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Part V
Inequality-constrained optimization
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15
Case studies of inequality-constrained optimization

(i) Production, at least-cost, of a commodity from machinesthat have
minimum and maximum machine capacity constraints
(Section15.1),

(ii) Optimal routing in a data communications network (Section 15.2),

(iii) Least absolute value estimation (Section15.3),

(iv) Optimal margin pattern classification (Section15.4),
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(v) Choosing the widths of interconnects between latches and gates in
integrated circuits (Section15.5), and

(vi) The optimal power flow problem in electric power systems
(Section15.6).
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15.1 Least-cost production with capacity constraints
15.1.1 Motivation

• Recall the least-cost production case study discussed in Section 12.1.
• For that problem we ignored the minimum and maximum machine

capacity constraints in order to formulate it as equality-constrained
Problem (12.4), which we repeat here:

min
x∈Rn

{ f (x)|Ax= b} .

• In this section, we will consider the case where the solutionof
Problem (12.4) does not satisfy all the minimum and maximum machine
capacity constraints so that these constraints must be considered
explicitly.
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15.1.2 Formulation
15.1.2.1 Objective

∀x∈ R
n, f (x) =

n

∑
k=1

fk(xk).

15.1.2.2 Equality constraints

D =
n

∑
k=1

xk.

• We represented these constraints in the formAx= b with
A=−1† ∈ R1×n andb= [−D] ∈ R1.
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15.1.2.3 Inequality constraints

∀ℓ= 1, . . . ,n,xℓ ≤ xℓ ≤ xℓ.

• We summarize these constraints by writingx≤ x≤ x,
• wherex∈ Rn andx∈ Rn are constant vectors withk-th entriesxk andxk,

respectively.

15.1.2.4 Problem

min
x∈Rn

{ f (x)|Ax= b,x≤ x≤ x}. (15.1)
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15.1.3 Changes in demand and capacity
• We may want to estimate the change in the costs due to a change in

demand fromD to D+∆D, say.
• If the capacity of a machinek changes or it fails then the corresponding

entriesxk andxk of x andx will change.
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15.1.4 Problem characteristics
15.1.4.1 Objective

• If xk > 0 then, for typical cost functions,fk is convex on[xk,xk].

15.1.4.2 Equality constraints
• We have already discussed the equality constraintD = ∑n

k=1xk in
Section12.1.2.4.

15.1.4.3 Inequality constraints and the feasible region
• The intersection of the box with the equality constraint restricts the

feasible region to being a planar slice through the box.
• This is illustrated in Figure15.1for n= 3, D = 10, and:

x=

[
1
2
3

]
,x=

[
4
5
6

]
.
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Inequality constraints and the feasible region, continued
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Fig. 15.1. Feasible set
for least-cost production
case study described in
section15.1.4.3.
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15.1.4.4 Solvability
• Problem (15.1) is convex.
• It is certainly possible for there to be no feasible points for

Problem (15.1).
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15.2 Optimal routing in a data communications network
15.2.1 Motivation

• We consider a communications network consisting of communications
links that join betweennodes.

• Users desire to send data fromorigin nodesto destination nodesover
links between the nodes.

• Each link has a maximum capacity to transmit data and severallinks may
be incident to each node.

• Data is sent by users inpacketsof equal length.
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Motivation, continued
• Inter-arrival time between packets is random, withexponential

distribution that may differ from node to node.
• We assume that the probability distributions of the inter-arrival times do

not vary over time.
• We can therefore consider the average traffic on each link dueto:

– the distributions of inter-arrival times, and
– a routing policy that is, a decision process for choosing the links on

which to send the data.
• We refer to the choice of links, with respect to a given criterion and for

given traffic levels between origin–destination pairs, asoptimal routing .
• We will see that our formulation of the objective only approximately

captures the criterion we discuss and so we might better refer to our
problem assatisficingrouting.
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15.2.2 Formulation
• We can represent the communications network as a graph.
• Each of the eight nodes in Figure15.2is shown as a bullet•, while each

of the 12 links is shown as a line.
• As in previous case studies involving graphs, the typical number of links

is far less than in a complete graph.
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Fig. 15.2. Graphical
representation of a data
communications net-
work with eight nodes
and 12 links.
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15.2.2.1 Links
• We writeL for the set of all links in the network, where each link is

represented by an ordered pair(i, j) of node numbers.

L = {(1,8),(8,1),(1,2),(2,1),(1,3),(3,1),(1,6),(6,1),
(2,3),(3,2),(2,4),(4,2),(2,6),(6,2),(3,4),(4,3),
(3,6),(6,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,6)}.

• The capacity of link(i, j) is denoted byyi j ∈ R++.

15.2.2.2 Nodes
• Nodes have three roles, as follows.

– Users put data into the network at nodes. These nodes can be thought of
as theorigins of data.

– A nodeswitchesarriving data onto one of the links incident to it.
– Users take data out of the network at nodes. These nodes can bethought

of as thedestinationsof data.
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15.2.2.3 Origin–destination pairs
• A user might put data into the network at node 7 and desire to transmit it

to node 5:
node 7 is the origin for the data and node 5 is the destination for the data.

• We assume that there arem origin–destination pairs and writeW for the
set of all origin–destination pairs.

• In our example, if(7,5) and(2,5) are the only origin–destination pairs
then:

W= {(7,5),(2,5)},

with m= 2.
• In general, an origin–destination pair(ℓ, ℓ′) ∈W might or might not be

joined directly by a link.
• If there is no link joining such an origin–destination pair then it is

necessary for the data between this pair to traverse severalsuccessive
links.
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15.2.2.4 Paths
• A collection of successive links that joins an origin–destination pair is

called apath.
• Two paths for the origin–destination pair(7,5) are:

– links (7,6) and(6,5), and
– links (7,6),(6,3),(3,4),(4,5).

• For each origin–destination pair(ℓ, ℓ′) ∈W, we writeP(ℓ,ℓ′) for the set of
all allowable paths connectingℓ to ℓ′.

• We index the paths with consecutive integers.
• For example, for the origin–destination pair(7,5) ∈W, we will denote:

– the path consisting of links(7,6) and(6,5) as path 1, and
– the path consisting of links(7,6),(6,3),(3,4),(4,5) as path 2.

• For the origin–destination pair(2,5) ∈W, we will denote:
– the path consisting of links(2,4) and(4,5) as path 3, and
– the path consisting of links(2,3),(3,4),(4,5) as path 4.
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Paths, continued
• We summarize these assignments byP(7,5) = {1,2},P(2,5) = {3,4}.
• We assign a different indexk for each allowed path in the network and

suppose that there aren paths in all.
• In our example, if we have described all the allowable paths thenn= 4.

15.2.2.5 Variables
• To characterize the behavior of the network, we consider theexpectedor

averageflow of packets and ignore variance of the distribution of flow.
• We definexk,k= 1, . . . ,n. to be the average flow of traffic, in packets per

second, on pathk.
• This flow represents the average amount of flow for a particular

origin–destination pair that has been assigned to pathk.
• We collect the set of all traffic assignments for all origin–destination pairs

together into a vectorx∈ Rn.
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15.2.2.6 Equality constraints
• Let the input traffic arrival process for origin–destination pair(ℓ, ℓ′) ∈W

have expected rate of arrival ofb(ℓ,ℓ′), in packets per second.
• In general, we must choose how to share the traffic amongst allthe paths

that joinℓ to ℓ′.

∀(ℓ, ℓ′) ∈W, ∑
k∈P(ℓ,ℓ′)

xk = b(ℓ,ℓ′).

• In our example, the constraints for the origin–destinationpairs(7,5) and
(2,5) are, respectively:

x1+x2 = b(7,5),
x3+x4 = b(2,5).

• We collect the entriesb(ℓ,ℓ′) for (ℓ, ℓ′) ∈W into a vectorb∈ Rm.
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Equality constraints, continued
• Also, defineA∈ Rm×n to be the path to origin–destination pair incidence

matrix.
• That is, define:

∀(ℓ, ℓ′) ∈W,∀k= 1, . . . ,n,A(ℓ,ℓ′)k =

{
1, if k∈ P(ℓ,ℓ′),
0, otherwise.

• In our example:

A =

[
1 1 0 0
0 0 1 1

]
,

b =

[
b(7,5)
b(2,5)

]
.

• With these definitions, we can write the equality constraints as:

Ax= b. (15.2)
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15.2.2.7 Objective
Discussion

• Several criteria could be used to define an objective.
• Unlike the least-cost production case study in Sections12.1and15.1, the

operating cost of a data network is generally relatively constant.
• In delivering serviceto customers, however, the quality of service

depends on a number of factors, including the delay between sending data
and receiving it.

Delay

• The delay on a link depends on how much traffic is on the link.
• When the traffic is nearly as large as the capacity of the link,the delay is

longer.
• We say that the link iscongested.
• It is difficult to obtain an analytic model of the delay in a network because

the packets interact as they traverse the links, so that the analysis of their
statistics is complicated.
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Delay, continued

• For example, consider an origin–destination pair(ℓ, ℓ′) that is joined by
one path, which consists of two successive links(ℓ, j) and( j, ℓ′).

• The inter-arrival time at the originℓ is exponentially distributed.
• The inter-arrival time at nodej cannot be exponentially distributed.
• The reason is that successive packets arriving atj must be separated in

time by at least the packet transmission time for the first link and this
violates the assumption of exponential distribution.

• • •
ℓ j ℓ′

Fig. 15.3. A net-
work with an origin–
destination pair joined
by a path consisting of
two links.
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Congestion model

• As aproxyto calculating the delay experienced by the packets in the
network, we define a measure of the congestion on each link that is a
convex function of the expected flowyi j through the link.

• We will sum the congestion measure across all the links as a proxy to the
average delay.

• Consider the functionφi j : [0,yi j )→ R+ defined by:

∀yi j ∈ [0,yi j ),φi j (yi j ) =
yi j

yi j −yi j
+δi j yi j , (15.3)

• whereδi j is the sum of the processing delay and the propagation delay
through the router and link, and

• the term
yi j

yi j−yi j
is due to queuing at the sending end of the link.

• The rapid rise in the congestion function as the expected flowapproaches
the capacity models the increase in the delay as the capacityis reached:
– fluctuations about the expected value mean that the queue would

become arbitrarily long if the expected flow equaled the capacity.
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Flow

• The flowyi j on the link is equal to the sum of the flows on all the paths
that include link(i, j).

• We writeF(i, j) for the set of paths that include link(i, j), so that the flow
yi j can be expressed as:

∀(i, j) ∈ L,yi j = ∑
k∈F(i, j)

xk.

• Define a matrixC ∈ RL×n by:

∀(i, j) ∈ L,∀k= 1, . . . ,n,C(i, j)k =

{
1, if k∈ F(i, j),
0, otherwise.

• For each(i, j) ∈ L, letC(i, j) be the(i, j)-th row ofC.
• Then the flowyi j can be expressed as∀(i, j) ∈ L,yi j =C(i, j)x.
• Let y∈ RL be a vector with entriesyi j ,(i, j) ∈ L.
• Theny=Cx.
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Additive congestion

• We have assumed that the congestion measure for each link canbe added
together to obtain an overall proxy for average delay through the network.

• Let P= {y∈ RL|0≤ yi j < yi j ,∀(i, j) ∈ L} and define the objective
φ : P→ R by:

∀y∈ P,φ(y) = ∑
(i, j)∈L

φi j (yi j ). (15.4)

• Paths between various origin–destination pairs will typically have some
links in common:
– path 3 consists of the links(2,4),(4,5), and
– path 4 consists of the links(2,3),(3,4),(4,5),

• and both of these paths are for the origin–destination pair(2,5).
• Traffic on these paths must share the capacity of the link(4,5) with traffic

on path 2, which consists of links(7,6),(6,3),(3,4),(4,5) for
origin–destination pair(7,5).

• This means that there will be an interaction between traffic between
various origin–destination pairs.
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Additive congestion, continued

• The objective captures the issue that increasing the flow on apath that is
incident to a particular link will increase the average delay for all paths
incident to that link.

• The objective does not exactly capture the average delay dueto the flows
on the paths.

• It is a proxy to the average delay that is designed to capture the
qualitativedependence of average delay on the choice of routing.

• It may be sufficiently accurate to provide guidance to avoid bad routing
decisions.
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15.2.2.8 Inequality constraints and feasible set
• All traffic flows must be non-negative:

x≥ 0.

• Since the capacity of each link(i, j) ∈ L is yi j , the instantaneous flow on
link (i, j) can never exceedyi j .

• Consequently, the average flow can never exceedyi j , suggesting
constraints of the form:

∀(i, j) ∈ L,yi j ≤ yi j .

• However, as discussed in Section15.2.2.7, the objective is unbounded if
anyyi j were to equalyi j , so we must limit the values of the flowsyi j with
constraints of the form:

∀(i, j) ∈ L,yi j < yi j .

• We use the strict inequality because if the assigned flow wereto equal the
capacity then the congestion function would be unbounded.
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Inequality constraints and feasible set, continued
• To represent these strict inequality constraints explicitly in terms ofx, we

note that:

∀(i, j) ∈ L,yi j = ∑
k∈F(i, j)

xk,

= C(i, j)x.

• If we definey∈ RL to be a vector with entriesyi j ,(i, j) ∈ L then we can
write the strict inequality constraints as:

Cx< y. (15.5)

• The inequality constraints for the problem therefore specify a set of the
form:

S= {x∈ R
n|x≥ 0,Cx< y}.
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15.2.2.9 Problem

min
x∈Rn

{ f (x) |Ax= b,x≥ 0,Cx< y} , (15.6)

• where f : S→ R is defined by:

∀x∈ S, f (x) = φ(Cx),
= ∑

(i, j)∈L

φi j
(
C(i, j)x

)
. (15.7)
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15.2.3 Changes in links and traffic
• We would like to be able to change the routing to respond to changes in

link capacity.
• Over time, we also expect that the traffic on the network wouldchange.
• We would also like to be able to change the routing to respond to changes

in traffic.
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15.2.4 Problem characteristics
15.2.4.1 Objective

• The objective defined in (15.7) is convex and differentiable, since it is the
composition of a linear function with the sum of functionsφi j , which are
themselves convex.

• The objective becomes arbitrarily large as the flow on any link
approaches its capacity.

15.2.4.2 Equality constraints
• The equality constraints are indexed by ordered pairs(ℓ, ℓ′) ∈W.
• This differs from our previous case studies were index sets were subsets

of the integers.
• The equality constraints are affine and the coefficient matrix consists of

only zeros and ones.
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15.2.4.3 Inequality constraints
• There are non-negativity constraints and also strict inequality constraints

due to the link capacities.
• The strict inequality constraints are indexed by the ordered pairs
(i, j) ∈ L.

• We discussed the potential difficulties with strict inequality constraints in
Section2.3.3.

• We will see in Section18.2that because of the form of the objective we
can avoid explicit consideration of the strict inequality constraints.

15.2.4.4 Solvability
• There may be no feasible solution if there is not enough capacity in the

network.
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15.3 Least absolute value estimation
15.3.1 Motivation

• Recall the multi-variate linear regression problem introduction in
Section9.1, which was transformed into a least-squares problem in
Section11.1.1.

• The objectivef : Rn → R was defined in Section11.1.1to be:

∀x∈ R
n, f (x) =

1
2
‖Ax−b‖2

2 ,

• where:

A=




A1
...

Am


 ∈ Rm×n, Aℓ =

[
ψ(ℓ)† 1

]
∈ R1×n, ℓ= 1, . . . ,m,

b=




b1
...

bm


 ∈ Rm, bℓ = ζ(ℓ), and

(ψ(ℓ),ζ(ℓ)) are the ordered pairs of independent and dependent variables
for trial ℓ.
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Motivation, continued
• In some contexts, we may find the resulting solution is notrobust to

outliers in the data.
• That is, the quadratic objective allows data from a single trial to

significantly affect the resulting estimate of the affine function that best
represents the data

• For example, Figure15.4repeats the data from Figure9.1, except that the
data for one of the trials,(ψ(6),ζ(6)), is significantly different, perhaps
due to a gross failure of a measurement device.

