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Inequality-constrained optimization,
continued



17

Algorithms for linear inequality-constrained
minimization

e In this chapter we will develop algorithms for constraingdimization
problems of the form:

min{ f (x)|Ax=b,Cx < d}, (17.1)

XeRN

e whereAe R™" be R™M Ce R™" andd € R" are constants.
e We call the constraint€x < d linear inequality constraints.



Key issues

e Optimality conditions folinequality-constrained problemsbased on the
results for equality-constrained problems,

e optimality conditions forconvex problems

e transformations of problems, and

e duality andsensitivity analysis



17.1 Optimality conditions
17.1.1 First-order necessary conditions
17.1.1.1 Analysis

Theorem 17.1 Suppose that fR" — R is partially differentiable with
continuous partial derivatives, AR™" be RM,Ce R™".d e R".
Consider ProblemX7.1):

min{ f (x)|Ax=b,Cx < d},

XeRN

and a point X € R". If x* is a local minimizer of Probleml({7.1) then:

I\ € R™ 3ur € R" such that:0f (x*) + ATA*+CTur = 0,
M*(Cx*—d) = 0;
AX" = b;
Cx® < d; and
W > 0, (17.2)

where M = diag{j } € R™".



The vectord\* and |t satisfying the conditionsl{.2) are called the
vectors of Lagrange multipliers for the constraints-Ad and Cx< d,
respectively. The conditions thatfCx" —d) = O are called the
complementary slackness conditionsThey say that, for each either
the /-th inequality constraint is binding or théth Lagrange multiplier is
equal to zero (or both).



Proof The proof consists of several steps:

() showing thatx* is a local minimizer of the related
equality-constrained problem:
)EQIiRQ{f(X)'AXZ b,Cix =d,, V¢ € A(X")},

whereC, is the/-th row of C and the active inequality constraints
atx* for Problem (7.1) are included as equality constraints,

(i) using the necessary conditions of the related equaliystrained
problem to defind* andu* that satisfy the first four lines
of (17.2, and

(i) proving thaty* > 0 by showing that if a constrairft say, had a
negative value of its Lagrange multipligf < O then the

objective could be reduced by moving in a direction such that
constrain becomes strictly feasible.



17.1.1.2 Example
e Recall the example quadratic program, Probl@m. §):

min{ f(x)|Ax=b,Cx < d}.

XeR2
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Example, continued
e The objective and constraints are specified by:

YXERZ f(X) = (x1—1)%+ (x2—3)%

A = [1 _1]7
b = [O]a

C = [0 _1]7
d = [-3].

e In Section2.3.2 we observed that the solution of this problem was

e~ [

e We claim thatx* = [g] together with\* = [—4] andu* = [4]
satisfy (L7.2 for Problem R.18).



Example, continued

2 |2 0] -2
Vxe R4, O (X) = 0 2 x+[_6],

OF (x*) + ATA* Tt

W(Cx" —d)
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Example, continued

Cx = [0 —1] H |

I IA
=
W,
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17.1.1.3 Discussion

e The Lagrange multipliers adjust the unconstrained opttgnabnditions
to balance the constraints against the objective.

e We will again refer to the equality and inequality consttsiim (17.2 as
thefirst-order necessary conditions, although we recogniatthie
first-order necessary conditions also include, strictgedqing, the other
items in the hypothesis of Theorehi.l

e As previously, these conditions are also known askhlen—Tucker
(KT) or the Karush—Kuhn—Tucker (KKT) conditions and a point
satisfying the conditions is calledkKT point .



17.1.1.4 Lagrangian

e Recall Definition3.2 of the Lagrangian.
e For Problem 17.]) the Lagrangiart : R" x R™ x R" — R is defined by:

vx e R" VYA € R™ Ve R", L(x\, 1) = f(X) + AT (Ax—b) + uf (Cx—d).

e As in the equality-constrained case, define the gradientswith respect
T 1
to X, A, andp by, respectively[ L = [gTL] , [hL = [gTL] , and
T
0L

1= o] -

e Evaluating the gradients with respectdad, andy, we have:

(XA, W) = OF(x) +ATA+CTy,
D)\L(X7 )\7 U) = AX— b7
[IJL(X7)\7H) = Cx—d.

e Setting the first two of these expressions equal to zero dejges some of
the first-order necessary conditions for the problem.



Lagrangian, continued

e As with equality-constrained problems, the Lagrangiarvigles a
convenient way to remember the optimality conditions.

e However, unlike the equality-constrained case, in ordeetover the
first-order necessary conditions for Problehi.() we have to:

— add the complementary slackness conditions; thalf$Cx* —d) = 0,

— add the non-negativity constraints pjthat is,u > 0, and

— interpret the third expression as corresponding to inggyuadnstraints;
that is,Cx < d.

e If the hypotheses of TheorefyY.1are satisfied and, additionallf,is
convex therx* is a global minimizer ofZ (e, A*, "), whereA* andy* are
the Lagrange multipliers.



17.1.2 Second-order sufficient conditions
17.1.2.1 Analysis

Theorem 17.2 Let f: R" — R be twice partially differentiable with
continuous second partial derivativesBR™" b ¢ R™,
CeR™" d e R". Consider Problemi(7.1):

min{ f(x)|Ax=b,Cx < d},
xeRN

and points x € R",A* € R™, and (t ¢ R". Let M* = diag{|y }. Suppose
that:

0f (x) + ATV +CTpr = 0,
M*(Cx*—d) = 0,
AX® = b,
Cx < d,
> 0, and

Of (x*) is_positive definite on the null space:
N = {XeRAX=0,C/x=0,V¢ € A, (X U},



where G is the/-th row of C and
AL, ={Ce{l,...,r}|CxX"=d, 1y > 0}.
Then X is a strict local minimizer of Problemnil{.1). O

e The conditions in the theorem are called fezond-order sufficient
conditions (or SOSC)

¢ In addition to the first-order necessary conditions, thesderder
sufficient conditions require that:

f is twice partially differentiable with continuous secorafal
derivatives, and
0% (x*) is positive definite on the null spad¢, defined in the theorem.



17.1.2.2 Example

e Recall again the example quadratic program, Prob2a|.
e For this problem:

Cx" = d,
o= [4],
AL W) = {£e{l,...,r}|CxX" =d, 1y > 0},

= {1}

e since the only inequality constraint in this problem is lngdand the
corresponding Lagrange multiplier is non-zero.
e Consequently,

.‘7\[+ = {AXERWAAXZO,C@AX:O,\V%EA+(X*,|J.*)},
= {AXER”|AAX:O,CAX:0},
- {0}7

e andJ%f (x*) is positive definite on this null space by definition.



17.1.2.3 Discussion

e The sets\; andA , (x*,u*) have analogous roles to their roles in the case
of non-negativity constraints presented in Secfiéril.2

e If 0% (x*) is positive definite o\, then there can be no feasible descent
directions forf atx*.

e As in the non-negatively constrained case, thedsgix*, u*) can be a
strict subset ofA (x*), since it omits those constraintgor which
Cyx* =d, andp; = 0.

e Therefore, the null space specified in TheorEn

A, = {Ix € RNAMX = 0,C; = 0,V € A (X", 1)},

e can strictly contain the null space corresponding to theakiyu
constraints and the active inequality constraints.
e That isA/. can strictly contain the null space:

N = {Ix € R"AMX = 0,C; = 0,V/ € A(X)}.

e As in the non-negatively constrained case, constraint&/foch C,x* = d,
andp; = O are calleddlegenerate constraints



17.1.2.4 Example of degenerate constraints
e Consider the following modified version of Proble2X8):

min{ f (x)|Ax= b,Cx< d}.

xeR2

X1

(17.3)
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Example of degenerate constraints, continued
e The objective and constraints are specified by:

YXERZ f(X) = (x1—1)%+ (x2—3)%

A= [1-1],
b = [0],
C = 1[0 1],
d = [-2].

e First consider the relaxation of Probledi7(3 where we neglect the
inequality constraint.
e This relaxation yields Problen2 (13, which we first met in

Section2.3.2.2and which has minimizexr* = [g] .



Example of degenerate constraints, continued
e Now notice that:

Cx =[-2/<[-2 =d,

e SO thatx* is feasible for Problemi(/.3.

e By Theorem3.1Q x* is a also minimizer of Problenmi{.3.

e We claim thatx* together withA\* = [—2] andp* = [0] satisfy the
first-order necessary conditions for Problehi.Q).

0 () + AN 4+-CTe
— [(2) (2)] E] + [_é] + [_ﬂ [—2] + [_2] 0],
— 0
HqCﬁd)::Kﬂ<m q[%][207
S



Example of degenerate constraints, continued
AX® = [1 —1] [2],

2
0

b;

ox = [0 -1] 3],
J,
|

—_

o

2
2

and

[_
[,\_ )
d:

I IA

©

'y :

[
0

0], so that the constrai@x < d is

AVAI

e Notice thatCx* = d andp*
degenerate.

—



Example of degenerate constraints, continued
e For this problem:

Ay, ) = {£e{1,... r}Cx* =d, 1 > 0},
= 0,
N, = {MXeR?)AMX=0,C/X =0,V € A (X, 1)},
— {Mxe R?ANX =0},
= {IXeR?|Dxg = Mo}
¢ \We have that:

Vx € R?, 0% (x) = [(2) g] ,

e which is positive definite ofR? and therefore also positive definite 8§ .
e Therefore, the second-order sufficient conditions hold agpd
Theoreml7.2 x* is a strict local minimizer of Probleni?.3.



17.1.2.5 Example of second-order sufficient conditionsofating

e Consider the following modified version of Probledv (3 from
Sectionl7.1.2.4

min{@(x)|Ax=b,Cx < d}, (17.4)

xcR?
e wWhere@: R? — R is defined by:
vx € R?, @(x) = — f(x).
e That is, we are minimizing— f) instead off.
e We claim thatx= [g] together withh = [2] andyi = [0] satisfy the

first-order necessary conditions for Problehi.4).



Example of second-order sufficient conditions not holdoagtinued

weatam = [ g« [{]
Op(R) + A +CT
= __g _g_ E] + [é] + [_ﬂ 2] + [_2] 0],
=0
pcg—d) = [0] <[o —1] [%]—[—2])
= [0 x[0],
= (0]
oo
= (0],
=)



Example of second-order sufficient conditions not holdoagtinued

GRS

-2,
-2},
d; and
0],
0].

o Notice that agailCX = d and}i= [0].

CX

I IA

o

AVAR|

e Therefore, iiX'= [g] andi = [0] werethe minimizer and the Lagrange

multiplier corresponding to the constra®k < d, then this constraint
would be degenerate.



Example of second-order sufficient conditions not holdoagtinued
e For this problem:

A—i-()’zaﬁ) - {€€{1,...,r}|Cg)2:d\g,ﬁg>O},
= 0,
N, = {IxeR’|AX=0,Cx=0,V0 € A (X[},
— {Mxe R?AMX =0},
= {IXeR?|Dxg = Mo}

e However, we note thdfiZp(X) = [_g _(2)] IS not positive definite on
+. . . ",
e Therefore the second-order sufficient conditions do nad.hol
e In fact, X is not a minimizer of the problem, since the objective can be
reduced by moving away fromalong the equality constraint so as to

make the inequality constraint strictly feasible.



