Problem (6.2 for
(V)
t=t

effective



Effective value of barrier parameter, continued

o If the sequencéteﬁecwe}v o converges to 0 then we have achieved our
goal of a sequence of minimizers of Probleb®.22 witht — 0.

e We will have avoided the effort of performing many iterasaat each
value of the barrier parameteto solve Problem6.22.

e To interpret the iterates as approximate minimizers of lerak{16.16 for

a value of barrier parameter= téﬁ)ectwe, recall that we have been trying to
solve (16.27)—(16.29.
e
o We are going to interprel x(1) | together with a valu€r. . _as nearly
A
satisfying L6.279—(16.29.



Effective value of barrier parameter, continued

e We will assume thatl(6.28 and (L6.29 are very nearly satisfied hy
andx(D.

o Let:
+
1 [X(l)] u(l)
teftctive = (16.33)
e wheren is the length ok, so that thaté]}f)ectiveis the average value of
(1), (1)
X)Wy

o If the values ofxél) uél) do not vary too much witl, then:

1
X u(l) o t(ﬁ‘)ectivel ~0.

e

L)

effective

e That is,x1) andp) satisfy (16.27 approximately fot =t



16.4.4.4 Update of barrier parameter

e \We now set:
@ t(l)

effective
e For example, we could choose:

(@
t(l) __ _effective

e For largen, this reduces significantly at each step.

e \We now must solve (or approximately solve) the barrier probfor the
updated value = t(L.

e As initial guess for the minimizer of the barrier problem fer t(2) we
can usad, xH A,



Update of barrier parameter, continued

N
e We calculate the Newton—Raphson step diremfcm((l) , and update
MWD

u@ u@ A
x| = | x| +a® | ixD | |
A(2) A MO

e whereaV is chosen to ensure that tR&) andu(? strictly satisfy the
non-negativity constraints.

according to:



16.4.4.5 Adjustment of barrier parameter in example proble

e In Problem (6.4, sincen = 2 is rather small, we will take an even more
aggressive approach and set:

(0= L@ 5 499375¢ 1075,

0 effective —

e We solveLY = B, where:

| 0 0
L = [x(l)]_lm(l) | 0],

0 X0 M@t 1

-1 0 0 0 O]

0 1 0 00

— 3999 0 1 0Q,
0 2501x 1074 0 10
0 0 2501x 107* 3999 1]




Adjustment of barrier parameter in example problem, carduh
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Adjustment of barrier parameter in example problem, carduh

All(l)
e Now we solvetl | XV | = 9, where:
MDD
MO @ 0 |
U = 0 XD MO 1 ,
1,1 (1 1)1 (1
0 0 Y Y- Y
T 2501x 104 0o -1 0 0]
0 3999 0 1 0
— 0 0 3999 0 1 ,
0 0 0 2501x 104 1
] 0 0 O 0 —3999)|




Adjustment of barrier parameter in example problem, carduh
e SO that:

1
A“:(Ll) 1.000
s —2.251x 1074
AX(11> = | —4.751x 1074
AX<21) 4.755x 1074
AN | 025032




Adjustment of barrier parameter in example problem, cargoh

e Solving fora(V to bring the next iterate no closer than 0.9995 of the
distance to the boundary &> 0, > 0 we finda = 0.526 and:

i
H(lz) - 1.525428 -
p%) 1.317x 10~

x12> — | 3.056x 1077 | .
i 0.999999875
2

%) 1.119

e After only two iterationsx(? is extremely close to the minimizer of
Problem (6.4), which isx* = m |

e The optimal values of the other variables gie=

S] andA* = [1].



Adjustment of barrier parameter in example problem, carduh
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Fig. 16.11. Progress
of primal-dual interior
point algorithm in x
coordinates for Prob-
lem (16.4). The feasible
set is indicated by the
solid line.



Adjustment of barrier parameter in example problem, carduh

Fig. 16.12. Progress
of primal-dual interior
point algorithm in p
and A coordinates for
Problem (6.4.




16.4.4.6 Rate of convergence

e For larger and more complex problems, we should expect orake
iterations to approach an accurate answer and we might etxpese a
less aggressive reduction of the barrier parantedgeach iteration.

e Empirically, however, even large problems usually take moarihan a
few tens of iterations to solve to high accuracy.

e Variants of this algorithm can be proven to converge suipeally or
guadratically for linear and quadratic programming proigeand for
some other types of convex objectives.