Title Page ◭◭ ◮◮ ◭ ◮ 34 of 232 Go Back Full Screen Close Quit



Motivation, continued
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Fig. 15.4. The values
of (ψ(ℓ),ζ(ℓ)), includ-
ing an outlier, (shown as
×) and least-squares fit
(shown as a thick line).
The thin line shows the
least-squares fit if the
data point (ψ(6),ζ(6))
is ignored.
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Motivation, continued
• The outlier(ψ(6),ζ(6)) significantly affects the result of the least-squares

problem.
• The least-squares fit to all of the points in Figure15.4, including the

outlier, is shown by the thick line.
• This least-squares fit is very different to the least-squares fit shown in

Figure9.1.
• If we ignore the point(ψ(6),ζ(6)) then a least-squares fit to the rest of

the points is shown as the thin line in Figure15.4.
• The two least-squares fits are very different.
• That is, the fit is very sensitive to gross errors in individual data points.

Title Page ◭◭ ◮◮ ◭ ◮ 36 of 232 Go Back Full Screen Close Quit



Motivation, continued
• In these circumstances, we may prefer to use an objective that is less

affected by outliers.
• This provides the motivation forrobust estimation.
• One objective that is used to reduce the effect of outliers involves theL1

norm ofAx−b instead of the Euclidean norm.
• Instead of squaring theresidualseℓ = Aℓx−bℓ, as in the least-squares

problem, we take the absolute value of them.
• Outliers, which have large values of residual, will contribute relatively

less to the objective when we use the absolute value rather than the square
of the residual.
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15.3.2 Formulation
15.3.2.1 Unconstrained problem

• Instead of the least-squares objective defined in Section11.1.1, consider
theL1 norm objectiveφ : Rn → R defined by:

∀x∈ R
n,φ(x) = ‖Ax−b‖1 ,

=
m

∑
ℓ=1

|Aℓx−bℓ|,

• whereA∈ Rm×n andb∈ Rm are as defined in Section11.1.1andAℓ is the
ℓ-th row of A.

• That is:

Aℓ =
[

ψ(ℓ)† 1
]
,

b =




b1
...

bm


 .
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Unconstrained problem, continued
• We define an unconstrained problem:

min
x∈Rn

φ(x). (15.8)

• As we saw in Section3.1.4.4, the objective of this problem is
non-differentiable because of the absolute values.
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15.3.2.2 Transformation
• Problem (15.8) can be transformed into an inequality-constrained

problem in several steps.
• As in Section9.1.2.4, the residual,eℓ, for theℓ-th measurement, is defined

by:

∀ℓ= 1, . . . ,m,eℓ = Aℓx−bℓ.

• Each absolute value of a residual can be obtained as:

|eℓ|= max{eℓ,−eℓ}, ℓ= 1, . . . ,m. (15.9)

• We then use a similar approach to that used in Theorem3.4 to evaluate
the maximum in (15.9).

• First we define variableszℓ, ℓ= 1, . . . ,mand linear constraints:

zℓ ≥ eℓ, ℓ= 1, . . . ,m,

zℓ ≥ −eℓ, ℓ= 1, . . . ,m.
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Transformation, continued
• Then note that:

|eℓ| = min
zℓ∈R

{zℓ|zℓ ≥ eℓ,zℓ ≥−eℓ},

∀x∈ R
n,φ(x) =

m

∑
ℓ=1

|Aℓx−bℓ|,

=
m

∑
ℓ=1

|eℓ|, whereeℓ = Aℓx−bℓ,

=
m

∑
ℓ=1

min
zℓ∈R

{zℓ|zℓ ≥ eℓ,zℓ ≥−eℓ}.

• Combining these observations, we consider the transformedproblem:

min
z∈Rm,x∈Rn,e∈Rm

{1†z|Ax−b−e= 0,z≥ e,z≥−e}. (15.10)

• Problems (15.8) and (15.10) are equivalent.
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15.3.3 Changes in the number of points and the data
• We could imagine adding a new trial and recalculating the estimate of the

least absolute value fit without starting from scratch.
• We can also imagine modifying the data for a particular trial.
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15.3.4 Problem characteristics
15.3.4.1 Objective

• The objective of Problem (15.8) is non-differentiable.
• Transformation into Problem (15.10) by representing each absolute value

using two inequality constraints then yields a differentiable, in fact linear,
objective.

15.3.4.2 Constraints
• The “cost” of making the objective differentiable is that wehave

introduced a large number of subsidiary constraints.
• There aremequality constraints and 2m inequality constraints in

Problem (15.10), whereas Problem (15.8) was unconstrained.

15.3.4.3 Variables
• We have also increased the number of variables, fromn to n+2m.
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15.3.4.4 Solvability
• Problem (15.8) has a minimum and consequently Problem (15.10) also

has a minimum.

15.3.4.5 Discussion
• If the number of trialsm is extremely large then it may be unattractive to

solve Problem (15.10).
• In this case, we may prefer to, for example:

– solve Problem (15.8) using techniques of non-differentiable
optimization,

– approximate the objective of Problem (15.8) with a smooth function
using the approach described in Section3.1.4.4, or

– use an iterative technique to successively approximateφ by smooth
functions.
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15.4 Optimal margin pattern classification
15.4.1 Motivation

• We will consider the problem of distinguishing between two classes of
patterns on the basis of a linear decision function.

• Geometrically, we seek a hyperplane that separates the two classes of
patterns.
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15.4.2 Formulation
15.4.2.1 Classes and training set

• Label the two classes as class A and class B.
• We will consider how to find the coefficients that specify a linear decision

function in such a way as to provide the best discrimination between
classes A and B of patterns.

• In particular, we assume that we haver representatives in ourtraining
set.

• Potentially,r is very large.
• The training set is to be used to determine the best linear decision

function to separate the classes.
• We index the representives in the training set asℓ= 1, . . . , r.
• Theℓ-th representative consists of two items:

– apattern, namely a vectorψ(ℓ) ∈ Rn−1, and
– a valueζ(ℓ) ∈ {−1,1}.

∀ℓ= 1, . . . , r,ζ(ℓ) =
{

1, if ψ(ℓ) is of class A,
−1, if ψ(ℓ) is of class B.
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Classes and training set, continued
• Patternsψ(1), . . . ,ψ(4) in the bottom half of Figure15.5are of class A,

while the patternsψ(5), . . . ,ψ(7) in the top half of the figure are of class
B.

• That is,ζ(1) = ζ(2) = ζ(3) = ζ(4) = 1 andζ(5) = ζ(6) = ζ(7) =−1.

✻

✲ ψ1

ψ2

× ψ(1)
ψ(2) ×

× ψ(3)× ψ(4)

× ψ(5) × ψ(6)
× ψ(7)

Fig. 15.5. Seven exam-
ple patterns and hy-
perplane that separates
them.
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Classes and training set, continued
• The horizontal line in Figure15.5perfectly discriminatesbetween

classes A and B.
• The vectors representing each pattern may have a very large number of

entries.
• That is,n−1 may be very large.

15.4.2.2 Feature space
• In a variation on this formulation, the patternsψ(ℓ) aretransformed

versions of theℓ-th original image.
• For the purposes of our discussion, it does not matter whether we think of

the patterns as being “raw” images or transformed images in the feature
space.
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15.4.2.3 Decision function
• We consider an affinedecision functionD : Rn−1 → R defined by:

∀ψ ∈ R
n−1,D(ψ) = β†ψ+ γ,

• where the parametersβ ∈ Rn−1 andγ ∈ R are to be chosen so that:

∀ℓ= 1, . . . , r,(D(ψ(ℓ))> 0)⇔ (ζ(ℓ) = 1). (15.11)

• There are many choices of parametersβ andγ that will satisfy (15.11).
• Figure15.5shows a line, which is a hyperplane inRn−1 = R2, of the

form:

{ψ ∈ R
n−1|D(ψ) = 0},

• that dividesRn−1 into two half-spaces, one of which contains all the
patterns in class A and the other one of which contains all thepatterns in
class B.
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Decision function, continued
• The parametersβ andγ are calculated using the training set and the

function is then used to estimate the classes of new, unknownpatterns for
which we do not know the class.

• We must select a suitable criterion for choosing from amongst the values
of β andγ that satisfy (15.11).

• If we know the functional form of the probability distribution of the
patterns then we could estimate the parametersβ andγ using a maximum
likelihood criterion, as discussed in the multi-variate linear regression
case study in Section9.1.

• Unfortunately, we usually do not have a lot of information about the
patterns that we must subsequently classify and do not know the
functional form of the probability distribution from whichthey are drawn.

• Consequently, the criterion for choosing the parametersβ andγ will be ad
hoc,aimed at finding a satisficing solution.
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Decision function, continued
• We will seekβ andγ such that the corresponding hyperplane
{ψ ∈ Rn−1|D(ψ) = 0} is as far as possible from all the patterns in the
training set.

• That is, we will find the values ofβ andγ that:
– maximize the minimum distance of any pattern from the hyperplane,

and
– allow classification of the two classes of patterns according to (15.11).

• We will use the notion of Euclidean distance to define distance.
• That is, we will use the norm‖•‖2.
• We are trying to find the hyperplane between the two classes that is at the

middle of the thickest slab that separates the two sets of points.
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15.4.2.4 Variables
• The decision vector for this problem consists ofβ ∈ Rn−1 andγ ∈ R.

• We collect these together into a vectorx=

[
β
γ

]
∈ Rn.

• That is, the parameters that specify the decision functionD are the
variables for the problem.
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15.4.2.5 Objective
• We must evaluate the Euclidean distance of a patternψ(ℓ) from the

closest point on the hyperplane:

{ψ ∈ R
n−1|D(ψ) = 0}.

• This distance is given by:
|D(ψ(ℓ))|
‖β‖2

,

• assuming thatβ 6= 0.
• Define the setP⊂ Rn by:

P=

{[
β
γ

]
∈ R

n

∣∣∣∣β 6= 0
}
.
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Objective, continued
• If the decision functionD satisfies (15.11) then for each patternψ(ℓ) and

classificationζ(ℓ):
ζ(ℓ)D(ψ(ℓ)) = |D(ψ(ℓ))|.

• If β 6= 0 andγ satisfy (15.11) then the distance ofψ(ℓ) from the
hyperplane is given by the functionφℓ : P→ R defined by:

∀x∈ P,φℓ(x) =
|D(ψ(ℓ))|
‖β‖2

,

=
ζ(ℓ)D(ψ(ℓ))

‖β‖2
.

• The minimum distance of any patternψ(ℓ) to the hyperplane, over all the
patternsℓ, is given byφ : Rn → R defined by:

∀x∈ P,φ(x) = min
ℓ=1,...,r

φℓ(x).

• We call this minimum distance themargin between the hyperplane and
the patterns.
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15.4.2.6 Constraint
• In order for the objective to be well-defined, we must restrict ourselves to

choices ofx∈ P; that is, we must requireβ 6= 0.
• This constraint is not in our standard form of either an equality or an

inequality constraint.

15.4.2.7 Problem
• We seek the coefficientsβ 6= 0 andγ such that the margin is maximized.
• Our problem is therefore:

max
x∈Rn

{φ(x)|β 6= 0}. (15.12)

• In the next section we will transform this problem to remove the
minimization embedded in the definition of the objective.
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15.4.2.8 Transformation
• By Theorem3.4, we can remove the minimization in the definition of the

objectiveφ by defining a subsidiary variablez:

max
x∈Rn

{φ(x)|β 6= 0}

= max
x∈Rn

{
min

ℓ=1,...,r
φℓ(x)

∣∣∣∣β 6= 0
}
,

= max
z∈R,x∈Rn

{z|φℓ(x)≥ z,∀ℓ= 1, . . . , r,β 6= 0} , by Theorem3.4,

= max
z∈R,x∈Rn

{
z

∣∣∣∣
ζ(ℓ)D(ψ(ℓ))

‖β‖2
≥ z,∀ℓ= 1, . . . , r,β 6= 0

}
,

= max
z∈R,x∈Rn

{
z
∣∣∣ζ(ℓ)(β†ψ(ℓ)+ γ)≥ ‖β‖2z,∀ℓ= 1, . . . , r,β 6= 0

}
.

(15.13)

• If the maximumz⋆ of Problem (15.13) is strictly positive then the optimal
margin is equal toz⋆ and is strictly positive.
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15.4.3 Changes
• We could consider a change in the problem due to the addition of an extra

pattern.

15.4.4 Problem characteristics
15.4.4.1 Objective

• The objectivez of Problem (15.13) is linear.
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15.4.4.2 Constraints
• The inequality constraints in Problem (15.13) are non-linear.
• Each binding inequality constraint at a solution to the problem

corresponds to a pattern that is closest to the hyperplane.
• These are called thesupporting patterns or support vectors.
• The constraintβ 6= 0 in Problem (15.13) is not in the form of equality or

inequality constraints.
• The feasible set of Problem (15.13):

S=

{[
z
x

]
∈ R

n+1
∣∣∣∣ζ(ℓ)(β

†ψ(ℓ)+ γ)≥ ‖β‖2z,∀ℓ= 1, . . . , r,β 6= 0
}
,

• is not closed and may not be convex.
• Feasible sets that are not closed can potentially present difficulties.
• We will consider further transformation of Problem (15.13) in

Sections18.4and20.1.
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15.4.4.3 Solvability
• If there is no hyperplane that can separate the patterns then

Problem (15.13) has a maximum that is zero or strictly negative.
• Algorithms for solving this problem are calledsupport vector machines.
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15.5 Sizing of interconnects in integrated circuits
15.5.1 Motivation

15.5.1.1 Hierarchical design
• The design of digital integrated circuits (ICs) is usually divided into a

hierarchy of planning stages.
• For example, a specification of the functionality of the IC istranslated

into the logic required to meet the specification.
• The integrated components to implement the logic must then be laid out

on the “floor-plan” of the chip.
• Once the layout is done, there are still various decisions tobe made.
• For example, the widths of the “interconnects” that join onegate to

another can be adjusted, within limits, to achieve performance goals.
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15.5.1.2 Delay constraints
• One goal is to make sure that the propagation delay on each path from the

output of one latch through combinational logic to the inputof the next
latch is within a limit.

• Adjusting the width of the interconnects affects the delay.
• Increasing the width of the interconnect decreases the resistance and

increases the capacitance of an interconnect.
– Decreasing resistance tends to reduce delay because the current from

the driving latch or logic is increased.
– Increasing capacitance tends to increase delay because theincreased

capacitance requires more current to charge or discharge.

15.5.1.3 Area of layout
• Another consideration besides delay is that the wider the interconnects,

the more area may be required for the circuit.
• We will try to minimize chip area by adjusting the widths of the

interconnects, while satisfying the delay constraints.
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15.5.1.4 Other issues
• There are many other goals, such as minimizing power dissipation, and

other constraints, such as guaranteeing noise immunity, that must be
considered.

• In seeking a compromise between various goals, we are again seeking a
satisficing solution.

15.5.1.5 Interaction between design levels
• At each level of the hierarchy, we take as fixed the decisions made at

higher levels and seek to optimize the remaining decisions.
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15.5.2 Formulation
15.5.2.1 Variables

Interconnect widths and lengths

• Latch a drives gate b through a piece of interconnect, labeled 1.
• Gate b drives a branching interconnect, labeled 2, 3, 4, 5, and 6, which in

turn drives two more gates, labeled c and d.
• These gates drive the interconnect labeled 7 and 8, which in turn drive

latches e and f.

latch
a

1
✟✟✟b
❍❍❍ 2 t

4

3

6 d

5 c

✟✟✟
❍❍❍

✟✟✟
❍❍❍ 7 latch

e

8 latch
f

Fig. 15.6. Schematic
diagram of gates and
latches joined by
interconnect.
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Segments

• The interconnect can be thought of as consisting ofsegments,
corresponding to the labeled pieces of interconnect shown in Figure15.6.