Example of second-order sufficient conditions not holdoagtinued

e The fact thai’is not a minimizer can be seen from Figuré.2 on noting
that the contours ap are the same as those fafexcept that the heights of

the contours ofp decreasawayfrom the point % :
¢ If we haderroneouslyconsidered the null space:
N = {MeR?’AMX=0,Cix=0,¥lc AR)},
— {Dx e R?|Axg = Mg, —xp = 0},
= {0},

e then we would not have realized thais'hot a minimizer.



17.2 Convex problems
17.2.1 First-order sufficient conditions
17.2.1.1 Analysis

e If the constraints consist of linear equality and inegyatiinstraints and
if fis convex on the feasible set then the problem is convex.

e In this case, the first-order necessary conditions are aficient for
optimality.



Theorem 17.3 Suppose that fR" — R is partially differentiable with
continuous partial derivatives, AR™" be RM,Ce R™".d e R".
Consider ProblemX7.1):

min{ f (x)|Ax=b,Cx < d},
XeRN
and points x € R", A* e R™, and i € R". Let M* = diag{|y }. Suppose
that:
(i) fisconvex oxe R"|Ax=b,Cx<d},
(i) Of (x*) + ATA* +CTpr =0,
(iii) M*(Cx"—d) =0,
(iv) AXx=band Cx <d, and
(V) i > 0.
Then X is a global minimizer of Problemil{.]).

Proof The proof is very similar to the proof of Theorelhs.3in
Chapterl6. O

¢ In addition to the first-order necessary conditions, thé-@rder sufficient
conditions require that is convex on the feasible set.



17.2.1.2 Example
e Again consider Problen2(18 from Section2.3.2.317.1.1.2
andl17.1.2.2
3

e In Section17.1.1.2 we observed that" = | 5 |, A* = [—4], andp = |4]

satisfy the first-order necessary conditions for this peobl

e Moreover,f is twice continuously differentiable with continuous pairt
derivatives and the Hessian is positive definite.

e Therefore,f is convex anc* is the global minimizer of the problem.



17.2.2 Duality

e As we discussed in Sectid@4 and as in the discussion of linear equality
constraints in Sectioh3.2.2 we can define a dual problem where the role
of variables and constraints is partly or fully swapped.

e \We recall some of the discussion in Sect®din the following sections.



17.2.2.1 Dual function

e \We have observed in Sectidi7.1.1.4that if f is convex therx* is a
global minimizer ofL (e, A*, ).

e Recall Definition3.3 of thedual function andeffective domain

e For Problem 17.1), the dual functionD : R™ x R" — RU {—o} is
defined by:

\ [)\] cR™T D\, W) = inf L(XA, ). (17.5)
M xeRN

e The effective domain of) is:
E= { [ﬁ] c R™T | D\, ) > —oo}.

e Recall that by Theorer.12 E is convex andD is concave Offt.




Example

e \We continue with Problen?(18).
e The problem is:

min{ f(x)|Ax=b,Cx < d},

XeR?

e Where:

<
X
Mm
7
N
—
N
I

1
0]
0 -1J,
3].

e The LagrangiarL : R? x R x R — R for this problem is defined by:
Vx € R? VA € R,VueE R,
LX) = f(X)+AT(Ax—b)+pf(Cx—d),
= (x1—1)2+ (% —3)2+A[1 —1]x+pu([0 —1]x+3).

(
[
[
[
[-

o O o >
I



Example, continued

e For any giver\ andy, the Lagrangiar_(e, A, ) is strictly convex.

e By Corollary 10.6 the first-order necessary conditiong_ (X,A\,t) =0
are sufficient for minimizingZ(e, A, ).

e Moreover, a minimizer exists, so that the inf in the defimtaf D can be
replaced by min.

e Furthermore, there is a unique minimizét¥ corresponding to each
value ofA andp:

Vx e R2, VA € R,VuER,
(XA, W) = OF(x) +ATA+CTy,

- e[ (e[ Y
neamennon - (39" e[ 29

= H + [‘822] A+ [8.5] L. (17.6)



Example, continued

e Consequently, the effective domainis= R x R and the dual function
D:R xR — Ris given by:

vm eR2, D\, = XienﬂgnL(x,)\,u),
= L(xXM X, ), sincex®H minimizesL(e,\, 1),
_ (x(l)"”) _ 1)2+ (X(ZA,H) _3)2
FAL —1]x<M*>+p([o —1]x<M*>+3),
o - e =T

e on substituting from17.6) for xM¥,



17.2.2.2 Dual problem
Analysis

e As in the equality-constrained case, if the objective isvearonR" then
the minimum of Problem1(7.1) is equal toD(A*, "), whereA* andp*
are the Lagrange multipliers that satisfy the necessarglitons for
Problem (7.1).

¢ As in the equality-constrained case, under certain candfithe
Lagrange multipliers can be found as the maximizer ofdihal problem:

Hax{@(k,u)luz 0}, (17.7)
N EE

e where?D : E — R is the dual function defined irl7.5.
e Again, Problem17.]) is called theprimal problem to distinguish it from

Problem (7.7).



Theorem 17.4 Suppose that fR" — R is convex and partially
differentiable with continuous partial derivatives AR™", b e R™,
C e R™" and de R". Consider the primal problem, Problerh7.):

min{ f(xX)|Ax=b,Cx < d}.

xeRN
Also, consider the dual problem, Probledv (7). We have the following.

(i) If the primal problem possesses a minimum then the dual @nobl
possesses a maximum and the optima are equal. That is:

min{ f(xX)|Ax=Db,Cx<d} = rpax{@(A,uﬂug 0}.

X€RN [N €E
(i) If:

[ e

e Minyrn L(X, A, ) exists, and
e f is twice partially differentiable with continuous second
partial derivatives andJ%f is positive definite,



thenD is partially differentiable at[ﬁ] with continuous partial

derivatives and:

hAD(A, 1 AxAH
[ [I):@E)HU;] =DM = [CX()\,p) —d] ; (17.8)

where ¥MM is the unique minimizer afinegn £(X, A, ).



Proof

(i) Suppose that Problemi7.1) possesses a minimum with
minimizerx*. By Theoreml7.1,

IV € R™ Ju* € R, such thad = Of (x*) + AN+ CTr,
— DXL(X*v)\*au*)v
where we note thaf (e, A*, 1) is convex and partially

differentiable with continuous partial derivatives, sattiby
Corollary10.6 x* is also a minimizer of_(e,A*, u*). Therefore,

DN, ) = inf LN W),

xeRN
= L(X*,\",), becausec* minimizesL (e, A*, 1),
= f(x")+ M]T (A% —b) + []T(Cx" — d), by definition,
= f(x"), sincex* is feasible and, by Theoreftv.],
Ww(Cx —dy) =0,v¢=1,....r,
> DA\, VA € R Vue R, by TheorenB.13



*

That is, ﬁ* maximizes the dual function ovare R™ and

pe R :
f(x) = max{D(\,Wu=> 0},
[o]€E
= DN\, ).
(i) Proved in an exercise.
(]
Discussion

e As in the equality-constrained case, it is possiblefoio not be partially

differentiable at a poin{ﬁ] c Eif:

L(e,A, 1) is bounded below (so that ifrn £ (X, A, 1) € R) yet the
minimum minkern £ (X, A, L) does not exist, or
there are multiple minimizers of mipgn £ (X, A, 1).



Corollary 17.5 Let f: R" — R be twice partially differentiable with
continuous second partial derivatives and witkf positive definite,
Ac R™N bheRMCeR™ deR". Consider Problemi7.1):

min{ f(x)|Ax=b,Cx < d},

xeRN

the Lagrangian of this problem, and the effective doniawf the dual
function. If:

o the effective domaili containsR™ x R',, and
e for eachA € R™ and pe R’ , minyern L(X, A, 1) exists,

*

then necessary and sufficient conditions ﬁ\f;] € R™T' to be the

maximizer of the dual problem:

max{ D(A, p) |1 = 0},
HS2



are:

AXNH) =
CxXMH) _d < o
M*(CxM M) —d) = 0; and

> 0,

where{x*" )} = argminegn L(x,A*, &) and M = diag{}; }.
*

Moreovet, if [ﬁ*] maximizes the dual problem then the corresponding

minimizer of the Lagrangian,X ¥, together with\* and r satisfy the
first-order necessary conditions for Probledv(2).



Proof Note that the hypothesis implies that the dual function i$din
for all A € R™and allp € R, so that dual problem is a non-negatively
constrained maximization of a real-valued function andrenwer, by
Theorem3.12 —D is convex and partially differentiable with continuous
partial derivatives on the convex set:

pzo}.

A
Rm-i-r
Ll
DN, 1) = AXMH) _p,

Moreover, by Theorerk7.4,
0D\, W) = CXMH) —d,

Applying Theoremd.7.1and17.3to the dual problem and some
substitution yields the conclusioh]




Discussion

e Theoreml7.4shows that an alternative approach to finding the minimum
of Problem (7.]) involves finding themaximunof the dual function
DA, W) overA e RM pe R", u>0.

e Theorem3.12shows that the dual function has at most one local
maximum.,

e To seek the maximum aD(A, ) overA € R™ pe R, u> 0, we can, for
example, utilize the value of the gradientDffrom (17.8) as part of an
active set or interior point algorithm.

e As in the equality-constrained case, under some circurossaiit is also
possible to calculate the Hessian®f



Example

e Continuing with the dual of Problen2(18), we recall that the effective
domain isE = R x R and the dual functio : R xR — R is:

M g2 _ Lotz L

v M € B2 DA = —5 (V)2 ()7~ 2~ S\,

e With unique minimizer of the Lagrangian specified ly (6).

e The dual function is twice partially differentiable withminuous second
partial derivatives.

e In particular,

A 5 [ 2-A—p/2
R*, OD(A =
V[u] € y ( 7“) ] _)\/Z_H/Zla
N _[-1 -05
V[u € R? 0*D(\, 1) = 05 _0.5].
. A" —4 . .
e We claim that[u* = [ 4] maximizes the dual function over> [0].




Example, continued
e In particularOD(A\*,u¥) = 0, u* > [0], andd?D is negative definite.
*

° Consequently{ﬁ*] Is the unique maximizer of dual Probled7(7).

e \We also observe that" = [—4] andp* = [4] satisfy the conditions
specified in Corollaryl 7.5for maximizing the dual.

e To see this, we first usd 7.6) to evaluatex™¥ at\* = [—4] andp* = [4].

e We obtainx*" 1) = g .

e We will also show that the necessary and sufficient condstian
Corollary 17.5for maximizing the dual are satisfied.



Example, continued

e —a) = fal (10 -1 |3 -1-3),

AXAH) _py — (1 —1] _g_,
-0
CXNH) —d = [0 1] | 3| ~[-3,
=0,
< [0]; and
u = [4],
> [0].

e Moreoverx®" ) together with\*, andp* satisfy the first-order
necessary conditions for Proble18).



