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Inequality-constrained optimization,
continued

Title Page ◭◭ ◮◮ ◭ ◮ 2 of 180 Go Back Full Screen Close Quit



17
Algorithms for linear inequality-constrained

minimization

• In this chapter we will develop algorithms for constrained optimization
problems of the form:

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d}, (17.1)

• whereA∈ R
m×n, b∈ R

m, C∈ R
r×n, andd ∈ R

r are constants.
• We call the constraintsCx≤ d linear inequality constraints.
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Key issues
• Optimality conditions forinequality-constrained problemsbased on the

results for equality-constrained problems,
• optimality conditions forconvex problems,
• transformations of problems, and
• duality andsensitivity analysis.
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17.1 Optimality conditions
17.1.1 First-order necessary conditions

17.1.1.1 Analysis

Theorem 17.1 Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ R

m×n,b∈ R
m,C∈ R

r×n,d ∈ R
r .

Consider Problem (17.1):

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d},

and a point x⋆ ∈ R
n. If x⋆ is a local minimizer of Problem (17.1) then:

∃λ⋆ ∈ R
m,∃µ⋆ ∈ R

r such that:∇f (x⋆)+A†λ⋆+C†µ⋆ = 0;
M⋆(Cx⋆−d) = 0;

Ax⋆ = b;
Cx⋆ ≤ d; and

µ⋆ ≥ 0, (17.2)

where M⋆ = diag{µ⋆ℓ} ∈ R
r×r .
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The vectorsλ⋆ and µ⋆ satisfying the conditions (17.2) are called the
vectors of Lagrange multipliers for the constraints Ax= b and Cx≤ d,
respectively. The conditions that M⋆(Cx⋆−d) = 0 are called the
complementary slackness conditions. They say that, for eachℓ, either
theℓ-th inequality constraint is binding or theℓ-th Lagrange multiplier is
equal to zero (or both).
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Proof The proof consists of several steps:
(i) showing thatx⋆ is a local minimizer of the related

equality-constrained problem:

min
x∈Rn

{ f (x)|Ax= b,Cℓx= dℓ,∀ℓ ∈ A(x⋆)},

whereCℓ is theℓ-th row ofC and the active inequality constraints
atx⋆ for Problem (17.1) are included as equality constraints,

(ii) using the necessary conditions of the related equality-constrained
problem to defineλ⋆ andµ⋆ that satisfy the first four lines
of (17.2), and

(iii) proving thatµ⋆ ≥ 0 by showing that if a constraintℓ, say, had a
negative value of its Lagrange multiplierµ⋆ℓ < 0 then the
objective could be reduced by moving in a direction such that
constraintℓ becomes strictly feasible.

✷
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17.1.1.2 Example
• Recall the example quadratic program, Problem (2.18):

min
x∈R2

{ f (x)|Ax= b,Cx≤ d}.
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Fig. 17.1. Contour sets
of objective function
and feasible set for
Problem (2.18). The
heights of the contours
decrease towards the

point

[

1
3

]

. The feasible

set is the “half-line”
starting at the point
[

3
3

]

, which is also

the minimizer and is
illustrated with a•.
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Example, continued
• The objective and constraints are specified by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,
d = [−3] .

• In Section2.3.2, we observed that the solution of this problem was

x⋆ =

[

3
3

]

.

• We claim thatx⋆ =

[

3
3

]

together withλ⋆ = [−4] andµ⋆ = [4]

satisfy (17.2) for Problem (2.18).
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Example, continued

∀x∈ R
2,∇f (x) =

[

2 0
0 2

]

x+

[

−2
−6

]

,

∇f (x⋆)+A†λ⋆+C†µ⋆

=

[

2 0
0 2

][

3
3

]

+

[

−2
−6

]

+

[

1
−1

]

[−4]+

[

0
−1

]

[4],

= 0;

µ⋆(Cx⋆−d) = [4]

(

[0 −1]

[

3
3

]

− [−3]

)

,

= [0];

Ax⋆ = [1 −1]

[

3
3

]

,

= [0],
= b;
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Example, continued

Cx⋆ = [0 −1]

[

3
3

]

,

= [−3],
≤ [−3],
= d; and

µ⋆ = [4],
≥ [0].
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17.1.1.3 Discussion
• The Lagrange multipliers adjust the unconstrained optimality conditions

to balance the constraints against the objective.
• We will again refer to the equality and inequality constraints in (17.2) as

thefirst-order necessary conditions, although we recognize that the
first-order necessary conditions also include, strictly speaking, the other
items in the hypothesis of Theorem17.1.