• We assume that the interconnect can be partitioned into a setof n
segments

• Let thek-th segment have widthxk, thicknessTk, and lengthLk, as
illustrated in Figure15.7.
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❇
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❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇

Silicon

Silicon dioxide

Aluminum or Copper

❇
❇❇

❇
❇❇

❇
❇❇

✲✛ Lk

❇
❇❇▼❇
❇❇◆
xk

✻

❄

Tk

Fig. 15.7. Dimensions
of k-th segment of
interconnect. The figure
is not to scale.
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Discreteness

• Because we can only dimension features to be an integer multiple of the
minimum feature size,xk can only be chosen from adiscreteset of
alternatives.

• In general, optimizing over a discrete set of alternatives is much more
difficult than optimizing over a continuous variable because in the
discrete case we:
– cannot use calculus to derive optimality conditions,
– cannot obtain descent directions from purely local first derivative

information, and
– cannot make use of convexity to establish global optimality.

• In this case study, we will neglect discreteness and assume that the widths
are continuously variable.
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Alternative formulations

• As an alternative formulation, instead of optimizing over acontinuous
range of widthsxk for segmentk, we consider a finite collection of
possible widths, say{Wk1, . . . ,Wks} for segmentk.

• For example, these widths might correspond to the allowableinteger
multiples of the minimum feature size.

• A segment is then specified by a collection of sub-lengthsLk j, j = 1, . . . ,s
such that∑s

j=1Lk j = Lk. The valueLk j specifies how much of the total
length of segmentk is of widthWk j.

• This is an example of a radical transformation of a problem compared to
its “natural” formulation.

• We will not pursue this formulation further.
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15.5.2.2 Objective
• We have indicated that our goal is to minimize the area of interconnect.
• The areaf : Rn → R is defined by:

∀x∈ R
n, f (x) =

n

∑
k=1

Lkxk,

• whereLk is the length of thek-th segment.
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15.5.2.3 Constraints
Upper and lower bounds

∀k= 1, . . . ,n,xk ≤ xk ≤ xk,

Bottlenecks

∑
k∈B

xk ≤ xB, (15.14)

• whereB is the set of segments involved in a particular bottleneck and xB
is the maximum total width available for the segments in the setB.
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Delay constraints

• Consider apath from a latch through the combinational logic to the input
of the next latch.

• We assume that the paths are labeledℓ= 1, . . . , r.
• Our performance specification requires that, for each latch-to-latch pathℓ,

a signal can propagate from:
– the output of the latch at the beginning of pathℓ,
– through the gates in pathℓ,
– to the input of latch at the end of pathℓ,

• within a maximum allowed time delay that depends on:
– the clock period,
– the delay from theclock edgeto when the outputs of latches become

valid, and
– theset-up timefrom the input of latches to the clock edge.

• Latch-to-latch delay on each path will depend on the widths of the
segments.
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Delay constraints, continued

• Therefore, the delay on theℓ-th path is a functionhℓ : Rn → R depending
on the widths and we require that:

∀ℓ= 1, . . . , r,hℓ(x)≤ hℓ, (15.15)

• wherehℓ is the maximum allowed latch-to-latch delay on pathℓ.
• We collect the delay functions for each path together into a vector

functionh : Rn → Rr .
• Similarly, we collect the maximum allowed delays into a vector h∈ Rr .
• To evaluate the functionhℓ we must define “delay” more carefully.
• Normatively, delay is the time difference between:

(i) when the voltage at the output of the latch that is drivingpathℓ can
be considered to have changed state, and

(ii) when the voltage at the input of the latch that is driven by pathℓ can
be considered to have changed state.
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Delay constraints, continued

• In practice, “changing state” is defined on anad hocbasis as when, for
example, the voltage waveform has risen to or fallen to within 50%, say,
or 90%, say, of its final value.

• The delay is often approximated by a functionh̃ℓ that is easier to
calculate.

• We will approximate the gate delays by constants neglectingthe effect of
the load of the interconnect on the delay through the combinational logic.

• We can then re-interprethℓ as being the delay through the interconnect
alone, neglecting the gate delays, and reduce the corresponding delay
limit hℓ by the sum of the gate delays on pathℓ.

• That is, we re-define each inequality in (15.15) by reducing the left-hand
side and the right-hand side by the sum of the gate delays on path ℓ.

• A typical approximation used for the interconnect delay is theElmore
delay, which requires an electrical model of the interconnect.
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Interconnect electrical model

• Each segment of the interconnect is a distributed resistive-capacitive
transmission line.

• Segmentk, for k= 2, . . . ,6, has been represented by a series resistanceRk
and shunt capacitanceCk, called anL-segment.

✚✙
✛✘

Vb

Rb R2
t

C2

t
R4

t
C4

t
C3

R3

R6 t
C6

t
Cd

R5 t
C5

t
Cc

✟✟✟
❍❍❍

✟✟✟
❍❍❍

Fig. 15.8. Equivalent
circuit of interconnect
between gate b and
gates c and d consisting
of resistive–capacitive
L-segments.
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Interconnect electrical model, continued

• The resistance of segmentk is determined by theresistivity ρk of the
segment and its thickness, length, and width:

∀k= 1, . . . ,n,Rk = ρkLk/(Tkxk),

= κRk/xk, (15.16)

• whereκRk= ρkLk/Tk is a parameter.
• The capacitance of segmentk is determined approximately by thesheet

capacitanceper unit areaκSk, its fringing capacitanceper unit length
κFk, and its height and width:

∀k= 1, . . . ,n,Ck = κSkLkxk+κFkLk,

= κCkxk+CFk, (15.17)

• whereκCk = κSkLk andCFk = κFkLk are parameters.
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Gate model

• We can model the gate driving the interconnect by considering its output
transistor.

• It can be approximately represented by a voltage source driving a
resistance.

• The driving gate b is modeled in Figure15.8as the voltage sourceVb and
the driver resistanceRb.

• The load presented bycomplementary metal-oxide semiconductor
(CMOS) gates at the sinks can be modeled by a capacitance.

• This is shown byCc andCd in Figure15.8for the inputs to gates c and d,
respectively.
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Elmore delay

• Consider a constant voltage source charging a capacitorC through a
resistanceR.

• The voltage across the capacitor will exponentially approach the driving
voltage.

• The time-constant of the exponential isRC, so that a reasonable
order-of-magnitude estimate for the rise time of the voltage across the
capacitor isRC.

• The “Elmore delay” is an estimate of the time constant of a single
exponential that approximates the true response.

• We use this time constant as an estimate of the delay; however, under
certain conditions it can be a poor estimate of the delay.
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Elmore delay, continued

• Given the lumped L-segment models, the Elmore delay is givenby:

∀ℓ= 1, . . . , r,∀x∈ R
n, h̃ℓ(x) = ∑

J∈Pℓ

∑
j∈J

[
Rj ∑

k∈D( j)

Ck

]
,

• where:
– Pℓ is the set of sets ofconnected segmentson pathℓ. Two segments are

connected if there is a path of segments between them. In a setof
connected segments, each pair of segments is connected. Forexample,
for the pathℓ from latch a to latch e in Figure15.6,
Pℓ = {{1},{2,3,5},{7}}, since the path from latch a to latch e consists
of three sets of connected segments, namely{1},{2,3,5},{7}. The
connected segments are separated by the latches b and c on thepath
from latch a to latch e.

– D( j) is the set ofdownstream segmentsincluding and between
segmentj and all sinks that are driven from segmentj through
connected segments. For example, in Figure15.6, for j = 2,
D(2) = {2,3,4,5,6}. For j = 3,D(3) = {3,5}.
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Elmore delay, continued

• The Elmore delay is the sum of the resistive-capacitive time-constants of
each segment, where:
– the resistive-capacitive time-constant of a segment is equal to the

product of the resistance of the segment and all the capacitive load on it,
and

– the capacitive load is defined to be the sum of the capacitances of all the
downstream segments (including the input capacitance of all
downstream gates and latches.)

• Using the lumped resistive-capacitive model (15.16)–(15.17) for each
segment, we obtain:

∀ℓ= 1, . . . , r,∀x∈ R
n, h̃ℓ(x) = ∑

J∈Pℓ

∑
j∈J

[
κR j

x j
∑

k∈D( j)

(κCkxk+CFk)

]
.

(15.18)
• We can collect the Elmore delay functions for each path together into a

vector functionh̃ : Rn → Rr , which we use to approximate the actual
delay functionh : Rn → Rr .
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15.5.2.4 Problem
• The approximate model for minimizing the area subject to theupper and

lower constraints in segment widths and subject to the delayconstraints
can be written as:

min
x∈Rn

{ f (x)|h̃(x)≤ h,x≤ x≤ x}. (15.19)

• The more accurate delay model is:

min
x∈Rn

{ f (x)|h(x)≤ h,x≤ x≤ x}. (15.20)

Title Page ◭◭ ◮◮ ◭ ◮ 78 of 232 Go Back Full Screen Close Quit



15.5.3 Changes
• We could consider changes in parameters such as the sheet or fringe

capacitance constants, due to a change in dielectric properties.
• We could also consider the effect of adding an additional gate in a path.
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15.5.4 Problem characteristics
15.5.4.1 Objective

• The objective,f (x), of both Problems (15.19)–(15.20) is linear.

15.5.4.2 Constraints
Upper and lower bounds

• The lower and upper bound constraintsx≤ x≤ x define a convex set.

Delay constraints

• We focus on Problem (15.19).
• The Elmore delay function is not convex.
• The constraint functions involve the sum of terms each of which is a

positive constant times the product of powers of the entriesin the decision
vector.

• Such a function is called aposynomial function.
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15.5.4.3 Solvability
• If there is no selection of widths that yield delays satisfying the delay

constraints, then there may be no feasible solution.
• We may need to insert a buffer to break a long segment into two shorter

pieces.
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15.6 Optimal power flow
15.6.1 Motivation

15.6.1.1 Generalization of economic dispatch
• When applied to electric power systems, the problems described in

Sections12.1and15.1are calledeconomic dispatch problems.
• The equality constraint (12.3) requires that electric generation equal the

demand; however, this does not fully characterize the situation in an
electricity network.

• For example, if generators are remote from demand centers then there
will be losses incurred in moving power along transmission lines.

• At the least, (12.3) should be modified to account for losses in this case.
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15.6.1.2 Constraints on operation
• Transmission lines between generation and demand can also limit the

feasible choices of generation.

15.6.1.3 Power flow equations
• To check whether or not the line flow and voltage constraints are satisfied,

we must expand the detail of representation of the network byexplicitly
incorporating Kirchhoff’s laws, as described in the electric power system
case study in Section6.2.2.4.

15.6.1.4 Other controllable elements
• Besides real power generations, we can also consider adjusting any

controllable elements in the system so as to minimize costs and meet
constraints.
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15.6.2 Formulation
15.6.2.1 Variables

• In the decision vector, we need to represent:
– real and reactive power generations at the generators, which we will

collect together into the vectorsP andQ,
– any other controllable quantities in the system, such as thesettings of

phase-shifting transformersand capacitors,
– the voltage magnitudes at every bus in the system, which we collect

together into the vectoru, and
– the voltage angles at every bus in the system except for the reference

bus, which we collect together into the vectorθ. (The voltage angle at
the reference bus is constant since, as previously, it represents an
arbitrary time reference.)
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Variables, continued
• We collect all the variables into the vector:

x=




P
Q
u
θ


 ∈ R

n.

• In the power flow case study in Section6.2, the generations at the
generators were fixed parameters, except at the reference bus.

• In this case study, the real and reactive power generations at all generator
buses are variables.

• This is similar to the least-cost production case studies ofSections12.1
and15.1, where the real power generations were variables.

• This case study generalizes all of these earlier case studies and
exemplifies the process of starting with only a few variablesand many
parameters and gradually re-interpreting the parameters to be variables.
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15.6.2.2 Objective
• A typical objective is to minimize the total cost of power generation.
• Let f : Rn → R represent this cost.
• Typically:

f depends only on the entries ofx corresponding to real power
generations; however, in some formulationsf also depends
somewhat on the entries ofx corresponding to reactive power
generations, and

f is separable since the decisions at one generator do not usually affect
the costs at any other generators.
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15.6.2.3 Equality constraints
• We expressed Kirchhoff’s laws as equations in the form:

∀ℓ, pℓ(x) = 0,
∀ℓ,qℓ(x) = 0,

• wherepℓ : Rn → R andqℓ : Rn → R were defined in (6.12)–(6.13):

∀x∈ R
n, pℓ(x) = ∑

k∈J(ℓ)∪{ℓ}

uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]−Pℓ,

∀x∈ R
n,qℓ(x) = ∑

k∈J(ℓ)∪{ℓ}

uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]−Qℓ,

• whereJ(ℓ) is the set of buses joined by a line to busℓ.
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Equality constraints, continued
• We collect the equations together into a vector equation similar to the

form of (6.14):

g(x) = 0,

• where a typical entry ofg is of the form of (6.12) or (6.13), but the
decision vectorx includes the real and reactive generations as well as the
voltage magnitudes and angles.
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15.6.2.4 Inequality constraints
• Limits on the entries inx:

x≤ x≤ x.

• A voltage magnitude limit at busℓ could be 0.95= uℓ ≤ uℓ ≤ uℓ = 1.05.
• A generator real power limit could be 0.15= Pℓ ≤ Pℓ ≤ Pℓ = 0.7.
• There are also constraints involving functions ofx.
• For example, there are typically angle difference constraints of the form:

∀ℓ,∀k∈ J(ℓ),−π/4≤ θℓ−θk ≤ π/4, (15.21)

• and there might be limits on angle differences between busesthat are not
joined directly by a line.
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Inequality constraints, continued
• In addition, transmission line flow constraints can be expressed via the

power flow equations in terms ofx.
• That is, we will also have functional constraints of the form:

h≤ h(x)≤ h.

• A typical constraint might limit the flow on a line that joins busℓ to busk.
• Neglecting shunt elements in the line models, the line flow real and

reactive power flow functionspℓk : Rn → R andqℓk : Rn → R are defined
by:

∀x∈ R
n, pℓk(x) = uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]− (uℓ)

2Gℓk,

(15.22)
∀x∈ R

n,qℓk(x) = uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]+(uℓ)
2Bℓk.

• If there is a real power flow limit ofpℓk on the line joining busℓ andk
then we represent this limit as an inequality constraint of the form
pℓk(x)≤ pℓk in the inequality constraintsh(x)≤ h.
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15.6.2.5 Problem

min
x∈Rn

{ f (x)|g(x) = 0,x≤ x≤ x,h≤ h(x)≤ h}. (15.23)

Title Page ◭◭ ◮◮ ◭ ◮ 91 of 232 Go Back Full Screen Close Quit



15.6.3 Changes in demand, lines, and generators
• We can consider changes in demand at buses and also consider changes in

the system:
– failure or return to service of a transmission line, and
– failure or return to service of a generator.
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15.6.4 Problem characteristics
15.6.4.1 Convexity

Objective

• As argued in the least-cost production case study in Section12.1, the
objective of this problem is typically convex.

Equality constraints

• Because the functiong is non-linear, the set{x∈ Rn|g(x) = 0} is not
generally convex.

• We can argue from two perspectives that this non-convexity does not
necessarily create multiple local minima of the problem.

• First, following the discussion in Section8.2.4, we observe that the
JacobianJ of g can often be well approximated by a constant; that is, the
equations are approximately linear.