Discussion

e As in the equality-constrained case, it is essential in Téwad.7.4for f
to be convex on thevholeof R", not just on the feasible set because the
inner minimization ofZ (e, A, ) is taken over the whole @".

e Unfortunately, iff is not strictly convex therL (e, A, ) may have
multiple minimizers ovex for fixed A and .

e In this case, it may turn out that some of the minimizer£0é, A*, i) do
not actually minimize 17.1).

e Moreover, if there are multiple minimizers af(e, A, 1) thenD(A, 1) may
be not partially differentiable.

e The issues are similar to the equality-constrained case.



Discussion, continued

¢ In the particular cases of linear and of strictly convex qatid programs,
we can calculate the dual function and characterize theteffedomain
explicitly.

e This allows us to use duality for the not strictly convex catenear
programs.

e The dual problem is non-negatively constrained of the fofm o
Problem (6.1) and we can apply essentially the same algorithms as we
developed for Problent@.l).

e We will take this approach in Sectidv.3.2



17.2.2.3 Dual of linear and quadratic programs

¢ In the case of linear and of strictly convex quadratic pratggawe can
characterize the effective domain and the dual functioti@ig by
solving the first-order necessary conditions for minimigihe
Lagrangian:

L(X,A, 1) = 0.

e The approach parallels that of the Wolfe dual, described in

Sectionl3.2.2.2

e We first consider the case of linear objective and then btrooinvex
guadratic objective.



Linear program

vxeR" f(x) = c'x,

Yxe R VYA € R™ Vue R, L(x,\, 1) = c'x+AT(Ax—b)+p'(Cx—d),
vx e R"VA e R™" Vue R, L(X A M) = c+AA+CT
e The first-order necessary and sufficient conditions for mining the

Lagrangian are+A'A +CTu=0.
e These conditions do not involwe but also do not necessarily have a

solution for all values oA and.



Linear program, continued

If c4+A"A +CTu+ 0 thenL(e,\, ) is unbounded below an[f:l] ZE.

If c++AT"A +CTu= 0 then, after substituting, we find that:

D\ = —Ab—yld,
> —00,

= {fee

vV m eE, D\, = —A'b—p'd.
e \We now substitute the characterization of the dual funciiod effective
domain into the definition of the dual problem and apply Teeoi 7.4

e We assume that mjagn{c'x|/Ax=b,Cx < d} possesses a minimum.

e Thatis:

c+AN+Clu= 0} :



Linear program, continued
min{c'x/Ax=b,Cx < d}

xcRN

= ﬁax{ﬂ)(A, W[ > 0}, by Theoreml7.4
A €E

= max {D(A,p)|c+AA+Cpu=0,pu>0},

[o] R
sincekE = { [i\l] e R™Tc+AAN+Clu= O},
= max {-ATb—p'djc+AN+CTu=0,u>0},

[i] R
sinceD(A, 1) = —ATb—p'd for c+ ATA +CTu=0,
= — min {ATb+p'djc+AN+CTp=0,u>0},

[ R
T
[é] m — _cu> o} | (17.9)

- [ﬁ]?x@r { [3] | m




Linear program, continued

e The dual problem in the last line 017.9 has a linear objective, linear
equality constraints, and non-negativity constraintshmvariablegu.
e Since the primal problem has a minimum, there is at least omg m the

feasible set of the dual problem,
T
Al A
[C] u] :CaHZO}a

A

E, = Rm-H'

: {M -

namely the Lagrange multiplier{s)\* that correspond to the minimizer

Lt

x* of the primal problem.

e \We say that the problem dual feasible

e \We have transformed a primal problem witlvariablesm equality
constraints, and inequality constraints into a dual problem with+r
variablesn equality constraints, andinequality constraints.

e The dual of a linear program is therefore also a linear progkaut with
non-negativity constraints instead of general linear uraditjes.



Quadratic program
vxeR™ f(x) = IxTQx+clx,
vx e R", VA € R™ Vue R,
LAY = ZXTQX—I—C x+AT(Ax—b) 4 ' (Cx—d),
vx e R", VA € R" Vue R,
(XA W) = Qx+c+AA+CT
e The first-order necessary conditions for minimizinge, A, 1) are that
Qx+c+A+Clu=0.
e Assuming thaQ) is positive definite, these conditions have a solution for
all values ofA andy, namelyx = —Qt[c+ A"A +CTy], yielding:

A
Rerr
‘| ex
D) — _%[c+ATA+cTu]TQ—1[c+ATA+ch]—ATb—qu,

e SO thatE = R™,



Quadratic program, continued

o If Minyern{3x'Qx+c"X/Ax=b,Cx < d} possesses a minimum then by
Theoreml7.4

min{%xTwaL c'x|Ax=b,Cx < d}

XeRN

= max{D(A, y)|n= 0},
[h]<E

— [A]mRaé {—%[C+AT)\+CT|1]TQ1[C+AT)\+CT|1]—)\Tb—qu‘uZO},
HE '
— — min {%[C—I—AT)\-FCTH]T

[o] R™T

Q lc+AN+CTH +Ab+ qu' > o} .

(17.10)

e The dual problem in the last line c17.10 has a quadratic objective and
non-negativity constraints.



Quadratic program, continued

e \We have transformed a primal problem witlvariablesm equality
constraints, and inequality constraints into a dual problem with+r
variables and inequality constraints.

e The dual of a quadratic program is therefore also a quadvatigram.

e Again, the form of the inequality constraints in the dualim@er than in
the primal problem since they are non-negativity constsain

e If we solve the problem in the last line af7.10 for optimalA* andp*
then the minimizerx*, of the primal problem can be recovered as
X5 — —Q_l[C—I—AT)\*—I—CTLl*].



Discussion

e There is considerable literature on the relationship betwaimal and
dual linear programs and on primal and dual quadratic progra

e The standard treatment of duality in linear programmingedsf from the
way we have discussed it here, there are a variety of spexsakcand we
have omitted many details.

e For example, we have not discussed how to recover a minirofzée
primal problem from the solution of the dual of a linear pragr

e Furthermoreprimal—dual algorithms (including the primal—dual
interior point algorithm described in Sectid6.4.3.3 represenboththe
primal and dual variables and simultaneously solve for bio¢h
minimizer and the Lagrange multipliers.

e The primal—dual interior point algorithm is therefore eggdly the same
whether it is applied to the primal or dual problem.



17.2.2.4 Partial duals

Analysis
e \We can define thpartial dual with respect to some of the constraints.
e For example, defin@®_ : R™ — RU{—oew} andD< : R" — RU{—o} by:
YAERTD_(\) = inf {f(x) +AT(Ax—b)|Cx< d},
xeRN

YUER", Do (M) = inf {f(x)+p'(Cx—d)|Ax= b}.

XeRN

e The function?- is called the partial dual with respect to the equality
constraints, whileD is called the partial dual with respect to the

inequality constraints.



Theorem 17.6 Suppose that fR" — R is convex and partially
differentiable with continuous partial derivatives AR™", b e R™,

C e R™" and de R'. Suppose that Problem1.1) possesses a
minimum. Then:

min{ f (X)|Ax=b,Cx < d} = max{D_(A\)} = max{D<(W)|u > 0},
xeRN AeE_ pHeE< =
whereD_ is the partial dual with respect to the equality constraiatsl
E_ is its effective domain an@- is the partial dual with respect to the
inequality constraints anél< is its effective domain

e It is also possible to take a partial dual with respect to @aoiye of the
equality or some of the inequality constraints or some ofiladtthe

equality and inequality constraints, leaving the otherst@ints explicitly
in the problem.



Separable problems
e To see an example of the usefulness of partial duality, demnshe case
where:

f is separable and strictly convex, so ttiék) = y,_; fk(X), and
the inequality constraints consist only of upper and lowaarril
constraintx < x < X.



Separable problems, continued

YA € R™ D_(A)

= min{f(x)+AT(Ax—b)|Cx< d},
XeRN

= min{f(x) +A\T(Ax—b)[x < x < X},
XeRN

n n

= min¢ § fie(xi) + AT S A — AT X, <3 <X, Vk=1,....np,

=l K=t

whereAy is thek-th column ofA,

= min{ i (fk(Xk) —I—)\TAka> ~ Ao

XeRN P
on re-arranging,

n
=3 min{fi(x) + A A|x < x <%} —A'b,
kzlkaR

e On swapping the minimum and the summation.

X < X < X, VK= 1,...

(17.11)



Separable problems, continued

e For a given value ok, the dual with respect to the equality constraints is
the sum of:

a constant—ATb), and
n one-dimensional optimization sub-problems that can eaatvhluated
independently.

e The primal problem has beelecomposednto a collection of
sub-problems using the partial dual.

e For a problem with constraints that couple between subipnod, by
dualizing with respect to thes®upling constraintswe can decompose
the problem into the sub-problems.

e If each sub-problem is simple enough, it may be possible atuate its
minimizer and minimum explicitly without resorting to areiative
technique.

e This applies to the least-cost production case study frooti@el5.1and
will be described in detail in SectialB.1.2.2



17.3 Approaches to finding minimizers
e In this section we will show two basic ways in which
inequality-constrained Probleri{.1) can be transformed into the form
of Problem (6.1) from Chapterl6.
e We can then use the algorithmic development from Chalfi¢o solve
Problem (7.1).



17.3.1 Primal algorithm
17.3.1.1 Transformation
Slack variables
e To handle the inequality constraints of the primal problera,consider

the following problem incorporatinglack variablesas introduced in
Section3.3.2

min _ {f(x)|Ax=b,Cx+w=d,w > 0}. (17.12)

xeRN weR'

e The variablesv are called theslack variablesbecause they account for
the “slack” in the constraintSx < d.
e By Theorem3.8, Problem (7.12 is equivalent to Problenl{.2).



Slack variables, continued

e In Problem (7.12), if we consider:

X
w

f to be the objective, and

é ?] [v)\(/] = [3] to be the equality constraints,

e then Problem17.12 can be expressed in the form of Problels.()
(except that we have non-negativity constraints onyuahd not on the

)

€ R™' to be the decision vector,

whole of the decision vect r\j(v

e The equivalent problem is:

min {f(x) [é ?] [\i(v] = [3],W2 O}. (17.13)

xeRN,weR'f
¢ In the next section, we will apply the primal-dual interiaimt algorithm
from Sectionl6.4to Problem 17.13.




17.3.1.2 Primal—dual interior point algorithm
Barrier objective and problem

e Given a barrier functiorfy : R', | — R for the constraintsv > 0 and a
barrier parametdre R, , we form thebarrier objective
@:R"xR' . — R defined by:

vxe R vwe R, @(x,w) = f(X)+tfp(w).

e Instead of solvingX7.13, we will consider solving théarrier problem :

XemeeRr{Mx,W) ‘ [é ?] [;(\,] = [3] ;W > O}. (17.14)

e We seek (approximate) minimizers of Probleh7 (14 for a decreasing
sequence of values of the barrier parameter.



Slater condition

e As in the case of non-negativity constraints described tti&e16.4.2.2
in order to apply the interior point algorithm effectivelye must assume
that theSlater condition holds so that there are feasible points for
Problem (7.14.

e Thatis, we assume th&k € R"|Ax=b,Cx< d} # 0.