• As previously, these conditions are also known as theKuhn–Tucker
(KT) or theKarush–Kuhn–Tucker (KKT) conditions and a point
satisfying the conditions is called aKKT point .
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17.1.1.4 Lagrangian
• Recall Definition3.2of theLagrangian.
• For Problem (17.1) the LagrangianL : Rn×R

m×R
r → R is defined by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,L(x,λ,µ) = f (x)+λ†(Ax−b)+µ†(Cx−d).

• As in the equality-constrained case, define the gradients ofL with respect

to x, λ, andµ by, respectively,∇xL =

[

∂L
∂x

]†

, ∇λL =

[

∂L
∂λ

]†

, and

∇µL =

[

∂L
∂µ

]†

.

• Evaluating the gradients with respect tox,λ, andµ, we have:

∇xL(x,λ,µ) = ∇f (x)+A†λ+C†µ,
∇λL(x,λ,µ) = Ax−b,
∇µL(x,λ,µ) = Cx−d.

• Setting the first two of these expressions equal to zero reproduces some of
the first-order necessary conditions for the problem.
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Lagrangian, continued
• As with equality-constrained problems, the Lagrangian provides a

convenient way to remember the optimality conditions.
• However, unlike the equality-constrained case, in order torecover the

first-order necessary conditions for Problem (17.1) we have to:
– add the complementary slackness conditions; that is,M⋆(Cx⋆−d) = 0,
– add the non-negativity constraints onµ, that is,µ≥ 0, and
– interpret the third expression as corresponding to inequality constraints;

that is,Cx≤ d.
• If the hypotheses of Theorem17.1are satisfied and, additionally,f is

convex thenx⋆ is a global minimizer ofL(•,λ⋆,µ⋆), whereλ⋆ andµ⋆ are
the Lagrange multipliers.
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17.1.2 Second-order sufficient conditions
17.1.2.1 Analysis

Theorem 17.2 Let f : Rn → R be twice partially differentiable with
continuous second partial derivatives, A∈ R

m×n,b∈ R
m,

C∈ R
r×n,d ∈ R

r . Consider Problem (17.1):

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d},

and points x⋆ ∈ R
n,λ⋆ ∈ R

m, and µ⋆ ∈ R
r . Let M⋆ = diag{µ⋆ℓ}. Suppose

that:

∇f (x⋆)+A†λ⋆+C†µ⋆ = 0,
M⋆(Cx⋆−d) = 0,

Ax⋆ = b,
Cx⋆ ≤ d,

µ⋆ ≥ 0, and
∇2f (x⋆) is positive definite on the null space:

N+ = {∆x∈ R
n|A∆x= 0,Cℓ∆x= 0,∀ℓ ∈ A+(x

⋆,µ⋆)},
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where Cℓ is theℓ-th row of C and

A+(x
⋆,µ⋆) = {ℓ ∈ {1, . . . , r}|Cℓx

⋆ = dℓ,µ
⋆
ℓ > 0}.

Then x⋆ is a strict local minimizer of Problem (17.1). ✷

• The conditions in the theorem are called thesecond-order sufficient
conditions (or SOSC.)

• In addition to the first-order necessary conditions, the second-order
sufficient conditions require that:
f is twice partially differentiable with continuous second partial

derivatives, and
∇2f (x⋆) is positive definite on the null spaceN+ defined in the theorem.
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17.1.2.2 Example
• Recall again the example quadratic program, Problem (2.18).
• For this problem:

Cx⋆ = d,
µ⋆ = [4],

A+(x
⋆,µ⋆) = {ℓ ∈ {1, . . . , r}|Cℓx

⋆ = dℓ,µ
⋆
ℓ > 0},

= {1},

• since the only inequality constraint in this problem is binding and the
corresponding Lagrange multiplier is non-zero.

• Consequently,

N+ = {∆x∈ R
n|A∆x= 0,Cℓ∆x= 0,∀ℓ ∈ A+(x

⋆,µ⋆)},
= {∆x∈ R

n|A∆x= 0,C∆x= 0},
= {0},

• and∇2f (x⋆) is positive definite on this null space by definition.
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17.1.2.3 Discussion
• The setsN+ andA+(x⋆,µ⋆) have analogous roles to their roles in the case

of non-negativity constraints presented in Section16.1.2.
• If ∇2f (x⋆) is positive definite onN+ then there can be no feasible descent

directions forf atx⋆.
• As in the non-negatively constrained case, the setA+(x⋆,µ⋆) can be a

strict subset ofA(x⋆), since it omits those constraintsℓ for which
Cℓx⋆ = dℓ andµ⋆ℓ = 0.