• Since the equations are approximately linear, the feasibleset
{x∈ Rn|g(x) = 0} is not very different from a set defined by a linear
equality constraint.
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Equality constraints, continued

• Second, if we can “throw away” real and reactive power, then we can
replace the power flow equalities with inequalities.

pℓ(x) ≤ 0, (15.24)
qℓ(x) ≤ 0. (15.25)

• That is, we have relaxed the constraints to requiring that the net power
flowing out of a node is at most zero.

• That is, we allow power to flow into a node or to be generated at anode
and be “thrown away.”

• Consider solving the relaxed problem having inequality constraints as
specified in (15.24) and (15.25) at each busℓ, but with all the other
constraints as represented in Problem (15.23):

min
x∈Rn

{ f (x)|g(x)≤ 0,x≤ x≤ x,h≤ h(x)≤ h}. (15.26)
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Equality constraints, continued

• In Problem (15.26), the feasible set
S= {x∈ Rn|g(x)≤ 0,x≤ x≤ x,h≤ h(x)≤ h} is a relaxed version of the
feasible set of Problem (15.23):

S= {x∈ R
n|g(x) = 0,x≤ x≤ x,h≤ h(x)≤ h}.

• Suppose we obtain a solutionx⋆ ∈ S to Problem (15.26) such that at busℓ
we havepℓ(x⋆)< 0 or qℓ(x⋆)< 0.

• In this case, so long as we can dispose of real or reactive power at busℓ,
then we can consider “throwing away” the difference and re-establishing
equality to construct a solutionx⋆⋆ ∈ S to the original equality-constrained
problem with the same value of objective and all constraintssatisfied.

• From a practical perspective, if there is a generator atℓ then to “throw
away” power at busℓ we can consider reducing the output of the
generator to enable satisfaction of the constraint with equality.

• This would reduce the objective of the problem since costs typically
increase with output.
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Equality constraints, continued

• In summary, the inequality-constrained Problem (15.26) has essentially
the same solution as Problem (15.23).

• Now we will show that the feasible set defined by the relaxed
constraints (15.24) is convex under the assumption that all voltage
magnitudes are constant.

• We will not consider the reactive power constraints (15.25) nor the case
where voltage magnitudes can vary.
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Equality constraints, continued

• Recall thatpℓ is defined in (6.12) to be:

∀x∈ R
n,

pℓ(x) = ∑
k∈J(ℓ)∪{ℓ}

uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]−Pℓ,

= ∑
k∈J(ℓ)

uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]+(uℓ)
2Gℓℓ−Pℓ,

= ∑
k∈J(ℓ)

{uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]− (uℓ)
2Gℓk}

+(uℓ)
2

(
Gℓℓ+ ∑

k∈J(ℓ)

Gℓk

)
−Pℓ,

on adding and subtracting(uℓ)2∑k∈J(ℓ)Gℓk,

= ∑
k∈J(ℓ)

pℓk(x)+(uℓ)
2

(
Gℓℓ+ ∑

k∈J(ℓ)

Gℓk

)
−Pℓ,

• where for eachk∈ J(ℓ), the functionpℓk was defined in (15.22).
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Equality constraints, continued

• Since all voltages are assumed constant, we can define functions
p̂ℓk : R→ R by:

∀k∈ J(ℓ),∀θℓk∈R, p̂ℓk(θℓk)= uℓuk[Gℓkcos(θℓk)+Bℓksin(θℓk)]−(uℓ)
2Gℓk,

• and we obtain that:

∀ℓ,∀x∈ R
n, pℓ(x) = ∑

k∈J(ℓ)

p̂ℓk(θℓ−θk)+(uℓ)
2

(
Gℓℓ+ ∑

k∈J(ℓ)

Gℓk

)
−Pℓ.

• That is,pℓ is equal to{(uℓ)2(Gℓℓ+∑k∈J(ℓ)Gℓk)−Pℓ} plus the sum of
termsp̂ℓk(θℓ−θk) each of which depends only on a linear function of two
of the entries ofx.

• We will find conditions for ˆpℓk to be convex, which will therefore
guarantee thatpℓ is convex.

• We calculate the second derivative of ˆpℓk.
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Equality constraints, continued

∀θℓk ∈ R,
d2p̂ℓk
dθℓk2 (θℓk) =−uℓuk[Gℓkcos(θℓk)+Bℓksin(θℓk)].

• Recalling thatGℓk < 0,Bℓk > 0 for k∈ J(ℓ), this expression is positive if:

∀k∈ J(ℓ), |Gℓk|cos(θℓk)−|Bℓk|sin(θℓk)≥ 0.

• This will be true if:

−π+arctan

(
|Gℓk|

|Bℓk|

)
≤ θℓ−θk ≤ arctan

(
|Gℓk|

|Bℓk|

)
.

• Considering power balance at busk∈ J(ℓ) as well, the functions will be
convex if for each line joining a busℓ to a busk we have:

|θℓ−θk| ≤ min

{
arctan

(
|Gℓk|

|Bℓk|

)
,π−arctan

(
|Gℓk|

|Bℓk|

)}
. (15.27)
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Equality constraints, continued

• Typically, |Gℓk|/|Bℓk| ≈ 0.1 so (15.27) requires that
|θℓ−θk| ≤ 0.1radian≈ 6◦.

• This is a little more restrictive than the angle restrictions (15.21) that we
previously mentioned for stability limits in Section15.6.2.4.
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Inequality constraints

• Similarly, if a flow constraint betweenℓ andk requires thatpℓk(x)≤ pℓk
then the constraint defines a convex set if (15.27) holds.

Discussion

• We have provided sufficient conditions under which the optimal power
flow problem is convex.

• If these assumptions are violated then there may be multiplelocal
minimizers.

15.6.4.2 Solvability
• There are a variety of constraints in the optimal power flow problem and

it is easily possible for there to be no solution.
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16
Algorithms for non-negatively constrained

minimization

• In this chapter we will develop algorithms for constrained optimization
problems of the form:

min
x∈Rn

{ f (x)|Ax= b,x≥ 0}, (16.1)

• where f : Rn → R, A∈ Rm×n, andb∈ Rm.
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Key issues
• Optimality conditions fornon-negatively constrained problemsbased

on the results for equality-constrained problems,
• thecomplementary slackness conditionsin the optimality conditions,
• optimality conditions forconvex problems, and
• active setandinterior point algorithms to seek solutions.
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16.1 Optimality conditions
16.1.1 First-order necessary conditions

16.1.1.1 Analysis

Theorem 16.1 Let f : Rn → R be partially differentiable with continuous
partial derivatives, A∈ Rm×n, and b∈Rm. Consider Problem (16.1),

min
x∈Rn

{ f (x)|Ax= b,x≥ 0},

and a point x⋆ ∈ Rn. If x⋆ is a local minimizer of Problem (16.1) then:

∃λ⋆ ∈ R
m,∃µ⋆ ∈ R

n such that:∇f (x⋆)+A†λ⋆−µ⋆ = 0;
Ax⋆ = b;

M⋆x⋆ = 0;
x⋆ ≥ 0; and
µ⋆ ≥ 0, (16.2)

where M⋆ = diag{µ⋆ℓ} is a diagonal matrix with diagonal entries equal to
µ⋆ℓ . The vectorsλ⋆ and µ⋆ satisfying the conditions (16.2) are called the
vectors of Lagrange multipliers for the constraints Ax= b and x≥ 0,
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respectively. The conditions that M⋆x⋆ = 0 are called the
complementary slackness conditions. The complementary slackness
conditions together with the conditions x⋆ ≥ 0 and µ⋆ ≥ 0 imply that, for
eachℓ, either theℓ-th non-negativity constraint xℓ ≥ 0 is binding or the
ℓ-th Lagrange multiplier µ⋆ℓ is equal to zero (or both).
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Proof This is a special case of Theorem17.1to be presented in
Chapter17. We will only sketch the proof of this special case.
Consider theequality-constrained problem:

min
x∈Rn

{ f (x)|Ax= b,−xℓ = 0,∀ℓ ∈ A(x⋆)}, (16.3)

whereA(x⋆) = {ℓ ∈ {1, . . . ,n}|x⋆ℓ = 0} is the active set corresponding to
the non-negativity constraintsx≥ 0 for the pointx⋆. That is, the
equality-constrained Problem (16.3) includes as equality constraints the
following:
• all of the equality constraints from Problem (16.1) and
• all of the non-negativity constraints of Problem (16.1) that were

satisfied with equality byx⋆.
That is, the active non-negativity constraints from Problem (16.1) at its
minimizer have been included asequalityconstraints in Problem (16.3).
The representation of the constraint as−xℓ = 0 rather than asxℓ = 0 is
for convenience in interpreting the Lagrange multipliers for
equality-constrained Problem (16.3).
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The proof involves applying our earlier results forequality-constrained
problems to Problem (16.3) to prove the theorem. The proof is divided
into three parts:

(i) showing thatx⋆ is a local minimizer of equality-constrained
Problem (16.3),

(ii) using the necessary conditions of the equality-constrained
Problem (16.3) to defineλ⋆ andµ⋆ that satisfy the first four lines
of (16.2), and

(iii) proving thatµ⋆ ≥ 0 by showing that if a particular Lagrange
multiplier were negative, sayµ⋆ℓ < 0, then the objective could be
reduced by moving in a direction such thatxℓ increases and so
becomes strictly feasible for the constraintxℓ ≥ 0. The intuition
behind this observation is that if the second-order sufficient
conditions held for Problem (16.3) atx⋆ then we could apply the
sensitivity analysis Corollary13.11. If we consider changing the
constraint from−xℓ = 0 to−xℓ =−γ, with γ > 0, then, since
µ⋆ℓ < 0, Corollary13.11indicates that the minimum of the
changed problem would be lower andxℓ would be strictly
positive. This means that the constraintxℓ ≥ 0 could not have

Title Page ◭◭ ◮◮ ◭ ◮ 107 of 232 Go Back Full Screen Close Quit



been binding at a minimizer of Problem (16.1) since a positive
value ofxℓ would reduce the objective.

✷
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16.1.1.2 Example
• Consider Problem (2.15):

min
x∈R2

{x1−x2|x1+x2 = 1,x1 ≥ 0,x2 ≥ 0}. (16.4)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

x⋆

Fig. 16.1. Feasible set
(shown as line) and min-
imizer x⋆ (shown as•)
for example problem.
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Example, continued

• Consideration of the objective and inspection of Figure16.1shows that

x⋆ =

[
0
1

]
is the unique minimizer of Problem (16.4).

• We apply Theorem16.1to this non-negatively constrained problem.
• The objective is linear, and hence partially differentiable with continuous

partial derivatives.

∀x∈ R
2, f (x) = x1−x2,

∀x∈ R
2,∇f (x) =

[
1

−1

]
,

A = [1 1] ,

= 1†,

b = [1].

• We claim thatλ⋆ = [1] andµ⋆ =

[
2
0

]
satisfy (16.2).
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Example, continued

∇f (x⋆)+A†λ⋆−µ⋆ =

[
1

−1

]
+

[
1
1

]
[1]−

[
2
0

]
,

= 0;

M⋆x⋆ =

[
2 0
0 0

][
0
1

]
,

= 0;

Ax⋆ = [1 1]

[
0
1

]
,

= [1],
= b;

x⋆ =

[
0
1

]
,

≥ 0; and

µ⋆ =

[
2
0

]
,

≥ 0.
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16.1.1.3 Discussion
• As in the equality-constrained case, the Lagrange multipliers adjust the

unconstrained optimality conditions to balance the constraints against the
objective.

• We will refer to the equality and inequality constraints specified in (16.2)
asthefirst-order necessary conditions.

• There are inequality constraints on both the minimizerx⋆ and on the
Lagrange multipliersµ⋆ in the first-order conditions for inequality
constraints.
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Discussion, continued
• The complementary slackness conditions require thatM⋆x⋆ = 0.
• Consider linearizingMx aboutµ(ν) andx(ν) and using the linearized

equations to construct an update.
• This approach is not effective unless we are careful to avoidthe boundary

of the set defined byx≥ 0 andµ≥ 0.
• For example, suppose that at iterationν we hadx(ν)ℓ = 0.
• In this case, for the particular entryℓ, linearizing the complementary

slackness conditions involves linearizingµℓxℓ aboutµ(ν)ℓ andx(ν)ℓ .
• We obtain:

(µ(ν)ℓ +∆µ(ν)ℓ )(x(ν)ℓ +∆x(ν)ℓ ) ≈ µ(ν)ℓ x(ν)ℓ +x(ν)ℓ ∆µ(ν)ℓ +µ(ν)ℓ ∆x(ν)ℓ ,

= µ(ν)ℓ ∆x(ν)ℓ , sincex(ν)ℓ = 0.

• Setting this equal to zero yields∆x(ν)ℓ = 0.

• If we ever were at an iterate for whichx(ν)ℓ = 0, then the Newton–Raphson
update would prevent us from ever moving from this value.
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Discussion, continued
• Linearizing the complementary slackness conditions does not yield a

useful approximation in these cases.
• We will see in Section16.4.3.3that an effective linearization of this

constraint requires us to carefully avoid the possibilities thatx(ν)ℓ = 0 or

µ(ν)ℓ = 0.
• We will see that one way to do this is tofirst approximate the constraint

µℓxℓ = 0 by a hyperbolaµℓxℓ = t, wheret ∈ R++, and then linearize the
hyperbolic approximation.

• Then, we gradually reducet.
• Figure16.2shows a hyperbolic approximation to the set of points

satisfying the complementary slackness constraint for several values oft.

• As t is reduced, the set of ordered pairs

[
µℓ
xℓ

]
satisfyingµℓxℓ = t, xℓ ≥ 0,

andµℓ ≥ 0 approaches the union of the non-negativeµℓ-axis and the
non-negativexℓ-axis.
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Discussion, continued
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Fig. 16.2. The complementary
slackness constraint for the en-
try ℓ requires that the point[

µℓ
xℓ

]
∈ R2 lie either on theµℓ-

axis or on thexℓ-axis. The hy-
perbola µℓxℓ = t approximates
the set of points satisfying the
complementary slackness con-
straints. The dashed curve
shows the hyperbola fort = 0.1;
the dash-dot curve shows the hy-
perbola fort = 0.05; and the dot-
ted curve shows the hyperbola
for t = 0.01.
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16.1.2 Second-order sufficient conditions
16.1.2.1 Analysis

Theorem 16.2 Let f : Rn → R, A∈ Rm×n, and b∈ Rm. Consider
Problem (16.1),

min
x∈Rn

{ f (x)|Ax= b,x≥ 0},

and points x⋆ ∈ Rn,λ⋆ ∈ Rm, and µ⋆ ∈ Rn. Let M⋆ = diag{µ⋆ℓ}. Suppose
that:

(i) f is twice partially differentiable with continuous secondpartial
derivatives,

(ii)

∇f (x⋆)+A†λ⋆−µ⋆ = 0;
M⋆x⋆ = 0;

Ax⋆ = b;
x⋆ ≥ 0;
µ⋆ ≥ 0;
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and
(iii) ∇2f (x⋆) is positive definite on the null space:

N+ = {∆x∈ R
n|A∆x= 0;∆xℓ = 0,∀ℓ ∈ A+(x

⋆,µ⋆)},

whereA+(x⋆,µ⋆) = {ℓ ∈ {1, . . . ,n}|x⋆ℓ = 0,µ⋆ℓ > 0}.
Then x⋆ is a strict local minimizer of Problem (16.1). ✷

• The conditions(i)–(iii) in the theorem are called thesecond-order
sufficient conditions.

• In addition to the first-order necessary conditions, the second-order
sufficient conditions require that:
f is twice partially differentiable with continuous second partial

derivatives, and
∇2f (x⋆) is positive definite on the null spaceN+ defined in the theorem.
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16.1.2.2 Example
• Consider the objectivef : R2 → R defined by:

∀x∈ R
2, f (x) = (x1)

2+(x2−1)2.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x1

x2

Fig. 16.3. Contour sets
of objective function de-
fined in section16.1.2.2.
The heights of the con-
tours decrease towards

the point x⋆ =

[
0
1

]
,

which is indicated with
the•.
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Example, continued
• Consider the problem:

min
x∈R2

{ f (x)|x≥ 0}.