Equality-constrained problem

e To solve ProblemX7.14, we can take a similar approach to the
primal—dual interior point algorithm for non-negativitprstraints
presented in Sectiob6.4of Chapterl6.

e \We partially ignore the inequality constraints and seekiati&m to the
following linear equality-constrained problem:

xeann,\i/\r/]eRr {(p(x,w) ‘ [é (I)] lc(v] - [3] }7 (17.15)

e which has first-order necessary conditions:

Of (x) + ATA+CTp = 0, (17.16)
AX = b, (17.17)

Cx+w = d, (17.18)
tOfp(w) +p = 0, (17.19)

e whereA andpu are the dual variables on the constraifts= b and
Cx+w = d, respectively.



Equality-constrained problem, continued

e \We can use the techniques for minimization of linear equalitnstrained
problems from Sectioh3.3.20f Chapterl3to solve ProblemX7.15.

e In particular, in Sectiori7.3.1.3 we will consider the Newton—Raphson
method for solving the first-order necessary conditions of
Problem (7.15.



Logarithmic barrier function

e As in the primal—dual interior point algorithm for non-néigay
constraints, we will use the logarithmic barrier function:

vwe R, fp(w) = —;In W),

vwe R, Ofp(w) = 1

e whereW = diag{w;} ¢ R"™*"is a diagonal matrix with diagonal entries
equal tow,,/ =1,...,r

e Substituting the expression faif, into (17.19 and re-arranging, we
obtain:

Wp—t1=0. (17.20)

e Note that (7.20 is analogous t0l(6.27 and can again be interpreted as
approximating the complementary slackness constraings by
hyperbolic-shaped set.



17.3.1.3 Newton—Raphson method
Analysis

e The Newton—Raphson step direction to sol¥é.20 and (L7.16—(17.19
Is given by the solution of:

M) 0 o w1 [avv)]
0 O%(xxV) At cf AxV)
0 A 0 0 M)
| C 0 0 | AW
I ~WOV) 411
| =Of (X)) — ATAV) —CTpv)
B b— AXY) ’
d—CxV) —wV) .

o whereM™ = diag{p"'} andw) = diag{w!"’}.



Analysis, continued

e As in the case of the primal—dual interior point algorithm fo
non-negativity constraints discussed in Sectiém.3.3 we can
re-arrange these equations to make them symmetric andade bl
pivoting on the top left-hand block of the matrix since it iagbnal,

e This results in a system that is similar ti3(39, except that a diagonal
block of the formM(™)] ‘W) is added to the Hessidr?f (x\)).

e Issues regarding solving the first-order necessary comditisuch as
factorization of the indefinite coefficient matrix, appnadte solution of
the conditions, sparsity, and step-size selection, argasito those
described in Sectionk5.4.3.3and13.3.2.3



Example

e In this section, we will apply the primal-dual algorithm tetexample
guadratic program, Probler.(L8):

min{ f (x)|Ax=b,Cx < d},

xeR2
e Where:
YXeR2 f(x) = (x1—1)°+ (xo—3)?,
A = [1 _1]7
b — [0]7
C = [O _1]7
d = [-3].



Example, continued
e The Newton—Raphson update for the corresponding barrdxigm is:
i) 0o 0 0wV

T AWV T
O 2 0 1 O (v)
O 0 2-1-1 B
M\(V)
0 1-1 0 0 )
|1 0-1 0 o0 | LM
i W(V)u(V)+t |




17.3.1.4 Otherissues
Adjustment of barrier parameter

e To reduce the barrier parameter, we can use the approacdhbaesin
Sectionl6.4.40f Chapterl6.
Initial guess

e \We can take an approach analogous to that in Sedtoh5to find an
initial feasible guess for Problem7.13 that is strictly feasible for the
non-negativity constraints.



Other issues, continued
Stopping criterion

o f(x(V)) will be within £¢ of the minimum of the non-negatively
constrained problem if:

VW) < g,
e Wherep is the vector of dual variables corresponding to the coimta
w > 0 (and corresponding to the constraiGts< d.)
Non-negativity and lower and upper bound constraints orx

¢ If we add constraints of the form> 0to Problem 17.1) then we can
also include them in the barrier function and Probldm.{4.

e Box constraints of the form, < x, <X, can be treated with a barrier
function of the form:

—t (|n(Xg —)_(g) + |n()_(g — Xg)) )



17.3.2 Dual algorithm
17.3.2.1 Inequality constraints

e We can take the dual with respect to some or all of the inetyuali
constraints.

e Under convexity assumptions, the dual and primal probleave lthe
same optima.

e If the objective is strictly convex, the minimizer of the imal problem
can be recovered from the solution of the dual problem.

e Whereas Problenil{.1) has general linear inequality constraints, taking
the dual with respect to all the constraints or with respatihé inequality
constraints yields a dual problem where the inequality tamds are
non-negativity constraints on variables only.

e We can apply algorithms developed for Probleif. ().



17.3.2.2 Equality constraints

e Taking the dual with respect to the equality constraintfdgia dual
problem with no equality nor inequality constraints, buthwinner
problems having inequality constraints.

e To maximize the dual function, we can apply the algorithmgetiged in
Section10.2

e Taking the dual with respect to only some of the equality t@insts
yields a dual problem with equality constraints.

e We can apply the algorithms developed in Secti8rb.2

e Taking the partial dual of a problem with separable objesivzan yield
an inner problem with a simple structure.



17.3.2.3 Non-quadratic objectives

e Although the dual can be found for general non-quadratieahbjes, it is
often not as useful because the non-linearity of the optiynebnditions
in the definition of the dual function prevents us from sirfypfig the
objective of the dual as in the linear and quadratic cases.

e If the primal problem is non-convex, we can still apply thgalthm to
the dual problem.

e \WWe must be more cautious about interpreting the resulte she
corresponding value of the primal variables may be infédagibnot
optimal for the primal problem.



17.4 Sensitivity
17.4.1 Analysis

e In this section we will analyze a general and a special caserditivity
analysis for Problemi1(7.1).

e For the general case, we imagine that we have solved the
inequality-constrained minimization problem:

min{ (6 X)[AGOX=b(X),COOX A0}, (2721)

e for a base-case value of the parametersxsay0, to find the base-case
local minimizerx* and the base-case Lagrange multiplerandpr*.

e \We consider the sensitivity of the local minimum of Problelid.2]) to
variation of the parameters abgut 0.



Analysis, continued

e As well as considering the general case of the sensitivithefocal
minimum of Problem 17.2]) to x, we also specialize to the case where
only the right-hand sides of the equality and inequalitystaaints vary.

e That is, we now consider perturbatiops R™ andn € R" and the
problem:

min{f(X)|Ax=b—y,Cx<d—-n}. (17.22)
xeRN

e For the parameter valugs= 0 andn = 0, Problem {7.22 is the same as
Problem (7.1).

e We consider the sensitivity of the local minimum of Problelid.22 to
variation of the parameters abgut 0 andn = 0.



Corollary 17.7 Consider ProblemX7.21) and suppose that

f: R"x R%— R is twice partially differentiable with continuous second
partial derivatives and that AR — R™" b:R®— R™ C: RS — R™",

and d: R — R" are partially differentiable with continuous partial

derivatives. Also consider Problerhd.22 and suppose that the function

f : R" — R is twice partially differentiable with continuous second

partial derivatives. Suppose that & R", A\* € R™, and i € R" satisfy:

e the second-order sufficient conditions for Problelid.2]) for the value
of parameterg = 0, and

e the second-order sufficient conditions for Problelid.22 for the value
of parametery = 0andn = 0.

In particular:

e X" is a local minimizer of Probleml({/.21]) for x =0, and
e X" is a local minimizer of Probleml{.22 fory=0andn =0,

in both cases with associated Lagrange multipligtsand (. Moreover,

suppose that the matrik has linearly independent rows, whekds the
matrix with rows consisting of:

e the m rows of A (or £0)), and



e those rows ¢of C (or of C0)) for which? € A(x*).

Furthermore, suppose that there are no degenerate comss$rat the
base-case solution.

Then, for values ok in a neighborhood of the base-case value of the
parametery = O, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for ProblerhA.21). Moreover, the
local minimum, local minimizer, and Lagrange multiplierg partially
differentiable with respect tg and have continuous partial derivatives
in this neighborhood. The sensitivity of the local minimuntofy,
evaluated at the base-cage= 0, is given by:

of* 0L
ax (O =ax

where£ : R" x R™x R" x R® — R is theparameterized Lagrangian
defined by:

vx e R" VA ¢ R Vue R",vx € R®,
LGAX) = FO6X) +AT(AX)X=b(X)) +H'(C(x)x—d(X)).
Furthermore, for values of andn in a neighborhood of the base-case

X", A%, 15 0),



value of the parameters= 0 andn = 0, there is a local minimum and
corresponding local minimizer and Lagrange multipliers fo
Problem (7.22. Moreover, the local minimum, local minimizer, and
Lagrange multipliers are partially differentiable withspect toy andn
and have continuous partial derivatives. The sensitigitiEthe local
minimum toy andn, evaluated at the base-cage- 0 andn = 0, are

equal to[)\*]Jr and [u*]T, respectivelyd



Discussion

e The Lagrange multipliers yield the sensitivity of the oltjee to the
right-hand side of the equality constraints and inequaliystraints.

e Corollary17.7does not apply directly to linear programming problems;
however, sensitivity analysis can also be applied to lipeagramming
and, as with linear programming in general, the linearithath objective
and constraints leads to various special cases.



17.4.2 Example

e Consider Problem 18 from Section2.3.2.317.1.1.2...,17.3.1.3
which has objectivd : R? — R and constraintéx = b andCx < d
defined by:

YxeR% f(X) = (x¢—1)%+ (x2—3)?,
A= [1 1],
b — (0],
C = [0 -1,
d = [-3].

e \We have already verified that the second-order sufficienditions hold
at the base-case solution.
11 -1
|10 =1

e The matrix:
A A
A= [C
¢ has linearly independent rows, and, furthermore, the iak#guconstraint
Is not degenerate at the base-case solution.




Example, continued

e Suppose that the inequality constraint was changé€ikte d —n).
e If n is small enough, then by Corollafy’.7the minimum of the
perturbed problem differs from the minimum of the originebiplem by

approximately[u*]Tr].



17.5 Summary

e In this chapter, we considered linear inequality-constdiproblems and
showed that they could be solved using the techniques deselmr
non-negatively constrained problems in two ways:

(i) using slack variables, and
(ii) using duality.
e \We also considered sensitivity analysis.



18

Solution of the linear inequality-constrained case
studies

Solution of the linear inequality-constrained case stuidie

e Least-cost production with capacity constraints (Secti®r),

e Optimal routing in a data communications network (Secti8r®),
e Least absolute value estimation (Sectiéh3, and

e Optimal margin pattern classification (Sectib®.4).