16.4.5 Finding an initial feasible guess

e As with the active set algorithm, we must find an initial fédeiguess in
phase lbefore proceeding to minimize the objectivepinase 2.

e We require that the initial guess for the primal—dual irdepoint
algorithm satisfieg > 0 andu > 0.

e Again, we will define a problem related to Problefh® (1) that includes
artificial variables and apply the primal—dual interiormtaklgorithm to it.

e There are a number of possible ways to define the relatedgmobl



Finding an initial feasible guess, continued

e For example lex© ¢ R" _, suppose\ has linearly independent rows,
defineb = b— AX9, and consider the problem:

min _{w|Ax+bw=b,x > 0,w > 0}. (16.34)
xeRN weR

e Note thatx® andw(9 = 1 satisfy the equality and strictly satisfies the
inequality constraints of Problem .34 and is therefore a feasible initial
guess for this problem that can be used by the primal-duadiantpoint
algorithm.

e \We solve this problem using the primal—dual interior poigbaithm and
this feasible initial guess.

*
o If W
the equality and inequality constraints of Problei.().
e If X* > Othen the primal-dual interior point algorithm can then xsas

an initial guess for solving Problem .1).
e If w* > 0 then Problem6.]) is infeasible.

is a minimizer of Problem1(6.34 with w* = 0 thenx* satisfies



16.4.6 Summary

16.4.6.1 Initial guess
p©

e The algorithm begins with an initial gue{sdo)] satisfyingAxX9 = b,
A0)

1@ > 0,x@ > 0, and with an initial barrier paramet&f).



16.4.6.2 General iteration
Newton—Raphson step direction

e At thev-th iteration we solveX6.30 for the Newton—Raphson step
NV
direction | Ax(")
MV
e The coefficient matrix has been partially block factorizedhown
in (16.3)).
e The factorization should be completed by an algorithm fonsyetric
indefinite matrices as mentioned in Sectwa.7.



Step-size
e The iterate is updated according to:

p(v+1) uv) AV
XV | = [ xW) | +a™ | axx¥) |
A (V+1) AV) MV

e wherea“) is chosen so thatVtV > 0 andx*1 > 0, (and possibly also
to satisfy a sufficient decrease criterion for the barrigecive ¢.)
e One rule to guarantee non-negativityp®f 2 andxV+1 is to set:

v)
alV) = min{l.O, 0.9995x [ min {L N < o}

(e{1,....n} —Aliév)
Y < O}] } .

V)

- ¢

0.9995x min —
le{l,...,n} —AXEV)

e The step-size may have to be reduced further to satisfy fifieisat

decrease criterion for the barrier objectpe

J




16.4.6.3 Update of barrier parameter
e We then update the value of the barrier parameter using augle as:

1 1
ey SR

n2



16.4.6.4 Stopping criteria

e The iterations continue untif¥) is sufficiently reduced, the change in
iterates is small, and the first-order necessary conditdbns
Problem (6.1) are satisfied sufficiently accurately.

¢ In the case of linear and quadratic programs, we can useylta@li
develop a stopping criterion that guarantees cIosenefs@@‘P) to the
minimum.

e Suppose that at each iterationve generate iterate$”) > 0,AY), and
uY) > 0that satisfy 16.28—(16.29 then we can use duality to bound the
error in the estimate of the infimum by:

TV)

f(xV)) — inf {f(x)|Ax=b,x> 0} < [u™)] xV).

xeR"N
e If the problem has a minimum and we iterate until:
)X < g

then f (x)) will be within ¢ of the minimum.



16.4.7 Discussion and variations

e If f is quadratic then linearizind.6.28 introduces no error so that the
Newton—Raphson update can exactly predict the changessagdo
satisfy (16.28—(16.29.

e (16.27) is always non-linear and we neglect important terms when we
linearize it.

e A development of the primal—dual algorithm we have desdiloalled
the primal—-duapredictor—corrector method, uses the factorization
of (16.30 for two successive updates, one of which is used to bring the
iterates closer to being on the central path by reducing dhi@ton of
xév) uév) with .

e If the problem formulation requires non-negativity coasits on only
some of the entries of, then the barrier function terms and the
corresponding Lagrange multipliers can be omitted for the
unconstrained, entries.



16.5 Summary

e We have described optimality conditions for non-negayiwenstrained
minimization problems, considering also the special chs®vex
problems.

e We then considered active set algorithms briefly and intgraint
algorithms in more detail as algorithms to solve non-negéti
constrained problems.
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