• The objective is twice partially differentiable with continuous second
partial derivatives.

• We claim that the second-order sufficient conditions hold for x⋆ =

[
0
1

]

andµ⋆ = 0, which is illustrated as the• in Figure16.3.
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Example, continued
• The second-order sufficient conditions are that:

∇f (x⋆)−µ⋆ =

[
2x⋆1

2(x⋆2−1)

]
−µ⋆,

= 0;
M⋆x⋆ = 0;

x⋆ ≥ 0;
µ⋆ ≥ 0;

• and that∇2f (x⋆) = 2I is positive definite on the null space:

N+ = {∆x∈ R
2|∆xℓ = 0,∀ℓ ∈ A+(x

⋆,µ⋆)}.
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Example, continued

A(x⋆) = {1},
A+(x

⋆,µ⋆) = {ℓ ∈ {1,2}|x⋆ℓ = 0,µ⋆ℓ > 0},
= /0,

N+ = {∆x∈ R
2|∆xℓ = 0,∀ℓ ∈ A+(x

⋆,µ⋆)},

= {∆x∈ R
2|∆xℓ = 0,∀ℓ ∈ /0},

= R
2,

∇2f (x⋆) = 2I ,

• which is positive definite onN+ = R2.

• The second-order sufficient conditions hold atx⋆ =

[
0
1

]
andµ⋆ = 0.

• Note thatA+(x⋆,µ⋆) = /0 is a strict subset ofA(x⋆) = {1} for this
example.
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16.1.2.3 Discussion
• The setA+(x⋆,µ⋆) can be astrict subset ofA(x⋆) sinceA+(x⋆,µ⋆) omits

those constraintsℓ for whichx⋆ℓ = 0 andµ⋆ℓ = 0.

N+ = {∆x∈ R
n|A∆x= 0,∆xℓ = 0,∀ℓ ∈ A+(x

⋆,µ⋆)},

• can strictly contain the null space:

N = {∆x∈ R
n|A∆x= 0,∆xℓ = 0,∀ℓ ∈ A(x⋆)},

• corresponding to the constraints of equality-constrainedProblem (16.3):

Ax = b,
−xℓ = 0,∀ℓ ∈ A(x⋆).

• By Corollary13.4, if x⋆ satisfies the first-order necessary conditions for
equality-constrained Problem (16.3) and if ∇2f (x⋆) is positive definite on
the null spaceN thenx⋆ is a strict local minimizer of
equality-constrained Problem (16.3).

• However, this isinsufficientto guarantee thatx⋆ is a strict local minimizer
of the corresponding inequality-constrained Problem (16.1) if there are
any constraintsℓ for which bothx⋆ℓ = 0 andµ⋆ℓ = 0.
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Discussion, continued
• Constraints for whichx⋆ℓ = 0 andµ⋆ℓ = 0 are calleddegenerate

constraints.
• Intuitively, a degenerate constraintℓ is only “just” binding.
• The sensitivity of the minimum to changes inxℓ is zero.
• There exist feasible movements∆x away fromx⋆, namely those in which

∆xℓ > 0, for which the constraintxℓ ≥ 0 is no longer binding.
• Such feasible movements do not satisfy∆xℓ = 0, so to guarantee thatx⋆ is

a minimizer of Problem (16.1) we must test for positive definiteness of
the objective in the larger subspace that allows movement indirections∆x
such that∆xℓ > 0.

• If the Hessian is positive definite in these directions then the objective
must increase in these directions as we move away fromx⋆ and
consequently we are indeed at a local minimizer of Problem (16.1).

• That is, if∇2f (x⋆) is positive definite onN+ then there can be no feasible
descent directions forf atx⋆.
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16.1.2.4 Example of not satisfying second-order sufficientconditions
• Suppose that we have the objectivef : R2 → R defined by:

∀x∈ R
2, f (x) =−(x1)

3+(x2−1)2.
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x1

x2

Fig. 16.4. Contour sets of ob-
jective function defined in sec-
tion 16.1.2.4. The heights of the
contours decrease away from the

point x̂ =

[
0
1

]
, which is indi-

cated with the◦, in the direction
of increasing values ofx1. The
heights of the contours increase
away from the point ˆx in the di-
rection of increasing or decreas-
ing values ofx2.
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Example of not satisfying second-order sufficient conditions, continued
• Consider the problem:

min
x∈R2

{ f (x)|x≥ 0}.

• The problem is unbounded below on the feasible set and has no
minimizer.

• However, consider the candidate minimizer ˆx=

[
0
1

]
and candidate value

of Lagrange multipliers ˆµ= 0:

∇f (x̂)− µ̂ = 0,
M̂x̂ = 0,

x̂ ≥ 0,
µ̂ ≥ 0,

• so that ˆx andµ̂ satisfy the first-order necessary conditions, where
M̂ = diag{µ̂ℓ} is a diagonal matrix with diagonal entries equal to ˆµℓ.
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Example of not satisfying second-order sufficient conditions, continued
• The active set forx≥ 0 at x̂ includes the first non-negativity constraint.

A(x̂) = {1},
6= A+(x̂, µ̂),
= {ℓ ∈ {1,2}|x⋆ℓ = 0,µ⋆ℓ > 0},
= /0.

• Therefore, if ˆx=

[
0
1

]
andµ̂= 0 werethe minimizer and corresponding

Lagrange multipliers of this problem, then the constraint would be
degenerate.
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Example of not satisfying second-order sufficient conditions, continued
• The Hessian of the objective is:

∇2f (x̂) =

[
0 0
0 2

]
.

• The subspace corresponding to the constraints of equality-constrained
Problem (16.3) is:

N = {∆x∈ R
2|A∆x= 0,∆xℓ = 0,∀ℓ ∈ A(x̂)},

= {∆x∈ R
2|∆xℓ = 0,∀ℓ ∈ {1}},

= {∆x∈ R
2|∆x1 = 0}.

• Note that:

∀∆x∈ N ,(∆x 6= 0) ⇒ (∆x1 = 0,∆x2 6= 0),

⇒ (∆x†∇2f (x̂)∆x= 2(∆x2)
2 > 0).

• The Hessianis positive definite onN and, by Corollary13.4, x̂ is a local
minimizer of the equality-constrained problem minx∈R2{ f (x)|−x1 = 0}.
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Example of not satisfying second-order sufficient conditions, continued
• But positive definiteness onN is insufficientto guarantee local optimality

for Problem (16.1).
• In fact,∇2f (x̂) is not positive definite on the null spaceN+ specified in

Theorem16.2:

N+ = {∆x∈ R
2|A∆x= 0,∆xℓ = 0,∀ℓ ∈ A+(x̂, µ̂)},

= {∆x∈ R
2|∆xℓ = 0,∀ℓ ∈ /0},

= R
2.

• The second-order sufficient conditions do not hold and ˆx is not a
minimizer of the problem.
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16.2 Convex problems
16.2.1 First-order sufficient conditions

16.2.1.1 Analysis

Theorem 16.3 Let f : Rn → R be partially differentiable with continuous
partial derivatives, A∈ Rm×n, and b∈Rm. Consider Problem (16.1),

min
x∈Rn

{ f (x)|Ax= b,x≥ 0},

and points x⋆ ∈ Rn, λ⋆ ∈ Rm, and µ⋆ ∈ Rn. Let M⋆ = diag{µ⋆ℓ}. Suppose
that:

(i) f is convex on{x∈ Rn|Ax= b,x≥ 0},

(ii) ∇f (x⋆)+A†λ⋆−µ⋆ = 0,
(iii) M⋆x⋆ = 0,
(iv) Ax⋆ = b and x⋆ ≥ 0, and
(v) µ⋆ ≥ 0.

Then x⋆ is a global minimizer of Problem (16.1).
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Proof By Item (iv), x⋆ is feasible. Consider any other feasible point
x∈ Rn. That is, considerx such that:

Ax= b,x≥ 0.

We haveAx= Ax⋆ = b, soA(x−x⋆) = 0 and:

[λ⋆]†A(x−x⋆) = 0. (16.5)

We now consider constraintsℓ ∈ A(x⋆) and constraintsℓ 6∈ A(x⋆)
separately.
For ℓ 6∈ A(x⋆), we have thatx⋆ℓ > 0. Consequently, Item(iii) implies that
µ⋆ℓ = 0. Therefore,

∀ℓ 6∈ A(x⋆),µ⋆ℓ(xℓ−x⋆ℓ) = 0. (16.6)

For ℓ ∈ A(x⋆), we have thatx⋆ℓ = 0. Moreover, sincexℓ ≥ 0 for all ℓ, we
have:

∀ℓ ∈A(x⋆),xℓ−x⋆ℓ = xℓ−0,
≥ 0.
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Therefore, sinceµ⋆ℓ ≥ 0, we have:

∀ℓ ∈ A(x⋆),µ⋆ℓ(xℓ−x⋆ℓ)≥ 0. (16.7)

Combining (16.6) and (16.7), we have:

[µ⋆]†(x−x⋆) = ∑
ℓ∈A(x⋆)

µ⋆ℓ(xℓ−x⋆ℓ)+ ∑
ℓ 6∈A(x⋆)

µ⋆ℓ(xℓ−x⋆ℓ),

= ∑
ℓ∈A(x⋆)

µ⋆ℓ(xℓ−x⋆ℓ), by (16.6),

≥ 0, by (16.7). (16.8)
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We have:

f (x) ≥ f (x⋆)+∇f (x⋆)†(x−x⋆), by Theorem2.6, noting that:
f is partially differentiable with continuous partial derivatives;
f is convex on the convex set{x∈ Rn|Ax= b,x≥ 0},

by Item(i) of the hypothesis; and
x,x⋆ ∈ {x∈ Rn|Ax= b,x≥ 0},

by Item(iv) of the hypothesis and construction,

= f (x⋆)− [A†λ⋆−µ⋆]
†
(x−x⋆),

by Item(ii) of the hypothesis,

= f (x⋆)− [λ⋆]†A(x−x⋆)+ [µ⋆]†(x−x⋆),

= f (x⋆)+ [µ⋆]†(x−x⋆), by (16.5),
≥ f (x⋆), by (16.8).

Therefore,x⋆ is a global minimizer off on{x∈ Rn|Ax= b,x≥ 0}. ✷
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16.2.1.2 Example
• Consider again the problem from Section16.1.2.2:

min
x∈R2

{ f (x)|x≥ 0},

• with objective f : R2 → R defined by:

∀x∈ R
2, f (x) = (x1)

2+(x2−1)2,

• The objective is partially differentiable with continuouspartial derivatives
and convex.

• We have already verified thatx⋆ =

[
0
1

]
andµ⋆ = [0] satisfy the first-order

necessary conditions.
• By Theorem16.3, x⋆ is a global minimizer of the problem.

Title Page ◭◭ ◮◮ ◭ ◮ 133 of 232 Go Back Full Screen Close Quit



16.3 Approaches to finding minimizers: active set method
• In theactive set method, we consider a tentative list of the constraints

that we believe are binding at the optimum.
• This tentative list is called theworking set and typically consists of the

indices of the binding inequalities at the current iterate.

• Since our tentative list may not be the correct list for the solution, we
must consider how to change this tentative list, either by:
– adding another constraint to the list, which is calledswapping in, or
– removing a constraint from the list, which is calledswapping out.

• Geometrically, active set algorithms tend to step along theboundary of
the region defined by the inequality constraints.
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16.3.1 Working set
• We writeW(ν) for the working set.
• The constraints in the working set are treatedtemporarilyas equality

constraints.
• A search direction is calculated that seeks the minimizer ofan

equality-constrained problem where the equality constraints consist of:
– all the equality constraints in the original problem, and
– the binding inequality constraints listed inW(ν).

• If W(ν) happens to coincide with the active set for the minimizerx⋆ of the
inequality-constrained Problem (16.1) then, by the proof of
Theorem16.1, the solution of the equality-constrained problem using
W(ν) will be x⋆.

• Inequality constraints are “swapped” in and out of the working set as
calculations proceed.
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16.3.2 Swapping in
16.3.2.1 Descent direction

• Consider iterationν, the current value of the iteratex(ν), and a working
setW(ν).

• Suppose thatx(ν) is feasible with respect to all the constraints.
• We consider the problem:

min
x∈Rn

{ f (x)|Ax= b,−xℓ = 0,∀ℓ ∈W
(ν)}. (16.9)

• We can use the algorithms from Chapter13 to find a descent direction
∆x(ν) atx(ν) for this equality-constrained problem.
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16.3.2.2 Step-size
• We seek a step-size for the update that will maintain feasibility with

respect toall of the constraints in Problem (16.1).
• In particular, consider any inequality constraintℓ′ that is not in the current

working set.
• That is, considerℓ′ 6∈W(ν) so thatx(ν)ℓ′ > 0.
• For simplicity, first suppose that the objective function decreases along

the descent direction∆x(ν) for arbitrary step-sizes.
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Step-size, continued

• Suppose that an update∆x(ν) based on the current working set and a
step-size of 1 would cause inequality constraintℓ′ to be violated because
x(ν)ℓ′ +∆x(ν)ℓ′ < 0.

• Then:
– the step-sizeα(ν) of the update should be chosen to make constraintℓ′

just binding at the next iteratex(ν)ℓ′ +α(ν)∆x(ν)ℓ′ , and
– the working set should be updated by including constraintℓ′ so that
W(ν+1) =W(ν)∪{ℓ′}.

• We may find that the function evaluated atx(ν)ℓ′ +α(ν)∆x(ν)ℓ′ does not satisfy
a sufficient decrease criterion.

• In this case, we should decrease the step-size further (and not add the
constraintℓ′ to the working set.)
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16.3.2.3 Example
• Consider the feasible set{x∈ R3|1†x= 10,x≥ 0}.
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Fig. 16.5. Change in
working set.
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Example, continued
• This feasible set is an example of a set of the form:

{x∈R
n|Ax= b,x≥ 0}, (16.10)

• whereA=−1† ∈ Rm×n andb= [−10] ∈ Rm, for m= 1 andn= 3.
• This is the same form as the equality constraint in the least-cost

production case study of Section12.1and we know from Section12.1.4.2

thatZ =

[
−1 −1

1 0
0 1

]
is a matrix with columns that form a basis for the

null space ofA.

• Also illustrated in Figure16.5is a current iteratex(ν) =

[
1
3
6

]
∈ R3

+ that is

feasible for the equality constraint.
• Sincex(ν) > 0, we suppose that the current working set is empty,
W(ν) = /0.
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Example, continued
• Consider a partially differentiable objectivef : R3 → R such that

∇f (x(ν)) =

[
2

−1
11

]
.

• The vector:

∆x(ν) = −ZZ†∇f (x(ν)),

=

[
6
3

−9

]

• is a descent direction forf that lies in the null space of the equality
constraint.

• Moving from x(ν) in the direction∆x(ν) will simultaneously:
– improve the objective, and
– maintain satisfaction of the equality constraint1†x= 10.
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Example, continued

• Suppose that the objective decreases along the direction∆x(ν) for
step-sizes up to at least 1:

∀α(ν) ∈ (0,1], f (x(ν)+α(ν)∆x(ν))< f (x(ν)).

• To maintain feasibility, the update cannot progress past thex3 = 0 plane.
• We must chooseα(ν) such that:

x(ν+1) = x(ν)+α(ν)∆x(ν),

=

[
1
3
6

]
+α(ν)

[
6
3

−9

]
,

≥ 0.
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Example, continued

• To satisfyx(ν+1) ≥ 0, a step-size ofα(ν) = 2
3 is chosen so thatx(ν+1)

satisfiesx(ν+1)
3 = 0 and, therefore,x(ν+1) =

[
5
5
0

]
.