18.1 Least-cost production with capacity constraints
18.1.1 Problem and analysis
e Recall Problem15.1):
min{ f (x)|Ax=b,x < x <%},
xeRN
e whereA= —1" b= [-D].
e This problem has:

— a convex separable objective,
— one equality constraint, and
— two inequality constraints for each variable.

e The inequality constraints are simple bounds on variables.
e We can solve this problem using slight modifications of tlgoathms
developed in Sectioh7.3



18.1.2 Algorithms
18.1.2.1 Primal—dual interior point algorithm

e To enforce the boundg < x; <Xy, the corresponding term in the barrier
objective is:

—t(In(x¢ —%,) +1IN(X —X¢)).

e Alternatively, we can represent the bound constraints aergélinear
inequalities in the fornCx < d.



18.1.2.2 Dual algorithm

e Taking the partial dual with respect to the equality constsa
decomposes the problem into a set of sub-problems, onedbrreachine
k, each with two bound constraimng < xx < X.

e Suppose that for eadty the costf, of machinek is convex and quadratic
and of the form defined irl@.6):

1
VX € Sk, Tk(X) = EQkk(Xk)Z + CiXk + k.



Dual algorithm, continued
e For any value oh, we obtain constrained sub-problems:

XkSXkS)_(k}-

(1
vk=1,...,n,min { —Quic %) + X + i — A
xXKeR 2
e Theunconstrainedninimizer of the objective of each sub-problem is
given by setting the derivative of the objective equal tazgrelding:

1
Xk = — (A —Ck).
“ Qkk< %)

e If the unconstrained minimizer is within the range allowsgdle upper
and lower bound constraints then, by Theor@i0, the unconstrained
minimizer is also the minimizer of the constrained sub-peob

e If the unconstrained minimizer lies outside the range atidwy the
bound constraints then the minimizer of the sub-problerhasiearest

bound.



Dual algorithm, continued

e For a given value ok, the minimizer of the inner problem in the
definition of the partial dual i), where:

vk=1,..., n,xl(f) =min {)‘(k, max{>_<k, i()\ — ck)}} :
Qxkk

e Substituting the solutionl(f) into the expression for the dual, we obtain:

VA€ R, D(\) = i fi (X)) + A (D . i xﬁ“) .
k=1 k=1

e The dual variable can be updated using a steepest ascentralgbased
on the satisfaction of the equality constraint according to

M = OD(N),
= AN —p,

n
= D— Z xl(()‘).
K=1



Dual algorithm, continued

e Since each machine cost function is strictly convex, thamirer of the
primal problem can be found from the solution of the dual atgm.

e Asin Section13.5.3 we can interprek as the tentative price per unit of
production.



18.1.3 Changes in demand and capacity

e Corollary17.7can be used to estimate the changes in costs due to a
change in demand or capacity.



18.2 Optimal routing in a data communications network
18.2.1 Problem and analysis
e Recall Problem15.6):
min { f(X) |[Ax=Db,x > 0,Cx< y},

xeRN
e wheref : S — R, with S = {x € R"|x > 0,Cx < y}, was defined in15.7):

vxeSs, f(x) = @(Cx),
= 5 @i (Chjx)-
(i,))eL

e The delay functiorg; in the objective increases without bound as a flow
approaches its capacity.

e Consequently, assigning a flow to be arbitrarily close tditilecapacity
can never be optimal.

e The delay function has the same form asré@procal barrier function .



Problem and analysis, continued
e Because of the form of the delay function, the strict ineiyabnstraints:

Cx<Yy,

e can be ignored so long as:

— an initial feasible solution can be found that satisfiesdtwmstraints,
and

— a step-size is chosen at each iteration to avoid going auteglfeasible
region.

e \We effectively have a problem with a barrier objective thafbeces the
strict inequality constraint€x < y and that must be solved for a single
fixed value of the barrier parameter.

e That is, to solve Problenlp.6) we can effectively solve the problem:

min{ f(x)|Ax=b,x > 0}. (18.1)

xcRN



18.2.2 Algorithms

e Problem (8.]) is non-negatively constrained and these constraintsean b
treated using an active set or interior point algorithm,swlas we
ensure that the step-size is chosen at each iteration teatlishyCx < V.

e A step-size rule analogous to that for the primal—dual iatgroint
algorithm from Sectiori6.4.3.3can be used to ensure satisfaction of the
strict inequality constraint€x < y.

18.2.3 Changes in links and traffic

e Corollary17.7and extensions can be used to estimate the changes in
optimal routing to respond to a change in traffic or link cajes.



18.3 Least absolute value estimation
18.3.1 Problem
e Recall Problem15.10:

min  {1'7Ax—b—e=0,z>ez> —e}.
ZeRM xcRN . ecRM

e This problem has a linear objective and linear inequalitystiints.



18.3.2 Algorithms

e \We can solve this problem using the primal or the dual algorg
developed in Sectioh7.3

e The solution to the correspondiheast-squaregstimation problem can
provide a suitable initial guess faf?).

18.3.3 Changes in the number of points and data

e Corollary17.7and extensions can be used to estimate the changes in
parameters specifying the affine fit if additional data poarte added or if
the data changes.



18.4 Optimal margin pattern classification
18.4.1 Problem and analysis
e Recall Problem15.13:

max {z|¢(O(BW(0) +y) > Bz 7 =1,....rB£0},

ZeR xeRN
e Wherex = B )
Y

e This problem has the drawback that its feasible set is nged@and may
not be convex.
e Furthermore, the inequality constraints are non-linear.



Problem and analysis, continued
e Suppose that Problem%.13 has maximizer:

Z*
X**

and letk e R ;.
e Then:

e is also a maximizer of Problem%.13 with the same maximum.

-l

-
al
LY

_Z*
B**/K]

i **/K

(18.2)

e This is because the coefficients in the equation for a hypegtan be
scaled without changing the hyperplane.



18.4.1.1 First approach to transforming constraints

o Letk = |||, in (18.2).

e If there is a maximizer to Problenl$.13 then there is a maximizer that
satisfie3* = /|||, so that||*||, = 1.

e That is, we can impose the additional constrd{if, = 1 in
Problem (5.13 without changing its maximum.

e Furthermore, sincgp||, = 1 implies thaf3 # 0, we can ignore the
constrainf3 # 0.

e We can use Theore@10to show that if Problem1(5.13 has a
maximum then maximizing the objective over the “smalleddible set:

§— { [j] R 2(0)(BW(0) +y) = Bz = L.....1. B, = 1},

e Will yield the same maximum and hyperplane as Probl&mi3.




First approach to transforming constraints, continued

e The smaller feasible sStis closed and bounded, which as we saw in
Section2.3.3avoids the difficulties that non-closed and unbounded sets
present.

e However, a constraint of the forif||, = 1 is still difficult to handle
directly because it defines a non-convex set.

e One way to deal with this is to convert the representation padar
coordinates.



First approach to transforming constraints, continued
e Instead, note that if Problemi%.13 has a strictly positive maximum then:

max {z|2(0(BW(0) +y) > Bz 7 =1,....nB#0}

ZeR xeRN
= max {z[Z(O@BWO) +y) > B2 =1, ]|Bl,= 1},
ZeR xeRN

by the argument above,

_ T _ _

= max {z](O)B"w(0) +y) > 290 =11 |Bl, =1},
since||B[|, =1,

= max {zQO@WO) +y) >z =1,...1|Bl, <1},

ZeR xeRN

of the last problem will satisfy

N 4
e Where any maxmme{x*] =

Z*
B*

y* - .
|1B*]|> = 1, since if||3*||, < 1 then we could find a feasible point having a
larger objective by dividing botl* andx* by max{0.5, ||3*|,}.




First approach to transforming constraints, continued

e Therelaxationof the problem to having the larger feasible set with the
constraint|B||, < 1 yields a convex feasible set with the same maximum
as Problem15.13 and its maximizer specifies the same hyperplane as a
maximizer of Problemi5.13.

e Since||B||, is not smooth, we will use the equivalent conditi\mﬂ% <1.

e By definingC € R"*" to have/-th row:

Co=-2(0) [wo)" 1],

e and noting thaz — Z(¢)(BTW(¢) +y) = z+Cyx, we can transform the
problem to the equivalent problem:

2

zegj%%n{z‘lﬁcxg O,H[3||2§1}, (18.3)

e Where we have squared the norn3ab obtain a differentiable function.

e This problem has a linear objectivelinear inequality constraints, and
one quadratic inequality constraint.

e We will treat the solution of this formulation of the problam
Section20.1



18.4.1.2 Second approach to transforming constraints

2

Z*
e Consider a maximize{)z(**] = [[3**] of Problem {5.13.
y**

e Suppose that* € R, ; so that the margin is strictly positive.

e Sincep™ is feasible, we have th@t™ #£ 0.

e \We can choose = ||3**||,z" in (18.2).

e If there is a maximizer to Probleni%.13 with positive margin then there
is a maximizer that satisfigs = 3**/(||**|,Z"), so that|3*|,z" = 1.

e We can impose the additional constraif{|,z= 1 in Problem {5.13
without changing its maximum.

e Furthermore, sincgp||,z= 1 implies thaf3 # 0, we can again ignore the
constrainf3 # 0.



Second approach to transforming constraints, continued

e We can again use Theore3rl0to show that if Problem1(’5.13 has a
maximizer and strictly positive maximugi thenz* will also be the
maximum of a problem having the same objective but with “senal

feasible set:
S = { [Z] c R JOLICIO) >zVl=1,....1,|Bl,z= 1}.
X 1Bl

e Moreover, if Problem15.13 has a maximum and maximizer, then at
least one of maximizers of the problem is an elemer§. of




Second approach to transforming constraints, continued

e If Problem (15.13 has a maximum and the margin is strictly positive
then:

max {z|¢(0(BW(0) +y) > B2 ¥ =1,.....B£0}

ZeR xeRN

= max {Z‘Z(f)(BTLIJ(f) +y) > ||BHZZ7VE =1,...,1, HBHZZ: 1}7

ZeR xeRN
by the argument above,

- ZERTEE@{ZW)(BT”’(@ V) 219 =1 Bz =1},

since||B||,z=1,

1 t
= > =1,... =
zeRm,fe)ﬁ%n{HB!z LOB WO +Y) 2 LVe=1,....1,Bl»2 1}7

sincez=1/||Bl[2,

= m]%x{ HBlH OB +y) > 1,V = 1,...,r}, by Corollary3.7,
XeRN 2

on eliminating the variable using the constrainip||,z= 1.




Second approach to transforming constraints, continued
e Also:

max

{ 1
xekn {|[Bll2

ZOBTWE) +y) > 1,V = 1,...,r}

1
- [minxeRn{||B||2|z<e><s*w<€>+v> SN 1,,..,r}] |

e by Theorenf.l, since the reciprocal function is monotonically
decreasing.



Second approach to transforming constraints, continued
e Asin Section18.4.1.1 by definingC € R"*" to have/-th row:

Co=—20) [w)" 1],

e and definingd = —1 € R", we can transform the problem in the
denominator to the equivalent problem:

(1,
min{ 5 1PI3

xeRN

Cx< d} | (18.4)

e which has a quadratic objective and linear constraints ansgl &
guadratic program.
*
e If Problem (8.4 has a minimizex* = [5*] andp* # 0 then the optimal

margin is given by 1||3*||,.