• Constraint 3 is added to the working set so thatW(ν+1) = {3}.
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Example, continued

• We now consider movement in a direction∆x(ν+1) such that:
∆x(ν+1) is a descent direction for the objectivef atx(ν+1),
moving in the direction∆x(ν+1) maintains feasibility for the equality

constraint1†x= 10, and
moving in the direction∆x(ν+1) maintains satisfaction of the equality

constraint−x3 = 0 implied by the current working set.

• Suppose that atx(ν+1) the objective decreases with increasing values ofx1
and decreasing values ofx2.

• Then a suitable update direction is shown in Figure16.5as the arrow

labelled∆x(ν+1) having its tail atx(ν+1) and pointing towardsx=

[
10
0
0

]
.
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Example, continued

• We update along the direction∆x(ν+1) until a sufficient decrease in the
objective is achieved or another constraint becomes binding.

• In the former case, a point such asx(ν+2) in Figure16.5would be
obtained.

• In the latter case, another constraint would be added to the working set
and the procedure would continue.

• The iterates typically lie on the boundary of the region defined by the
inequality constraints.
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16.3.3 Swapping out
16.3.3.1 Descent direction

• We can also consider swapping a constraintℓ′′ out of the feasible set.
• Suppose that for someℓ′′ ∈W(ν) we find that a Lagrange multiplier for

the constraint−xℓ′′ = 0 is negative for Problem (16.9).
• In this case, we can potentially reduce the objective by moving in a

direction that makes the constraint non-binding and we should consider
removingℓ′′ from the working set.

• This approach follows the proof of Theorem16.1where a negative value
of a Lagrange multiplier corresponding to an inequality constraint
allowed us to reduce the objective by moving in a direction such that the
constraint became strictly feasible.
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Descent direction, continued
• In practice, the equality-constrained problems may not be solved to

optimality, so that the Lagrange multiplier estimate may bein error.
• Consequently, the working set approach can be prone to “zig-zagging”

where constraints repeatedly move in and out of the active set without
significant progress.

• Various strategies have been devised to avoid erroneously swapping a
constraint out.

• Nevertheless, suppose that we choose to swap out constraintℓ′′ to update
the working set at iterationν.

• Then we revise the working set to beW(ν) \{ℓ′′}.
• That is, we removeℓ′′ from the working set. A descent direction is sought

for the corresponding equality-constrained problem:

min
x∈Rn

{ f (x)|Ax= b,−xℓ = 0,∀ℓ ∈W
(ν) \{ℓ′′}}.
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16.3.3.2 Example

min
x1,x2∈R

{x1−x2|x1+x2 = 1,x1 ≥ 0,x2 ≥ 0}.
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x⋆ = x(1)

x(0)

Fig. 16.6. Trajectory of
iterates using active set
algorithm for example
problem. The feasible
set is indicated by the
solid line.
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Example, continued

• Suppose that we start with the initial guess ofx(0) =

[
1
0

]
for this problem.

• This initial guess is feasible with respect to all the constraints, is strictly
feasible with respect to the inequality constraintx1 ≥ 0, and the inequality
constraintx2 ≥ 0 is active at this initial guess.

Working set

• Since the inequality constraintx2 ≥ 0 is active for the initial guess, the
initial working set isW(0) = {2}.
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Descent direction atx(0)

• We consider the equality-constrained problem:

min
x1,x2∈R

{x1−x2|x1+x2 = 1,−xℓ = 0,∀ℓ ∈W
(0)}

= min
x1,x2∈R

{x1−x2|x1+x2 = 1,−x2 = 0}, (16.11)

• and seek a descent direction for it.
• In fact, however,x(0) is optimal for this problem, but the sign of the

Lagrange multiplier for the constraint−x2 = 0 is negative.
• That is, we are at the minimizer of the equality-constrainedproblem but

have not found the minimizer of inequality-constrained Problem (16.4).
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Update working set

• We update the working set by removing constraint 2 from it.
• That is, we now have the revised working setW(0) = /0.

Descent direction atx(0)

• Since the objective increases withx1 and decreases withx2, a descent
direction atx(0) for the objective that maintains feasibility for the equality

constraintsx1+x2 = 1 is given by∆x(0) =

[
−1

1

]
.
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16.3.4 Alternation of swapping in and out
• We must solve a sequence of problems, alternately swapping in and out.

• We continue with Problem (16.4), starting atx(0) =

[
1
0

]
and using

descent direction∆x(0) =

[
−1

1

]
.
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16.3.4.1 Swapping in

• If we move along the descent direction according tox(0)+α(0)∆x(0), we
find that forα(0) = 1, the constraintx1 ≥ 0 becomes binding.

• We obtain the next iterate:

x(1) = x(0)+α(0)∆x(0),

=

[
1
0

]
+1

[
−1

1

]
,

=

[
0
1

]
,

• and we update the working set toW(1) = {1}.
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16.3.4.2 Descent direction
• We consider the equality-constrained problem corresponding to the

working setW(1) = {1}:

min
x1,x2∈R

{x1−x2|x1+x2 = 1,−xℓ = 0,∀ℓ ∈W
(1)}

= min
x1,x2∈R

{x1−x2|x1+x2 = 1,−x1 = 0}, (16.12)

• and seek a descent direction for it.
• In fact,x(1) is the minimizer of this equality-constrained problem and the

sign of the Lagrange multiplier for the constraint−x1 = 0 is positive.
• That is, we are at the optimum of the equality-constrained problem and

have also found the optimum of the inequality-constrained
Problem (16.4).

Title Page ◭◭ ◮◮ ◭ ◮ 154 of 232 Go Back Full Screen Close Quit



16.3.4.3 Discussion
• Since there were only two inequality constraints we took just one

swapping out operation and one swapping in operation to find the
minimizer.

• In general we will find that we will have to successively swap in and out
various of the constraints and solve several equality-constrained problems
before reaching the minimizer of the original inequality-constrained
problem.
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16.3.5 Finding an initial feasible guess
• To find an initial feasible guess for Problem (16.1), we define another

optimization problem that isrelatedto Problem (16.1) and having the
following properties:
– it is easy to find an initial feasible guess for the related problem,
– if Problem (16.1) is feasible, then a minimizer of the related problem

yields a feasible initial guess for Problem (16.1), and
– if Problem (16.1) is infeasible, then the minimum of the related problem

signals this fact.
• The related problem includes the variablesx∈ Rn from Problem (16.1)

and, additionally, includesartificial variables w∈ Rm.

Title Page ◭◭ ◮◮ ◭ ◮ 156 of 232 Go Back Full Screen Close Quit



Finding an initial feasible guess, continued
• Suppose thatb≥ 0 (or, swap the sign of any negative entry inb and the

signs of the entries in the corresponding row ofA.)
• Consider the following problem, related to Problem (16.1):

min
x∈Rn,w∈Rm

{1†w|Ax+w= b,x≥ 0,w≥ 0}. (16.13)

• Note thatx(0) = 0,w(0) = b≥ 0 satisfies the equality and inequality
constraints of Problem (16.13) and is therefore a feasible initial guess for
this problem that can be used by an active set method.

• We solve this problem using the active set method and this feasible initial
guess.
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Finding an initial feasible guess, continued

• Suppose that

[
x⋆

w⋆

]
is a minimizer of Problem (16.13) with w⋆ = 0.

• Then the minimum of Problem (16.13) is 1†w⋆ = 0 andx⋆ is a feasible
initial guess for Problem (16.1), since:

b = Ax⋆+w⋆, since

[
x⋆

w⋆

]
is feasible for Problem (16.13),

= Ax⋆, sincew⋆ = 0,

x⋆ ≥ 0, since

[
x⋆

w⋆

]
is feasible for Problem (16.13).

• If the minimum is non-zero (so that the minimizer

[
x⋆

w⋆

]
satisfiesw⋆ 6= 0)

then Problem (16.1) is infeasible.
• The process of finding a feasible initial guess for Problem (16.1) is called

phase 1of optimization.
• The feasible initial guess is then used as a starting point byan algorithm

to minimize the objective of Problem (16.1) in phase 2.
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16.3.6 Linear and quadratic objectives
16.3.6.1 Linear programming

Analysis

• Consider a non-negatively constrained linear programmingproblem:

min
x∈Rn

{c†x|Ax= b,x≥ 0}. (16.14)

• Except for:
– the complementary slackness conditionsMx= 0, and
– the inequalitiesx≥ 0 andµ≥ 0,

• the necessary conditions arelinear simultaneous equations.
• The linearity facilitates:

– the calculation of descent directions for the corresponding
equality-constrained problem,

– avoiding zig-zagging, and
– maintaining feasibility as successive iterates are calculated.
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Analysis, continued

• The linear minimization Problem (16.14) is equivalent to maximizing the
objective−c†x over the same feasible set.

• By Theorem2.5, there is a maximizer of−c†x (and therefore a minimizer
of c†x) that is an extreme point of the feasible set.

• We can restrict attention to points that are vertices of the feasible set and
do not need to consider points such asx(ν+2) in Figure16.5that are on the
boundary but not at a vertex of the feasible set.

• Geometrically, contour sets of the objective are parallel hyperplanes.
• The minimum of the linear program corresponds to the hyperplane with

minimum height that intersects the feasible set.
• The intersection will contain a vertex of the feasible set.
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Discussion

• The active set strategy applied to linear programming problems
represented in the form of Problem (16.14), together with various
techniques to make the constraint swapping and calculationof descent
directions more efficient, leads to thesimplex algorithm.

• The simplex algorithm was developed in the 1940s by George Dantzig.
• The vertices of the feasible set of Problem (16.14) are points that satisfy

equations of the form:

Ax= b,−xℓ = 0,∀ℓ ∈W,

• with W havingn−m members (forA∈ Rm×n havingm linearly
independent rows.)
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Discussion, continued

• For example, for the feasible set illustrated in Figure16.5, the vertices are:
[

10
0
0

]
,

[
0

10
0

]
,

[
0
0

10

]
,

• corresponding, respectively, to the three choices:

W= {2,3},W= {1,3},W= {1,2}.

• Each of these choices of working set hasn−m= 3−1= 2 members.
• The form of the feasible set leads to important simplifications for

updating iterates and swapping in and swapping out.
• Swapping in and out is performed simultaneously and calculation of a

descent direction is facilitated by maintaining and updating factors of an
appropriate square sub-matrix of the coefficient matrix of the constraints
Ax= b,−xℓ = 0,∀ℓ ∈W.

• The MATLAB functionlinprog uses the simplex algorithm under some
circumstances.
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Discussion, continued

• For some problems, the simplex algorithm must examine a large
proportion of the possible combinations of active inequalities.

• However, the simplex algorithm usually finds a solution of the problem in
relatively few iterations.

• The simplex algorithm and its variants remain the most used and practical
optimization algorithms.

• If an optimization problem can be formulated as a linear program then it
is worthwhile to do so.

• Many special issues arise in linear programming that allow
simplifications of hypotheses and sharpening of conclusions of the theory
we have discussed.

• For example, some linear integer optimization problems have simple
solutions in terms of linear programming.
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16.3.6.2 Quadratic programming
• As with linear programming, there are also simplifications possible in the

case of quadratic objectives.
• Moreover, there is a large body of active set-based softwareavailable to

solve quadratic programming problems.
• The MATLAB functionquadprog uses an active set algorithm under

some circumstances.

16.3.6.3 Further details
• We have only introduced active set algorithms briefly here; however,

much software written for optimization problems uses some form of
active set algorithm.
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16.4 Approaches to finding minimizers: interior point algorithm
• A very different approach to solving inequality-constrained problems is

not based on identifying the active constraints directly.
• Conceptually, a “barrier” is erected that prevents violation of all the

inequality constraints so that the sequence of iterates remainsstrictly
feasible with respect to the inequality constraints.

• The iterates remain in the interior of the set defined by the inequality
constraints.

• Ideally, the iterates step directly towards the minimizer across the interior
of the feasible region, rather than stepping along its boundary as in the
active set algorithm.

• For this reason, the technique is called aninterior point algorithm .
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16.4.1 Illustration
• To illustrate the interior point algorithm, consider the objective f : R→ R

defined by:

∀x∈ R, f (x) = x,

• and a non-negativity constraintx≥ 0.
• We add abarrier function for the constraintsx≥ 0 to the objectivef (x)

to form thebarrier objective , φ : R++ → R.
• The essential characteristic of the barrier function is that it is partially

differentiable on the interior of the feasible set but becomes unbounded as
the boundary of the feasible set is approached.

• Define the logarithmic barrier functionfb : R++ → R for the constraint
x≥ 0 by:

∀x∈ R++, fb(x) =− ln(x).

• Let t ∈ R++ be a parameter, called thebarrier parameter .
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Illustration, continued
• Define the barrier objectiveφ : R++ → R by:

∀x∈ R++,φ(x) = f (x)+ t fb(x),
= f (x)− t lnx.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.2

0

0.2

0.4

0.6

0.8

1

x

f (x),φ(x) = f (x)− t ln(x)

Fig. 16.7. Barrier ob-
jective for the constraint
x ≥ 0,x ∈ R. The
solid curve shows the
objective f while the
dashed curve shows the
barrier objectiveφ for
t = 0.1 on the interior
of the feasible region.
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Illustration, continued
• As x→ 0+, φ(x)→ ∞.
• An algorithm that is trying to minimizeφ will avoid the vicinity of the

boundary of the feasible region.
• That is, it will produce iterates that are interior to the setdefined by the

inequality constraint.
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Illustration, continued
• For any fixedx> 0, the value of−t ln(x) approaches 0 ast → 0.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

−t ln(x)

Fig. 16.8. Effect on
barrier function for
the constraint x ≥ 0
as t → 0. The dashed
curve shows −t ln(x)
for t = 0.1; the dash-dot
curve shows −t ln(x)
for t = 0.05; and the
dotted curve shows
−t ln(x) for t = 0.01.
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16.4.2 Outline
16.4.2.1 Logarithmic barrier function

• We define the logarithmic barrier functionfb : Rn
++ → R for the

constraintsx≥ 0 by:

∀x∈ R
n
++, fb(x) =−

n

∑
ℓ=1

ln(xℓ). (16.15)
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16.4.2.2 Barrier problem
• Given an objectivef : Rn → R, a barrier functionfb : Rn

++ → R, and a
barrier parametert ∈ R++, we form thebarrier objective φ : Rn

++ → R

defined by:

∀x∈ R
n
++,φ(x) = f (x)+ t fb(x).

• Instead of solving Problem (16.1), we will consider solving thebarrier
problem:

min
x∈Rn

{φ(x)|Ax= b,x> 0}. (16.16)

• We discussed the potential disadvantages of an open feasible set such as
{x∈ Rn|x> 0} in Section2.3.3.

• However, in practice, for suitablef , Problem (16.16) can be solved by a
technique that considers only theequalityconstraints when seeking a
descent direction.
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16.4.2.3 Slater condition
• For Problem (16.16) to be useful in finding a solution of Problem (16.1),

we need to assume that:

{x∈ R
n|Ax= b,x> 0} 6= /0,

• so that Problem (16.16) has a non-empty feasible set.
• This is called theSlater condition.
• This condition requires the existence of a feasible point that is strictly

feasible for the inequality constraints.
• That is, there must be a feasible interior point.
• Many constraint systems arising from physical systems satisfy the Slater

condition.
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Slater condition, continued
• A simple example of constraints that do not satisfy the Slater condition is

defined by the following:

A = [1 1] ,
b = [0] ,
x ≥ 0.