18.4.2 Algorithms
18.4.2.1 Primal algorithm

e Problem (8.4 has a convex quadratic objective, linear inequality
constraints, and no equality constraints.

e If the numbery, of patterns is extremely large then a further relaxation of
the problem may be much easier to solve.

e In particular, we can first solve the problem using only soifrth®
patterns to find a tentative separating hyperplane.

e The feasible set using only some of the patterns is a relagesion of the
feasible set of Problenig.4).

e Then the rest of the patterns are searched until a patteonmslfthat is
not correctly identified by the tentative separating hyfzere.

e The problem is re-solved with the new pattern incorporatetithe
process repeated.

e If a separating hyperplane is found after only a modest nummbgatterns
are added then we have avoided the computational efforthahgahe
problem will allr constraints explicitly represented.



18.4.2.2 Dual algorithm

e The dual of Problem18.4 has a quadratic objective, non-negativity
constraints, and one linear equality constraint.

18.4.3 Changes

e Adding a pattern would add an extra row to the inequality t@msts
Cx<d.

e The relaxation procedure described in Secti8m.2.1can be applied or
the dual can be updated and solved.



19

Algorithms for non-linear inequality-constrained
minimization

e In this chapter we will develop algorithms for constraingdiimization
problems of the form:

min{ f (x)|g(x) = 0,h(x) < 0}. (19.1)

xeRN



Key issues

e The notion of aegular point of constraints as one characterization of
suitable formulations of non-linear equality and ineqgtyadionstraint
functions,

e linearization of non-linear constraint functions,

e optimality conditions and the definition and interpretatad the
Lagrange multipliers,

e the Slater condition as an alternative characterization of suitable
formulation of constraint functions for convex problems,

e algorithms that seek points that satisfy the optimalitydibons, and

e sensitivity analysis



19.1 Geometry and analysis of constraints

e Our approach will be to linearize the constraint functigremdh about a
current iterate and seek step directions.

e \We must explore conditions under which this linearizaticeids a useful
approximation to the original feasible set.

e The notion of a regular point, introduced in Sectih1.1for non-linear
equality-constrained problems and suitably generalizzd for
non-linear inequality constraints, provides one scchstraint
gualification.



19.1.1 Regular point

Definition 19.1 Letg: R" — RMandh:R" — R". Then we say that* is a
regular point of the constraintg(x) = 0 andh(x) < Oif:

(i) g(x*) =0andh(x*) <0,
(i) gandh are both partially differentiable with continuous partial
derivatives, and

(iii) the matrix A has linearly independent rows, whekés the matrix
with rows consisting of:

e themrows of the Jacobiad(x*) of g evaluated ax*, and

e those row,(x*) of the Jacobiai of h evaluated ax* for which
¢ e A(X).

The matrixA consists of the rows af(x*) together with those rows
of K(x*) that correspond to the active constraints. If there are no
equality constraints then the matéxconsists of the rows df (x*)
corresponding to active constraints. If there are no bigdin
inequality constraints theA = J(x*). If there are no equality



constraints and no binding inequality constraints themtagix A
has no rows and, by definition, it has linearly independewsro



Regular point, continued

e Letr be the number of active inequality constraintg’at

e Forx* to be a regular point of the constraingfs) = 0 andh(x) < 0, we
must have tham+f < n, since otherwise then+ f rows of A cannot be
linearly independent. )

e If X* is a regular point, then we can find a sub-veebar R™" of x such
that the(m+f) x (m+f) matrix consisting of the corresponding+
columns ofA is non-singular.

e At a regular point of inequality constraints, linearizatiof the equality
constraints and of the binding inequality constraintsdsed useful
approximation to the feasible set or its boundary, at leastlly in the

vicinity of the regular point.



19.1.2 Example

e Recall thedodecahedronfrom Section2.3.2.3and illustrated in
Figure2.14

Fig. 19.1. The dodeca-
hedron inR3 repeated
from Figure2.14



Example, continued

e The dodecahedron can be described as the set of pointyisafidfe
inequality constrainti(x) < 0, with h: R® — R1? affine:

vx € R3 h(x) =Cx—d,

e Where:

C e R1?<3 with each row ofC not equal to the zero vector, and
d e R
e The Jacobian dfis K = C and thel-th row ofK is the/-th row of C,
which we will denote byC,.
e If h(x*) £ 0 so thatx* is not in the dodecahedron th&his not a regular
point by definition.



Example, continued

e If h(x*) < 0then consider the matrik consisting of the rowg, of C for
which ¢ € A(X").

Various cases forx*

x* is in the interior of the dodecahedron.

e Thatis,h(x*) =Cx*—d <0,
o A(X*) =0,
e Ahas no rows, and
e X" is a regular point by definition.
X* is on a face of the dodecahedron but not on an edge or vertex.
e That is, exactly one constrainis binding,
o A(X") ={/},
e A=C, whereC, is the/-th row ofC.

e The single row ofA is linearly independent, since it is a single row
that is not equal to the zero vector.



Various cases forx*, continued

X* is on an edge but not a vertex of the dodecahedron.

e That is, exactly two constraints/’ are binding,

o A(X*) = {£,0'}, andA — gi .

e Since the corresponding two faces of the dodecahedron &re no
parallel then the two corresponding rows®fnamelyC, andC,,
are linearly independent.

X* is on a vertex of the dodecahedron.

e That is, exactly three constraits’’, and¢” are binding,

Cy

Cp

CK!/

e The corresponding three faces are oblique to each other and
therefore the three corresponding row<ddre linearly
independent.

o A(X)={(,0 0"}, andA=

e In summary, every feasible point is a regular point of thest@nts
h(x) <O0.



Example, continued

e Now add an additional, redundant inequality constraintesponding to
a plane that just grazes the dodecahedron at one of itsegrsay*.

e We augment an additional row @to formC € R'3*3 and augment an
additional entry tal to formd € R13,

e We define the function : R® — R'3to consist of the entries dftogether
with a thirteenth entryn 3 : RS — R defined by:

x € R hy3(x) = Crax— dia.

e We now have thafx € R3|h(x) < 0} = {x € R%|h(x) < 0}.

e The vertexx* is not a regular point of the constrairi&) < 0 because
there ardour constraints active at* and the four corresponding rows of
C cannot be linearly mdependenﬂiﬁ’

e {xe R3h(x) < 0} and{x € R3|h(x) < 0} represent theameset.

e Therefore, whether or not a poixit is a regular point of the constraints
depends on the choice of representation of the constraints.



19.2 Optimality conditions
19.2.1 First-order necessary conditions
19.2.1.1 Analysis

Theorem 19.1 Suppose that the functions R" — R, g: R" — R™ and
h: R" — R are partially differentiable with continuous partial
derivatives. Let JR" — R™"M and K: R" — R"™" be the Jacobians of g
and h, respectively. Consider Probled®(1):

min{ f(x)/g(x) = 0,h(x) < 0},

Suppose that'xe R" is a regular point of the constraintyg) = 0 and
h(x) <O0.



If x* is a local minimizer of ProblemilQ.1) then:

IV € R™, 3u € R' such that:Of (x*) +J(x) N+ K(x) i = 0;
M*h(x*) = O;
g(x) = 0
h(x*) < 0; and
> 0,
(19.2)

where M = diag{|y } € R™". The vectora* and |t satisfying the
conditions (9.2 are called the vectors of Lagrange multipliers for the
constraints gx) = 0 and h(x) < 0O, respectively. The conditions that
M*h(x*) = 0 are called thecomplementary slackness conditionsThey
say that, for eachHd, either the/-th inequality constraint is binding or the
¢-th Lagrange multiplier is equal to zero (or both)l



Discussion

e As previously, we refer to the equality and inequality coaists in (L9.2
as thefirst-order necessary conditiongor FONC) or the
Karush—Kuhn—Tucker conditions.

e As in the case of non-linear equality constraints, the dommthatx* be a
regular point of the constraints is again callecbastraint qualification.

e In Section19.3.1 we will see an alternative constraint qualification for
the case of convex problems.



19.2.1.2 Lagrangian

e Recall Definition3.2 of the Lagrangian.
e Analogously to the discussion in Sectibid.1.1.4 by defining the
Lagrangians : R" x R™x R" — R by:

vxe R" VYA e R™ Ve R", L(x,\, 1) = f(x) +ATg(x) +p'h(x),
e We can again reproduce some of the first-order necessarytionsds:

DX‘L(X*7 A*7 l‘l*) — 07
D)\L(X*a )\*a H*) = 0,
CLL(X A p) < 0.



19.2.1.3 Example

e Recall the example non-linear program, Probl@x 9, from
Section2.3.2.3

min{ (x)|g(x) = 0.h(x) < 0},

XER3

e wheref : R® - R, g: R® — R?, andh: R® — R are defined by:
VXeR® F(X) = (x)°+2(x)?

3 | 2—X%2—sin(x3)
¥x e R3 h(x) = [sin(xs) —0.5].
0.5 6
e We claim thatx* = 1.5] A= [1] , andp” = [5] satisfy the first-order
/6

necessary conditions in Theorei8.1



Example, continued

e First,x* is feasible.

-
vxe RS, 0Of(x) = 4X2],
e
¥x € R3,J(x) _(1) _(1) _%?ég],
W [ 0-1- 6
I =11 o0 %%i%a%]
YxeR3K(X) = [0 0 cogxs)],

K(xX) = [0 O cogrt/6)].

N *
e Note thatA = [Igg((*%] has linearly independent rows so thxats a
regular point of the constraints.



Example, continued

OF (X°) + I(x*) A 4+ K (x) Tpr

1 0 -1

6 -1 0

0 —co9qT1/6) coqTT/6)

_|_

t*

o0 Q -0
S e
><>(- ><>(-
N~——" N——"
LI
S5 G

X

S

X
AV B VAR

e That is,x*,A*, and* satisfy the first-order necessary conditions.



19.2.2 Second-order sufficient conditions
19.2.2.1 Analysis

Theorem 19.2 Suppose that the functions R" — R, g: R" — R™, and
h:R" — R" are twice partially differentiable with continuous second
partial derivatives. Let JR" — R™" and K: R" — R"*" be the
Jacobians of g and h, respectively. Consider Problém1):

min{f(x)|g(x) =0, h(X) < 0}7

XERN

and points x € R",A* € R™, and pf ¢ R". Let M* = diag{y; }.



Suppose that:
Of (3¢%) + I(¢) A + K () T

IV IA

+; )\*ngg —I—; Dzhg

IS positive definite on the null space:
A = {Ix € RMI(x*)Ax = 0, Ky(x")x = 0,6 € A (X", 1)},
whereA (X*,\0°) = {£ € {1,...,r}|h/(X*) =0, > 0}.

Then X is a strict local minimizer of Probleni@.1). O



Discussion
e The function[ZL : R" x R™x R" — R™" defined by:
vx e R" VA e R" VueR",

O6L(XA 1) = sz(X)Jr/gMDZgz(X)JF;WDZW(X),
- =

e is called theHessian of the Lagrangian
¢ In addition to the first-order necessary conditions, thesderder
sufficient conditions require that:

f, g, andh are twice partially differentiable with continuous second
partial derivatives, and
the Hessian of the Lagrangian evaluated at the minimizer and
corresponding Lagrange multiplief§2 L (x*, \*, u*), is positive
definite on the null spac@/, defined in the theorem.
e Constraintd for which iy = 0 andh,(x*) = 0 are calledlegenerate
constraints.