• The set{x∈ R2|Ax= b,x> 0} is empty.
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16.4.2.4 Solving the barrier problem
• To find the minimizer of Problem (16.16) for any particular value oft, we

can start with an initial guessx(0) that satisfiesAx= b andx> 0.
• We then search fromx(0) using an iterative algorithm that seeks the value

of x that minimizesφ(x) subject toAx= b.
• Since the objective functionφ of Problem (16.16) becomes arbitrarily

large as its argument approaches the boundary ofx≥ 0, we only need to
prevent the iterates from going outside the regionx> 0 by controlling the
step-size appropriately.
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16.4.2.5 Sequence of problems
• We solve Problem (16.16) not just at one value oft, but for asequenceof

values oft that approach 0.
• The trajectory of minimizers of Problem (16.16) as a function oft is

called thecentral path.
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16.4.2.6 Example
• Consider again Problem (16.4), which we analyzed in Section16.3.3.2:

min
x1,x2∈R

{x1−x2|x1+x2 = 1,x1 ≥ 0,x2 ≥ 0}.

• The interior point algorithm involves solving the barrier problem,
Problem (16.16), for a sequence of values oft that decrease towards zero.

• For Problem (16.4), the barrier problem is:

min
x1,x2∈R

{x1−x2− t ln(x1)− t ln(x2)|x1+x2 = 1,x1 > 0,x2 > 0}. (16.17)
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Example, continued
• We can calculate the minimizer of Problem (16.17) explicitly as a

function oft.
• We can eliminatex2 using the equality constraint to express the objective

as a function ofx1:

2x1−1− t ln(x1)− t ln(1−x1). (16.18)

• We now have an unconstrained problem:

min
x1∈R

{2x1−1− t ln(x1)− t ln(1−x1)}.

• Differentiating (16.18), setting the derivative equal to zero, and
re-arranging we find that:

(x1)
2−x1(1+ t)+ t/2= 0, (16.19)

• where we note that bothx1 andx2 = 1−x1 must be greater than zero for
the objective and derivative to be defined (and for the inequality
constraints to be strictly satisfied.)
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Example, continued
• The quadratic equation (16.19) has two solutions, both of which are

positive.
• However, only one of the solutions:

x1 =
1+ t −

√
1+(t)2

2
, (16.20)

yields a value ofx2 = 1−x1 that satisfies the strict non-negativity
constraint forx2.

• Substituting, we obtain:

x2 =
1− t +

√
1+(t)2

2
. (16.21)

• In general, we may not be able to conveniently eliminate variables and
solve for the minimizer of the barrier problem explicitly asa function oft
as we have done for Problem (16.17).

• Nevertheless, we can think, in principle, of solving the barrier problem
for a sequence of decreasing values oft.
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Example, continued
• Figure16.9shows the minimizer given in (16.20) and (16.21) of

Problem (16.17) versust for t = 1.0,0.9, . . . ,0.1.
• The minimizers are always in the interior of the set{x∈ Rn|x≥ 0}.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

x2

x⋆minimizer fort = 0.1

minimizer fort = 1.0

Fig. 16.9. The tra-
jectory of the min-
imizers of Prob-
lem (16.17) versus t
for t = 1.0,0.9, . . . ,0.1
shown as ◦. The
minimizer x⋆ of Prob-
lem (16.4) is shown as
a •. The feasible set is
indicated by the solid
line.
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Example, continued
• For large values oft, the minimizer of Problem (16.17) is far away from

the minimizerx⋆ =

[
0
1

]
of the inequality-constrained Problem (16.4).

• However, ast decreases towards zero, the minimizer of Problem (16.17)

approachesx⋆ =

[
0
1

]
.

• We will explicitly discuss a stopping criterion in Section16.4.6.4.
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16.4.2.7 Reduction of barrier parameter
• Because we evaluated the minimizer explicitly as a functionof t, we

could just pickt = 10−10, say, and evaluate (16.20)–(16.21) to obtain:

x⋆ ≈

[
5×10−11

1.0000

]
.

• In general, we cannot solve for the minimizer of Problem (16.16)
explicitly and we will have to use an iterative algorithm.

• It is very difficult to solve Problem (16.16) from scratch for a small value
of t because the initial guess that we can provide for the iterative
algorithm leads to a poor update in seeking an unconstrainedminimizer.

• Instead of trying to minimize the barrier problem from scratch for a small
value oft, we start with a large value oft and use the Newton–Raphson
update to seek a minimizer for this value oft.
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16.4.3 Newton–Raphson update
16.4.3.1 Discussion of the barrier problem

• We seek a minimizer of the problem:

min
x∈Rn

{φ(x)|Ax= b}. (16.22)

• By Theorem13.2, the first-order necessary conditions of Problem (16.22)
are:

∇φ(x)+A†λ = 0, (16.23)
Ax−b = 0. (16.24)

16.4.3.2 Primal interior point algorithm
• We first investigate a straightforward approach to applyingthe

Newton–Raphson update to solving the first-order necessary
conditions (16.23)–(16.24).
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Primal interior point algorithm, continued
• Consider the first term in (16.23):

∇φ(x) = ∇[ f (x)+ t fb(x)],
= ∇f (x)+ t∇fb(x),

= ∇f (x)+ t




∂ fb(x)
∂x1

...
∂ fb(x)
∂xn



,

= ∇f (x)+ t



− 1

x1...
− 1

xn


 ,

= ∇f (x)− t[X]−11,

∇2φ(x) = ∇2f (x)+ t[X]−2.
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Primal interior point algorithm, continued
• The Newton–Raphson update to solve (16.23)–(16.24) is given by:

[
∇2φ(x(ν)) A†

A 0

][
∆x(ν)

∆λ(ν)

]
=

[
−∇φ(x(ν))−A†λ(ν)

b−Ax(ν)

]
,

• or:
[

∇2f (x(ν))+ t[X(ν)]
−2

A†

A 0

][
∆x(ν)

∆λ(ν)

]
=

[
−∇f (x(ν))+ t[X(ν)]

−1
1−A†λ(ν)

b−Ax(ν)

]
.

(16.25)
• This update leads to theprimal interior point algorithm .
• We are not going to investigate this algorithm further, except in

Section18.2.1in the discussion of enforcement of the strict inequality
constraints in the case study of optimal routing in a data communication
network.

• Instead of discussing the primal interior point method, we will consider a
variant in the next section.
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16.4.3.3 Primal–dual interior point algorithm
• Instead of the primal interior point algorithm, we will describe an

algorithm that incorporates linearization of a hyperbolicapproximation to
the complementary slackness constraints, as first introduced in
Section16.1.1.3.
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New variable and equation

• We are going to introduce a new variableµ, which will turn out to
correspond to the dual variables for the inequality constraints in
Problem (16.1).

• We incorporate the equations:

∀ℓ= 1, . . . ,n,µℓxℓ = t. (16.26)

• The approximation in (16.26) allows

[
µℓ
xℓ

]
to lie on a hyperbolic-shaped

set as shown in Figure16.2.
• Linearization of (16.26), together with an explicit requirement to avoid

thexℓ- andµℓ-axes, yields a useful update that can approximately
represent the kink in the complementary slackness conditions.

• We have remarked that we will solve Problem (16.16) for a sequence of
decreasing values oft.

• As t → 0, points that satisfy (16.26) will approach satisfaction of the
complementary slackness conditions:

Mx= 0.
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New variable and equation, continued

• We can re-write (16.26) as:

Xµ− t1= 0, (16.27)

• which we can re-arrange asµ= t[X]−11.
• Recall that∇φ : Rn

++ → Rn is defined by:

∀x∈ R
n
++,∇φ(x) = ∇f (x)− t[X]−11.

• Substituting the expression for∇φ into (16.23) and making the
substitutionµ= t[X]−11, we obtain:

∇f (x)+A†λ−µ = 0. (16.28)
Ax = b. (16.29)

• Equations (16.27)–(16.29) are equivalent to (16.23)–(16.24) in that:
– a solution of (16.23)–(16.24) satisfies (16.28)–(16.29), given thatµ is

defined by (16.27), and
– a solution of (16.27)–(16.29) satisfies (16.23)–(16.24).

Title Page ◭◭ ◮◮ ◭ ◮ 187 of 232 Go Back Full Screen Close Quit



New variable and equation, continued

• The hyperbolic approximation to the complementary slackness conditions
together with (16.28) and (16.29) are equivalent to the first-order
necessary conditions for minimizing Problem (16.22), ignoring the strict
inequality constraints.

• Moreover, (16.28) and (16.29) are two of the lines of the first-order
necessary conditions for Problem (16.1).

• The condition (16.27) becomes more nearly equivalent to the
complementary slackness conditions for Problem (16.1) ast → 0.

• Instead of seekingx⋆ andλ⋆ that satisfy (16.23)–(16.24), we will seekx⋆,
λ⋆, andµ⋆ that satisfy (16.27)–(16.29).
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Step direction

• The Newton–Raphson step direction to solve (16.27)–(16.29) is given by:



X(ν) M(ν) 0
−I ∇2f (x(ν)) A†

0 A 0






∆µ(ν)

∆x(ν)

∆λ(ν)


=




−X(ν)µ(ν)+ t1
−∇f (x(ν))−A†λ(ν)+µ(ν)

−Ax(ν)+b


 ,

• whereM(ν) = diag{µ(ν)ℓ } andX(ν) = diag{x(ν)ℓ }.
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Symmetry

• The Newton–Raphson update equations have a coefficient matrix that is
not symmetric.

• By multiplying the first block row of the equations through by−[M(ν)]
−1

on the left, we can create the symmetric system:


−[M(ν)]

−1
X(ν) −I 0

−I ∇2f (x(ν)) A†

0 A 0






∆µ(ν)

∆x(ν)

∆λ(ν)


=




x(ν)− t[M(ν)]
−1

1
−∇f (x(ν))−A†λ(ν)+µ(ν)

−Ax(ν)+b


 .

(16.30)
• This system is symmetric, but indefinite.
• In general, to factorize it we must make use of the special factorization

algorithms for indefinite matrices as mentioned in Section5.4.7.
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Block pivoting of Jacobian and sparsity issues

• Unfortunately, the top left-hand block of the coefficient matrix of this
system may have entries that are very large and entries that are very
small, depending on whether or not the corresponding constraint xℓ ≥ 0 is
binding.

• This means that the coefficient matrix can be ill-conditioned.
• We can deal analytically with the entries in the top left-hand block of the

coefficient matrix because of its simple structure.
• We will do this by block factorizing the Jacobian using the diagonal

matrix−[M(ν)]
−1

X(ν) as block pivot, noting that we can explicitly invert

−[M(ν)]
−1

X(ν) to obtain−[X(ν)]
−1

M(ν).
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Block pivoting of Jacobian and sparsity issues, continued

• We obtain:



I 0 0

−[X(ν)]
−1

M(ν) I 0
0 0 I





−[M(ν)]

−1
X(ν) −I 0

−I ∇2f (x(ν)) A†

0 A 0




=



−[M(ν)]

−1
X(ν) −I 0

0 ∇2f (x(ν))+ [X(ν)]
−1

M(ν) A†

0 A 0


 . (16.31)
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Selection of step-size

• If we set: 


µ(ν+1)

x(ν+1)

λ(ν+1)


=




µ(ν)

x(ν)

λ(ν)


+




∆µ(ν)

∆x(ν)

∆λ(ν)


 ,

• we may violate the non-negativity constraints onµ or x.
• To avoid this we may have to take a step that is less than the full step-size

of one: 


µ(ν+1)

x(ν+1)

λ(ν+1)


=




µ(ν)

x(ν)

λ(ν)


+α(ν)




∆µ(ν)

∆x(ν)

∆λ(ν)


 ,

• The strict non-negativity constraints are somewhat problematic.
• For example, suppose that we implement the requirement of strict

non-negativity by choosing a toleranceε > 0 and requiring that the next
iterate satisfiesx(ν+1)

ℓ ≥ ε,∀ℓ andµ(ν+1)
ℓ ≥ ε,∀ℓ.
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Selection of step-size, continued

• A serious drawback of this approach is thata priori we do not know how
close the minimizer of Problem (16.22) is to the boundary.

✻

✲ µℓ

xℓ

•

[
µ⋆ℓ
x⋆ℓ

]

✛ ✲
ε

✻

❄

ε

Fig. 16.10. Using a
fixed tolerance to en-
force non-negativity
will prevent conver-
gence to a minimizer.
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Selection of step-size, continued

• We must adjust the tolerance so that iterates can, asymptotically,
approach the boundary.

• One scheme is to pickα(ν) ≤ 1 at each iteration so that

[
µ(ν+1)

x(ν+1)

]
is no

closer than a fixedfraction,say 0.9995, of the distance from the current

iterate

[
µ(ν)

x(ν)

]
to the boundary ofx≥ 0,µ≥ 0 under theL∞ norm.

• With this choice,µ(ν) andx(ν) canapproach any point that satisfies the
complementary slackness condition.

• There are many variations on the choice of step-size.
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Selection of step-size, continued

• It is also possible to use a different step-size for:
– theprimal variablesx, and
– thedual variablesµ andλ.

• That is, we can update according to:

x(ν+1) = x(ν)+α(ν)
primal∆x(ν),

[
µ(ν+1)

λ(ν+1)

]
=

[
µ(ν)

λ(ν)

]
+α(ν)

dual

[
∆µ(ν)

∆λ(ν)

]
,

• where:
α(ν)

primal is chosen to preserve the strict non-negativity ofx, and

α(ν)
dual is chosen to preserve the strict non-negativity ofµ.

• However, we will not take advantage of this flexibility.

Title Page ◭◭ ◮◮ ◭ ◮ 196 of 232 Go Back Full Screen Close Quit



16.4.3.4 Example
• Let us apply the primal–dual interior point algorithm to ourexample

Problem (16.4).

Terms in update

∀x∈ R
2, f (x) = x1−x2,

∀x∈ R
2,∇f (x) =

[
1

−1

]
,

∀x∈ R
2,∇2f (x) =

[
0 0
0 0

]
,

A = [1 1] ,

= 1†,

b = [1].
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Factorization

A =



−[M(ν)]

−1
X(ν) −I 0

−I ∇2f (x) A†

0 A 0


 ,

=



−[M(ν)]

−1
X(ν) −I 0

−I 0 1
0 1† 0


 .

• This matrix is indefinite and, in general, we should use a special purpose
factorization algorithm.

• Here, we will simply applyLU factorization, using the symbolsA( j) and
M ( j) for the matrices created at thej-th stage of factorization.

• Note thatM(ν) = diag{µ(ν)ℓ }.
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Factorization, continued

• Block pivoting ofA using its top-left block−[M(ν)]
−1

X(ν) as pivot yields
M (1) andA(1) given by:

M (1) =




I 0 0

−[X(ν)]
−1

M(ν) I 0
0 0 I


 ,

A(1) =



−[M(ν)]

−1
X(ν) −I 0

0 [X(ν)]
−1

M(ν) 1
0 1† 0


 .
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Factorization, continued

M (2) =




I 0 0
0 I 0

0 −1†[M(ν)]
−1

X(ν) I


 ,

=




I 0 0
0 I 0

0 −[x(ν)]
†
[M(ν)]

−1
I


 ,

A(2) = M (2)A(1),

=



−[M(ν)]

−1
X(ν) −I 0

0 [X(ν)]
−1

M(ν) 1

0 0 −1†[M(ν)]
−1

X(ν)1


 ,

=



−[M(ν)]

−1
X(ν) −I 0

0 [X(ν)]
−1

M(ν) 1

0 0 −[µ(ν)1 ]
−1

x(ν)1 − [µ(ν)2 ]
−1

x(ν)2


 ,
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Factorization, continued

• so that we can factorizeA into:

L =




I 0 0

[X(ν)]
−1

M(ν) I 0

0 [x(ν)]
†
[M(ν)]

−1
1†


 ,

U =



−[M(ν)]

−1
X(ν) −I 0

0 [X(ν)]
−1

M(ν) 1

0 0 −[µ(ν)1 ]
−1

x(ν)1 − [µ(ν)2 ]
−1

x(ν)2


 .
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Initial guess

• As an initial guess, we pick:

x(0)1 = 0.5,

x(0)2 = 0.5,

λ(0) = 2,

t(0) = 0.25,

µ(0)1 = t(0)/x(0)1 = 0.25/0.5= 0.5,

µ(0)2 = t(0)/x(0)2 = 0.25/0.5= 0.5.