19.2.2.2 Example

e Continuing with ProblemZ.19 from Section2.3.2.3and19.2.1.3 we
note thatf, g, andh are twice partially differentiable with continuous
second partial derivatives.

e By the discussion in Sectidl®.2.1.3 the first-order necessary conditions

0.5
are satisfied by* = [ 1.5] AN = [(15] , andpy” = [5].
/6
e Also, A(X") = A (X, 1) = {1}.
e That is, the constraint is not degenerate.

N = {BERMI(K)A= 0, Ky(X )X = 0,74 € A, (X', 1)},
= {M e R"JI(X)x = 0,Ky(X")x = 0},
— {0}7

e so that the Hessian of the Lagrangi@fL (x*, \*, &) is positive definite
on the null spacé\/, .
e That isx*, A*, andu* satisfy the second-order sufficient conditions.



19.3 Convex problems
e Consider affingy: R" — RMand convexh: R" — R":

min{f(x)|Ax=Db,h(x) < 0}, (19.3)

e whereA € R™"andb € R™,
e If f:R" — R is convex on the feasible set then Probleif.d) is convex.



19.3.1 First-order necessary conditions
19.3.1.1 Slater condition

¢ In the case of affing and convexh, we can obtain first-order necessary
conditions with an alternative constraint qualificationlie assumption of
regular constraints.

e In particular, we will assume that:

{x € R"Ax=b,h(x) < 0} # 0. (19.4)

e This alternative constraint qualification is called Blater condition.

e The Slater condition was first introduced in Sectidh4.2.3in the context
of the interior point algorithm for linear inequality-cdrsined problems.

e We will see in Sectiord9.4.1.2that we also need to make a similar
assumption for applying the interior point algorithm to Aorearly
constrained problems.



19.3.1.2 Analysis

Theorem 19.3 Suppose that fR" — R and h: R" — R" are partially
differentiable with continuous partial derivatives andhvih convex,
Ac R™N and be R™ Let K: R" — R"™*" be the Jacobian of h.
Consider ProblemX9.3 and suppose that the Slater conditid®(4)
holds. If X € R"is a local minimizer of Probleml@.3) then:

IN* € R™, Jpt € R such that:Of (x*) + AT + K (x*) Tpr
M*h(x*)

AX

h(x*)

*

W

- and

VOIA
CoT oo

-

where M = diag{|j} ¢ R™". O



19.3.2 First-order sufficient conditions
19.3.2.1 Analysis

Theorem 19.4 Suppose that fR" — R and h: R" — R" are partially
differentiable with continuous partial derivatives AR™", and be R™,
Let K: R" — R"™" be the Jacobian of h. Consider Proble®(3 and
points X € R", A ¢ R™, and | € R". Let M* = diag{|y }. Suppose that:

(i) his convex,
(i) fisconvex ox € R"|Ax=b,h(x) <0},
(i) OF (x*) + AT+ K (x)Tpr =0,
(iv) M*h(x*) =0,
(v) AX" =b and i{x*) <0, and
(vi) g > 0.
Then X is a global minimizer of Problen0.3.

Proof The proof is very similar to the proofs of Theoreé&.3in
Chapterl6 and of Theoreni7.3in Chapterl?7. O



19.3.2.2 Example

YxeR? f(X) = X1+ X,
YxeRZh(x) = (x1)%+ (x2)?—2.

ol ] Fig. 19.2. Contour sets
of objective function de-

0 fined in Sectiorl9.3.2.2
with feasible set shaded.
The heights of the con-
Ll ] tours decrease to the left
and down. The mini-
LS| J mizer, X" = —1, is indi-
cated with thes.

-2 L L h L L h
-2 -15 -1 -05 0 0.5 1 15 2 Xl



Example, continued
e f andh are partially differentiable with continuous partial dextives and
convex.

e We claim thatx* = —1 is the global minimizer with Lagrange multiplier

u=[0.5]:

vxeR% Of(x) = 1

Yxe R K(X) = |

K(x) = [-
OF (X)) +K(x) gt = 14[-2 —2]T % [0.5],

0

0

wh(x’) = 0;
h(x') = [0],
< [0]; and
p = [0.5],
> [0].



19.3.3 Duality
19.3.3.1 Dual function

Analysis

e If f andh are convex and is affine thenZ(e, A, ) is convex foryu > 0
and sox* is a global minimizer off (e, A™, ).

e For Problem 19.3, the dual functionD : RMx R" — RU{—o} is
defined by:

VAERM He R, DA\, W) = inf L(X A, ). (19.5)

XeRN

e The effective domain of) is:
E = { [)L\l] e R™" D\, ) > —oo}.

e Recall that by Theorer.12 E is convex andD is concave Offt.




Example

e Continuing with the example problem from Sectit®3.2.2 the
LagrangianZ : R? x R — R for this problem is defined by:

VxeRZVHER, LX) = f(X)+p'h(x),
= X1+ X2+ H((X2)*+ (X2)° — 2).

e Forp> 0, the LagrangiarL(e, ) is strictly convex and therefore, by
Corollary 10.6 the first-order necessary conditiong’ (x, 1) = O are
sufficient for minimizingL (e, 1) and, moreover, a minimizer exists, so
that the inf in the definition of> can be replaced by min.

e Furthermore, there is a unique minimizé®¥ corresponding to each value
of u> 0.



Example, continued
e In particular, we have:

vxe RZVUE R, G L(X W) = OF(X)+K(X)

Vpe R++7X(“) = -—1/(211)]7

VUER 1, D(M) = —-—2
e On the other hand, i < 0 then the objective in the dual function is

unbounded below.
e Consequently, the effective domainis= R, ;.



19.3.3.2 Dual problem
Analysis

e Thedual problem:
max{ D(A, W)[p > 0}, (19.6)
[i]<E
e where? : E — R is the dual function defined iri9.5).
e Problem (9.3 is called theprimal problem in this context to distinguish
it from Problem (9.6).



Theorem 19.5 Suppose that fR" — R and h: R" — R are convex and
partially differentiable with continuous partial deriviaes, Ac R™",
and be R™. Consider the primal problem, Problerhd.3):

)[Q]gg{f(x)mx: b, h(x) <0},

and suppose that the Slater conditid®(4) holds. Also, consider the
dual problem, Problem1(9.6. We have that:

(i) If the primal problem possesses a minimum then the dual @nobl
possesses a maximum and the optima are equal. That is:

min{ f(x)}Ax=b,h(x) < O} = max{ D\, W|u = O}.

W] €E
(i) If:

e

e Miny.rn L(X, A, 1) exists, and
e f and h are twice partially differentiable with continuous



second partial derivatives$)%f is positive definite, and
0%y, ¢ =1,....r, are all positive definite,

thenD is partially differentiable at[)\

H] with continuous partial

derivatives and:

A b] (19.7)

OD(A, W) = [ (x4
O
Discussion
e It is possible forD to not be partially differentiable at a poirh\l] e Eif:

L(e, A, ) is bounded below (so that ipfzn L(X, A, 1) € R) yet the
minimum minernL(X, A, 1) does not exist, or
there are multiple minimizers of miagn L(X, A, H).



Corollary 19.6 Let f:R" — R and h: R" — R" be twice partially
differentiable with continuous second partial derivatiyg%f be positive
definite, andd%h,, ¢ = 1,...,r, all be positive definite; & R™"; and
b € R™. Consider Probleml9.3):

min{ f (X)|Ax= b, h(x) <0},

xeRN

the Lagrangian of this problem, and the effective doniawf the dual
function. If:

o the effective domaili containsR™ x R',, and
e for eachA € R™ and pe R’ , minyecrn L(X, A, 1) exists,

*

then necessary and sufficient conditions ﬁ\f;] € R™T' to be the

maximizer of the dual problem:

max{ D(A, p)|u = 0},
HS2



are:

M*h(xAH)) = o
AXNH) =

h(x*"¥)) < 0; and
W > 0,

where{x*" )} = argminegn L(x,A*, ) and M = diag{}; }.
Moreover, ifA* and [t maximize the dual problem thed'X*), A*, and
W* satisfy the first-order necessary conditions for Problé®.§).

Proof The proofis very similar to the proof of Corollafy’.5in
Chapterl7. O



Discussion

e Theoreml9.5shows that an alternative approach to finding the minimum
of Problem (9.3 involves finding themaximunof the dual function over
AeRMandpeR!,.

e Theorem3.12shows that the dual function has at most one local
maximum.,

e To seek the maximum ab(A, ) overA € R™ pe R'., we can, for
example, utilize the value of the gradientDffrom (19.7) as part of an
active set or interior point algorithm.



Example

e Continuing with the dual of the example problem from Se&ib®.3.2.2
and19.3.3.1 the effective domain i€ = R, and the dual function
D: R++ — Ris:

1
VHER 4+, D(Y) = _ZFZH’
1
VHGR—F"F?DQ)(U‘) — 2(“)2—27
1
VUE R, 0°D(n) = e

< 0.

e We cannot apply Corollar§9.6directly becaus& = R, ; does not
containR ...

e However, by inspection oD, i* = [0.5] maximizes the dual ovét.

e Moreover, the corresponding minimizer of the Lagrangiéh), together
with u* satisfy the first-order necessary conditions for the pripnablem.



Discussion

e Itis essential in Theorerh9.5for f andh to be convex on thevholeof
R", not just on the feasible set.

e This is because the inner minimization.ofe, A, 1) is taken over the
whole of R".

e \We generally require strict convexity éfandh to ensure that there are
not multiple minimizers of the Lagrangian.

e The issues are similar to the discussion in Sectior?.2.2

e Problem (9.6 is non-negatively constrained of the form of
Problem (6.1) and so we can apply essentially the same algorithms as we
developed for Problenl.]).

e We will take this approach in Sectidr®.4.2



19.3.3.3 Partial duals

e Asin Sectionl7.2.2.4 it is also possible to take the partial dual with
respect to some of the equality and some of the inequalitgtcaints.



19.4 Approaches to finding minimizers
19.4.1 Primal algorithm
19.4.1.1 Transformation

¢ To handle the inequality constraints involvihgve consider the following
problem:

min _ {f(x)|g(x) = 0,h(X) +w = 0,w > 0}. (19.8)

XeRN weRf

e By Theorem3.8, Problems 19.1) and (1L9.8 are equivalent.



19.4.1.2 Primal—dual interior point algorithm
Barrier objective and problem

e Given a barrier functiorf, : R, , — R and a barrier parametee R, ,
we form thebarrier objective @: R" x R! | — R defined by:

vxe R vwe R @(x,w) = f(x)+tfp(w).

e Instead of solving Probleni®.8), we will consider solving théarrier
problem:

min _ {@(x,w)|g(x) = 0,h(x) +w = 0,w > 0}. (19.9)

XeRN weRf

e \We then decrease the barrier parameter



Slater condition

e Analogously to the discussion in Sectidt’.4.2.2and17.3.1.2 we must
assume that Problemi 4.9 is feasible.

e That is, we assume th&k € R"|g(x) = 0,h(x) < 0} # 0.

e We again call this th&later condition.