• The value oft(0) is large enough to yield a useful update direction for the
initial guessx(0),λ(0), andµ(0).

• We chosex(0) to satisfyAx(0) = b.

• However,x(0) =

[
0.5
0.5

]
is in the “middle” of the regionAx= b,x≥ 0 and

is not close to the minimizer of Problem (16.4).
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Step direction

B =




x(0)− t[M(0)]
−1

1
−∇f (x(0))−A†λ(0)+µ(0)

−Ax(0)+b


 ,

=




x(0)1 − t(0)[µ(0)1 ]
−1

x(0)2 − t(0)[µ(0)2 ]
−1

−1−λ(0)+µ(0)1

1−λ(0)+µ(0)2

−x(0)1 −x(0)2 +1




,

=




0
0

−2.5
−0.5

0


 .
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Step direction, continued

A




∆µ(0)1

∆µ(0)2

∆x(0)1

∆x(0)2
∆λ(0)




= B ,

Y =




0
0

−2.5
−0.5

3


 .
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Step direction, continued



∆µ(0)1

∆µ(0)2

∆x(0)1

∆x(0)2
∆λ(0)



=




1
−1
−1

1
−1.5


 .
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First iterate

• If we set: 


µ(1)

x(1)

λ(1)


=




µ(0)

x(0)

λ(0)


+




∆µ(0)

∆x(0)

∆λ(0)


 , (16.32)

• we will obtain: 


µ(1)1

µ(1)2

x(1)1

x(1)2
λ(1)



=




1.5
−0.5
−0.5

1.5
0.5


 ,

• which will not satisfy the non-negativity constraints onx or µ.
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First iterate, continued

• Instead, we will update according to:



µ(1)

x(1)

λ(1)


=




µ(0)

x(0)

λ(0)


+α(0)




∆µ(0)

∆x(0)

∆λ(0)


 ,

• where 0< α(0) < 1 is chosen to prevent the iterates from going outside
µ> 0,x> 0.

• For the initial guess

[
µ(0)

x(0)

]
=




0.5
0.5
0.5
0.5


, the boundary is 0.5 unit away in

theL∞ norm.
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First iterate, continued

• Using the rule suggested in Section16.4.3, we pickα(0) ≤ 1 to come no
closer than(0.9995)×0.5 units of the distance towards the boundary.

• We choose the largestα(0) such that:

α(0)




∆µ(0)1

∆µ(0)2

∆x(0)1

∆x(0)2



≥−0.9995




µ(0)1

µ(0)2

x(0)1

x(0)2



,

• which yieldsα(0) = 0.49975 and:



µ(1)1

µ(1)2

x(1)1

x(1)2
λ(1)



=




0.99975
0.00025
0.00025
0.99975
1.250375


 .

Title Page ◭◭ ◮◮ ◭ ◮ 208 of 232 Go Back Full Screen Close Quit



16.4.4 Adjustment of the barrier parameter
16.4.4.1 Sequence of equality-constrained problems

• In principle, we could continue iterating with a fixed valuet = t(0) until
we approach a minimizerx(0)⋆ of equality-constrained Problem (16.22).

• We could then usex(0)⋆ as the starting point for the Newton–Raphson
method for Problem (16.22) for a smaller value oft.

• That is, we would be accurately solving a sequence of
equality-constrained problems for points that are on the central path.

• However, we want to reducet as quickly as possible so that the iterates
converge quickly to a minimizer of the inequality-constrained
Problem (16.1).
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16.4.4.2 Reduction of barrier parameter at every iteration
• The minimizer of Problem (16.1) can typically be approached more

quickly by reducingt aftereveryNewton–Raphson update.
• For Problem (16.4), we started far from its minimizer with an initial guess

of x(0) =

[
0.5
0.5

]
and used a relatively large value oft = t(0) = 0.25.

• Nevertheless,x(1) is actually very close to the minimizer of
inequality-constrained Problem (16.4).

• That is,x(1) can be thought of as being close to a minimizer of
Problem (16.17) for a much smaller value oft thant(0).
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16.4.4.3 Effective value of barrier parameter
• We would like a measure of how close the current iterate is to aminimizer

of the original inequality-constrained problem and adjustt accordingly.
• Instead of interpretingx(1) as anapproximateminimizer of

Problem (16.22) for t = t(0), we will see if we can interpretx(1) as an
exact(or nearly exact) minimizer of Problem (16.22) for some other,
hopefully smaller, value oft.

• We think of this value oft as the effective valuet(1)effective for whichx(1) is
nearly the minimizer of Problem (16.22).

• We will then pickt(1) < t(1)effective for the value oft to apply in the next
Newton–Raphson update to calculatex(2).

• By continuing in this way we will construct a sequence{t(ν)effective}
∞
ν=0 and

corresponding (approximate) minimizersx(ν) of Problem (16.22) for
t = t(ν)effective.
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Effective value of barrier parameter, continued

• If the sequence{t(ν)effective}
∞
ν=0 converges to 0 then we have achieved our

goal of a sequence of minimizers of Problem (16.22) with t → 0.
• We will have avoided the effort of performing many iterations at each

value of the barrier parametert to solve Problem (16.22).
• To interpret the iterates as approximate minimizers of Problem (16.16) for

a value of barrier parametert = t(ν)effective, recall that we have been trying to
solve (16.27)–(16.29).

• We are going to interpret




µ(1)

x(1)

λ(1)


 together with a valuet(1)effectiveas nearly

satisfying (16.27)–(16.29).
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Effective value of barrier parameter, continued

• We will assume that (16.28) and (16.29) are very nearly satisfied byµ(1)

andx(1).
• Let:

t(1)effective=
[x(1)]

†
µ(1)

n
, (16.33)

• wheren is the length ofx, so that thatt(1)effective is the average value of

x(1)ℓ µ(1)ℓ .

• If the values ofx(1)ℓ µ(1)ℓ do not vary too much withℓ, then:

X(1)µ(1)− t(1)effective1≈ 0.

• That is,x(1) andµ(1) satisfy (16.27) approximately fort = t(1)effective.
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16.4.4.4 Update of barrier parameter
• We now set:

t(1) < t(1)effective.

• For example, we could choose:

t(1) =
t(1)effective

n
,

=
[x(1)]

†
µ(1)

n2 .

• For largen, this reducest significantly at each step.
• We now must solve (or approximately solve) the barrier problem for the

updated valuet = t(1).
• As initial guess for the minimizer of the barrier problem fort = t(1) we

can useµ(1),x(1),λ(1).
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Update of barrier parameter, continued

• We calculate the Newton–Raphson step direction




∆µ(1)

∆x(1)

∆λ(1)


, and update

according to: 


µ(2)

x(2)

λ(2)


=




µ(1)

x(1)

λ(1)


+α(1)




∆µ(1)

∆x(1)

∆λ(1)


 ,

• whereα(1) is chosen to ensure that thex(2) andµ(2) strictly satisfy the
non-negativity constraints.
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16.4.4.5 Adjustment of barrier parameter in example problem

• In Problem (16.4), sincen= 2 is rather small, we will take an even more
aggressive approach and set:

t(1) =
1
10

t(1)effective= 2.499375×10−5.

• We solveLY = B , where:

L =




I 0 0

[X(1)]
−1

M(1) I 0

0 [x(1)]
†
[M(1)]

−1
1


 ,

=




1 0 0 0 0
0 1 0 0 0

3999 0 1 0 0
0 2.501×10−4 0 1 0
0 0 2.501×10−4 3999 1


 ,
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Adjustment of barrier parameter in example problem, continued

B =




x(1)1 − t(1)[µ(1)1 ]
−1

x(1)2 − t(1)[µ(1)2 ]
−1

−1−λ(1)+µ(1)1

1−λ(1)+µ(1)2

−x(1)1 −x(1)2 +1




,

=




2.250×10−4

0.899775
−1.251
−0.250

0


 ,

Y =




2.250×10−4

0.899775
−2.150
−0.250

1001.050


 .
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Adjustment of barrier parameter in example problem, continued

• Now we solveU




∆µ(1)

∆x(1)

∆λ(1)


= Y , where:

U =



−[M(1)]

−1
X(1) −I 0

0 [X(1)]
−1

M(1) 1

0 0 −[µ(1)1 ]
−1

x(1)1 − [µ(1)2 ]
−1

x(1)2


 ,

=




−2.501×10−4 0 −1 0 0
0 −3999 0 −1 0
0 0 3999 0 1
0 0 0 2.501×10−4 1
0 0 0 0 −3999


 ,
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Adjustment of barrier parameter in example problem, continued
• so that: 



∆µ(1)1

∆µ(1)2

∆x(1)1

∆x(1)2
∆λ(1)



=




1.000
−2.251×10−4

−4.751×10−4

4.755×10−4

−0.25032



.
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Adjustment of barrier parameter in example problem, continued

• Solving forα(1) to bring the next iterate no closer than 0.9995 of the
distance to the boundary ofx≥ 0,µ≥ 0 we findα(1) = 0.526 and:




µ(2)1

µ(2)2

x(2)1

x(2)2
λ(2)



=




1.525428
1.317×10−4

3.056×10−7

0.999999875
1.119


 .

• After only two iterations,x(2) is extremely close to the minimizer of

Problem (16.4), which isx⋆ =

[
0
1

]
.

• The optimal values of the other variables are:µ⋆ =

[
2
0

]
andλ⋆ = [1].

Title Page ◭◭ ◮◮ ◭ ◮ 220 of 232 Go Back Full Screen Close Quit



Adjustment of barrier parameter in example problem, continued
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Fig. 16.11. Progress
of primal–dual interior
point algorithm in x
coordinates for Prob-
lem (16.4). The feasible
set is indicated by the
solid line.
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Adjustment of barrier parameter in example problem, continued
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Fig. 16.12. Progress
of primal–dual interior
point algorithm in µ
and λ coordinates for
Problem (16.4).
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16.4.4.6 Rate of convergence
• For larger and more complex problems, we should expect to take more

iterations to approach an accurate answer and we might expect to use a
less aggressive reduction of the barrier parametert at each iteration.

• Empirically, however, even large problems usually take no more than a
few tens of iterations to solve to high accuracy.

• Variants of this algorithm can be proven to converge super-linearly or
quadratically for linear and quadratic programming problems and for
some other types of convex objectives.
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16.4.5 Finding an initial feasible guess
• As with the active set algorithm, we must find an initial feasible guess in

phase 1before proceeding to minimize the objective inphase 2.
• We require that the initial guess for the primal–dual interior point

algorithm satisfiesx> 0 andµ> 0.
• Again, we will define a problem related to Problem (16.1) that includes

artificial variables and apply the primal–dual interior point algorithm to it.
• There are a number of possible ways to define the related problem.
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Finding an initial feasible guess, continued
• For example letx(0) ∈ Rn

++, supposeA has linearly independent rows,
defineb̃= b−Ax(0), and consider the problem:

min
x∈Rn,w∈R

{w|Ax+ b̃w= b,x≥ 0,w≥ 0}. (16.34)

• Note thatx(0) andw(0) = 1 satisfy the equality and strictly satisfies the
inequality constraints of Problem (16.34) and is therefore a feasible initial
guess for this problem that can be used by the primal–dual interior point
algorithm.

• We solve this problem using the primal–dual interior point algorithm and
this feasible initial guess.

• If

[
x⋆

w⋆

]
is a minimizer of Problem (16.34) with w⋆ = 0 thenx⋆ satisfies

the equality and inequality constraints of Problem (16.1).
• If x⋆ > 0 then the primal–dual interior point algorithm can then usex⋆ as

an initial guess for solving Problem (16.1).
• If w⋆ > 0 then Problem (16.1) is infeasible.
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16.4.6 Summary
16.4.6.1 Initial guess

• The algorithm begins with an initial guess




µ(0)

x(0)

λ(0)


 satisfyingAx(0) = b,

µ(0) > 0,x(0) > 0, and with an initial barrier parametert(0).

Title Page ◭◭ ◮◮ ◭ ◮ 226 of 232 Go Back Full Screen Close Quit



16.4.6.2 General iteration
Newton–Raphson step direction

• At the ν-th iteration we solve (16.30) for the Newton–Raphson step

direction




∆µ(ν)

∆x(ν)

∆λ(ν)


.

• The coefficient matrix has been partially block factorized as shown
in (16.31).

• The factorization should be completed by an algorithm for symmetric
indefinite matrices as mentioned in Section5.4.7.
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Step-size

• The iterate is updated according to:



µ(ν+1)

x(ν+1)

λ(ν+1)


=




µ(ν)

x(ν)

λ(ν)


+α(ν)




∆µ(ν)

∆x(ν)

∆λ(ν)


 ,

• whereα(ν) is chosen so thatµ(ν+1) > 0 andx(ν+1) > 0, (and possibly also
to satisfy a sufficient decrease criterion for the barrier objectiveφ.)

• One rule to guarantee non-negativity ofµ(ν+1) andx(ν+1) is to set:

α(ν) = min

{
1.0,0.9995×

[
min

ℓ∈{1,...,n}

{
µ(ν)ℓ

−∆µ(ν)ℓ

∣∣∣∣∣∆µ(ν)ℓ < 0

}]
,

0.9995×

[
min

ℓ∈{1,...,n}

{
x(ν)ℓ

−∆x(ν)ℓ

∣∣∣∣∣∆x(ν)ℓ < 0

}]}
.

• The step-size may have to be reduced further to satisfy the sufficient
decrease criterion for the barrier objectiveφ.
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16.4.6.3 Update of barrier parameter
• We then update the value of the barrier parameter using a rulesuch as:

t(ν+1) =
∑n
ℓ=1µ(ν+1)

ℓ x(ν+1)
ℓ

n2 .
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16.4.6.4 Stopping criteria

• The iterations continue untilt(ν) is sufficiently reduced, the change in
iterates is small, and the first-order necessary conditionsof
Problem (16.1) are satisfied sufficiently accurately.

• In the case of linear and quadratic programs, we can use duality to
develop a stopping criterion that guarantees closeness off (x(ν)) to the
minimum.

• Suppose that at each iterationν we generate iteratesx(ν) > 0,λ(ν), and
µ(ν) > 0 that satisfy (16.28)–(16.29) then we can use duality to bound the
error in the estimate of the infimum by:

f (x(ν))− inf
x∈Rn

{ f (x)|Ax= b,x≥ 0} ≤ [µ(ν)]
†
x(ν).

• If the problem has a minimum and we iterate until:

[µ(ν)]
†
x(ν) ≤ ε f ,

then f (x(ν)) will be within ε f of the minimum.
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16.4.7 Discussion and variations
• If f is quadratic then linearizing (16.28) introduces no error so that the

Newton–Raphson update can exactly predict the changes necessary to
satisfy (16.28)–(16.29).

• (16.27) is always non-linear and we neglect important terms when we
linearize it.

• A development of the primal–dual algorithm we have described, called
the primal–dualpredictor–corrector method, uses the factorization
of (16.30) for two successive updates, one of which is used to bring the
iterates closer to being on the central path by reducing the variation of
x(ν)ℓ µ(ν)ℓ with ℓ.

• If the problem formulation requires non-negativity constraints on only
some of the entries ofx, then the barrier function terms and the
corresponding Lagrange multipliers can be omitted for the other,
unconstrained, entries.
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16.5 Summary
• We have described optimality conditions for non-negatively constrained

minimization problems, considering also the special case of convex
problems.

• We then considered active set algorithms briefly and interior point
algorithms in more detail as algorithms to solve non-negatively
constrained problems.
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