Equality-constrained problem

e To solve ProblemX9.9), we partially ignore the inequality constraints
and the domain of the barrier function and seek a solutiohéo t
following non-linear equality-constrained problem:

min _ {@(x,w)|g(x) = 0,h(x) +w = 0}, (19.10)

XeRN weRf

e which has first-order necessary conditions:

Of () +I) N +K ()T = 0, (19.11)
g(x) = 0, (19.12)

h(x)+w = 0, (19.13)

tOfp(w)+p = 0, (19.14)

e whereJ andK are the Jacobians gfandh, respectively, and andu are
the dual variables on the constraigtx) = 0 andh(x) +w = 0,
respectively.



Logarithmic barrier function
e \We again use the logarithmic barrier function:

vwe R, fp(w) = —;In Wy),
—1

Yw € R++,be(W) = 1,

e whereW = diag{w,} € R"™*".
e Substituting the expression foif, into (19.14 and re-arranging, we
again obtain:

Wp—t1=0. (19.15)



19.4.1.3 Newton—Raphson method
e The Newton—Raphson step direction to soli®.(5 and (19.11)—(19.13

IS:

(M) 0 0 WV ] raw
0 LAY 1) 3T kx| | x¥)
0 IxW) 0 0 M)
B K (x)) 0 0 | Lo ]

[ —WWVpv) 4t1 |

L —OfF () = 3(x¥) AW — K (x¥) Tw)
- —g(x) |
_h(x(V))

o whereM™ = diag{u"'} andw) = diag{w!"’}.



Newton—Raphson method, continued

e \We can re-arrange the equations to make them symmetric &ulack
pivoting on the top left-hand block of the matrix since thp teft-hand
block is diagonal.

e This results in a system that is similar tt4(129, except that a diagonal

block of the form[M™)] W) is added to the Hessian of the Lagrangian.
e Issues regarding solving the first-order necessary comditisuch as
factorization of the indefinite coefficient matrix, appnmeéte solution of
the conditions, sparsity, the merit function, step-sizec®n, and
feasibility, are similar to those described in Secti@ds3.1and16.4.3.3



19.4.1.4 Other issues
Adjustment of barrier parameter

e To reduce the barrier parameter, we can again use the appieacribed
in Sectionl16.4.40f Chapterl6.

Initial guess

e The effort to find a feasible initial guess may be significant.

e An alternative is to begin witt/9 > 0,x(© A 4@ > 0 that do not
necessarily satisfy the equality constraigts) = 0 nor h(x) +w = 0.

e Feasibility is approached during the course of iteratioamfthis
infeasible start

Stopping criterion

e \We can develop a stopping criterion based on duality usirepiiégm3.13
e If f orhare non-quadratic ayis non-linear, however, we can typically
only approximately evaluate the dual function.



19.4.2 Dual algorithm
e Problem (9.6):

max{ D(\, ) |u=> 0},
[o]€E

e has non-negativity constraints.

e If the dual function can be evaluated conveniently, theratlgerithms
from Sectionl6.3and16.4for non-negativity constraints can be applied
to the dual problem.

e For example, if the objective and inequality constraintchion are
guadratic and strictly convex and the equality constraangdinear then
the dual function can be evaluated through the solution wfeaf
equation.

e A dual algorithm can be particularly attractive if there ardy a few
constraints or if gartial dual is taken with respect to only some of the
constraints.



19.5 Sensitivity
19.5.1 Analysis
e We consider a general and a special case of sensitivity sindtyr
Problem (9.1).

e For the general case, we suppose that the objettieguality constraint
functiong, and inequality constraint functidmare parameterized by a
parametei € R,

e \We imagine that we have solved the non-linear inequalityst@ained
minimization problem:

min{fx)lg(xx) = 0,h(xx) =< 0}, (19.16)

e for a base-case value of the parameters xsay0, to find the base-case
solutionx* and the base-case Lagrange multiplerandp*.

e We now consider the sensitivity of the minimum of Problel.(1§ to
variation of the parameters abgut 0.



Analysis, continued

e \We also specialize to the case where only the right-hand sifithe
equality and inequality constraints vary.

e That is, we return to the special case whéreR" — R, g: R" — R™, and
h: R" — R" are not explicitly parameterized.

e We now consider perturbatiose R™ andn € R" and the problem:

min{f(x)|g(x) = —y,h(x) < —n}. (19.17)
e For the parameter valugs= 0 andn = 0, Problem (9.17 is the same as

Problem (9.1).
e \We consider the sensitivity of the minimum of Problet®.(17 to
variation of the parameters abgut 0 andn = 0.



Corollary 19.7 Consider Problem9.16 and suppose that the functions
fR"'XRS— R, g:R"xR°— R™M and h: R" x R®> — R are twice
partially differentiable with continuous second partiard/atives. Also

consider Problem19.17 and suppose that the functions R" — R,
g:R"— R™M and h: R" — R" are twice partially differentiable with

continuous second partial derivatives. Suppose tha R", A\* ¢ R™,
and f € R" satisfy:
e the second-order sufficient conditions for Probletf.(9 for the value

of parameterg = 0, and
e the second-order sufficient conditions for Probletf.(7) for the value

of parametery = 0andn = 0.
In particular:

e X" is a local minimizer of Probleml1@.19 for x =0, and
e X" is a local minimizer of Probleml@.17 fory=0andn =0,

in both cases with associated Lagrange multiplistsand (r. Moreover,
suppose that’xis a regular point of the constraints for the base-case
problems and that there are no degenerate constraints dbdise-case

solution.



Then, for values ok in a neighborhood of the base-case value of the
parametery = O, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problerh9.16. Moreover, the
local minimum, local minimizer, and Lagrange multipliers gpartially
differentiable with respect tg and have continuous partial derivatives
in this neighborhood. The sensitivity of the local minimuntofy,
evaluated at the base-cage= 0, is given by:

of* 0L

W(O) :W(X 7)\ s M 1O>7

whereL : R"x RMx R" x R® — R is theparameterized Lagrangian
defined by:

vx e R" VA ¢ R™" Vue R",vx € R®,
LOGAKX) = FO6x)+ATg06x) +uh(x ).

Furthermore, for values of andn in a neighborhood of the base-case
value of the parametenrs= 0 andn = 0, there is a local minimum and
corresponding local minimizer and Lagrange multipliers fo

Problem (19.17. Moreover, the local minimum, local minimizer, and



Lagrange multipliers are partially differentiable withspect toy andn
and have continuous partial derivatives. The sensitigitiEthe local
minimum toy andn, evaluated at the base-cage- 0 andn = 0, are

equal to[)\*]Jr and [u*]T, respectivelyd



19.5.2 Discussion

e We can again interpret the Lagrange multipliers as the wsehgsof the
minimum to the right-hand side of the equality constraims smequality
constraints.

19.5.3 Example

e Continuing with Problem4.19 from Section.3.2.319.2.1.3 and
19.2.2.2 we have already verified that the second-order sufficient
conditions are satisfied at the base-case solutionxthata regular point
of the constraints, and that there are no degenerate ciosira

e Suppose that the first entry in the equality constraint chdrg
2—Xp — sin(xg) = —Yy1 and that the inequality constraint changed to
sin(xz) —0.5< —n.

e By Corollary19.7, if y; andn are small enough the change in the
minimum is given approximately by;y: + 'n = 6y, +5n.



19.6 Summary

¢ In this chapter we have considered problems with non-liegaality and
inequality constraints, providing optimality conditions

e \We considered the convex case and sketched applicatioe of th
primal—dual interior point method and dual algorithm tos@roblems.

e Finally, we provided sensitivity analysis.



20

Solution of the non-linear inequality-constrained case
studies

e Optimal margin pattern classification (Sect@m 1),
e Sizing of interconnects in integrated circuits (Sectan?, and
e Optimal power flow (Sectio20.3).



20.1 Optimal margin pattern classification

e The first transformation in SectidiB.4.1.1yielded the maximization
Problem (8.3, which we recast into a minimization problem as:

min < —z[|1z+Cx<0 2<1}. 20.1

min {~z1z+Cx< 0.3 < (20.1)

e This problem has a linear objectivelinear inequality constraints, and
one convex quadratic inequality constraint.

e This can be solved using the algorithms developed in Set&oh

e The dual of Problem20.]) is equivalent to a quadratic program.



20.2 Sizing of interconnects in integrated circuits
20.2.1 Problem and analysis
e Problem (5.19:

min{ f(x)|h(x) < h,x < x < X},
XeRN
e used the Elmore delay approximatibrto the actual dela.
e This problem has a linear objective but has inequality qaiss defined
in terms of functions that are, in general, non-convex.
e However, as discussed in Sectibb.5.4 the objective and constraint
functions argposynomial



Problem and analysis, continued

e Each posynomial function can be transformed into a convegtian
through a transformation involving the exponential of eantry of the
decision vector and the logarithm of the function.

e The transformed problem is convex and therefore possetssassaone
local minimum.

e Because the transformation of the decision vector is or@@and onto
and the transformations of the objective and constraisreamotonically
increasing then, by Theoremsl, 3.5 and3.9, the original problem also
possesses at most one local minimum.



20.2.2 Algorithms
20.2.2.1 Primal algorithm

e In principle, we can apply the optimization techniques dmved in
Sectionl9.4to either the original problem or the transformed problem
and be guaranteed that any local minimum is the global mimmu

e However, since the inequality constraint functions areaooivex in the
original problem, the Hessian of the Lagrangian for theinabproblem
will typically not be positive definite and so we can expeettbivots will
be modified significantly during factorization, potentaletarding the
progress towards the minimizer.

20.2.2.2 Dual algorithm

e Since the transformed problem is convex, we can also duthleze
transformed problem.

e Further transformation of the dual problem is possible nopdify the
dual problem to having linear constraints.



20.2.2.3 Accurate delay model
e Recall Problem15.20:

min{f(x)|h(x) <h,x < x <X},
XeRN

e which used the more accurate delay mdueistead of the Elmore delay
modelh.

¢ In general, we cannot expect thatvill have any particular functional
form.

e However,h may be a reasonable approximatiorhof

e The algorithms we have described typically require botltfiom
evaluationsand derivative evaluations.

e To solve the problem with the more accurate delay model, we ca
combine accurate delay values calculated accordigatibh
approximate first and second derivatives calculated franfuhctional
form of h.

e Furthermore, we can apply such an algorithm to the originalblgm or
to the transformed problem.



20.2.3 Changes

e Corollary19.7and extensions can be used to estimate the changes in area
and width due to changes in parameters and allowed delays.



20.3 Optimal power flow
e Recall Problem15.23:

mﬁn{f(xﬂg(x) = 0,x< x<Xh<h(x) <h}.
xeRN

e This problem has non-linear objective and equality anduaéty
constraint functions.

e Under certain assumptions the problem is equivalent to @essoproblem.

e We can use the primal—dual interior point algorithm skedkine
Section19.4.1to solve it.

e Corollary19.7and extensions can be used to estimate the changes in costs
due to changes in demand and changes in line and generasmitcag
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