• Therefore, the null space specified in Theorem17.2:

N+ = {∆x∈ R
n|A∆x= 0,Cℓ∆x= 0,∀ℓ ∈ A+(x

⋆,µ⋆)},

• can strictly contain the null space corresponding to the equality
constraints and the active inequality constraints.

• That isN+ can strictly contain the null space:

N = {∆x∈ R
n|A∆x= 0,Cℓ∆x= 0,∀ℓ ∈ A(x⋆)}.

• As in the non-negatively constrained case, constraints forwhichCℓx⋆ = dℓ
andµ⋆ℓ = 0 are calleddegenerate constraints.
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17.1.2.4 Example of degenerate constraints
• Consider the following modified version of Problem (2.18):

min
x∈R2

{ f (x)|Ax= b,Cx≤ d̂}. (17.3)
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Fig. 17.2. Contour sets
of objective function
and feasible set for
Problem (17.3). The
heights of the contours
decrease towards the

point

[

1
3

]

. The feasible

set is the “half-line”
starting at the point
[

2
2

]

, which is also

the minimizer and is
illustrated with a•.
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Example of degenerate constraints, continued
• The objective and constraints are specified by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,

d̂ = [−2] .

• First consider the relaxation of Problem (17.3) where we neglect the
inequality constraint.

• This relaxation yields Problem (2.13), which we first met in

Section2.3.2.2and which has minimizerx⋆ =

[

2
2

]

.
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Example of degenerate constraints, continued
• Now notice that:

Cx⋆ = [−2]≤ [−2] = d̂,

• so thatx⋆ is feasible for Problem (17.3).
• By Theorem3.10, x⋆ is a also minimizer of Problem (17.3).
• We claim thatx⋆ together withλ⋆ = [−2] andµ⋆ = [0] satisfy the

first-order necessary conditions for Problem (17.3).

∇f (x⋆)+A†λ⋆+C†µ⋆

=

[

2 0
0 2

][

2
2

]

+

[

−2
−6

]

+

[

1
−1

]

[−2]+

[

0
−1

]

[0],

= 0;

µ⋆(Cx⋆− d̂) = [0]

(

[0 −1]

[

2
2

]

− [−2]

)

,

= [0]× [0],
= [0];
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Example of degenerate constraints, continued

Ax⋆ = [1 −1]

[

2
2

]

,

= [0],
= b;

Cx⋆ = [0 −1]

[

2
2

]

,

= [−2],
≤ [−2],

= d̂; and
µ⋆ = [0],

≥ [0].

• Notice thatCx⋆ = d̂ andµ⋆ = [0], so that the constraintCx≤ d̂ is
degenerate.
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Example of degenerate constraints, continued
• For this problem:

A+(x
⋆,µ⋆) = {ℓ ∈ {1, . . . , r}|Cℓx

⋆ = d̂ℓ,µ
⋆
ℓ > 0},

= /0,
N+ = {∆x∈ R

2|A∆x= 0,Cℓ∆x= 0,∀ℓ ∈ A+(x
⋆,µ⋆)},

= {∆x∈ R
2|A∆x= 0},

= {∆x∈ R
2|∆x1 = ∆x2}.

• We have that:

∀x∈ R
2,∇2f (x) =

[

2 0
0 2

]

,

• which is positive definite onR2 and therefore also positive definite onN+.
• Therefore, the second-order sufficient conditions hold and, by

Theorem17.2, x⋆ is a strict local minimizer of Problem (17.3).
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17.1.2.5 Example of second-order sufficient conditions notholding
• Consider the following modified version of Problem (17.3) from

Section17.1.2.4:

min
x∈R2

{φ(x)|Ax= b,Cx≤ d̂}, (17.4)

• whereφ : R2 → R is defined by:

∀x∈ R
2,φ(x) =− f (x).

• That is, we are minimizing(− f ) instead off .

• We claim that ˆx=

[

2
2

]

together witĥλ = [2] andµ̂= [0] satisfy the

first-order necessary conditions for Problem (17.4).
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Example of second-order sufficient conditions not holding,continued

∀x∈ R
2,∇φ(x) =

[

−2 0
0 −2

]

x+

[

2
6

]

,

∇φ(x̂)+A†λ̂+C†µ̂

=

[

−2 0
0 −2

][

2
2

]

+

[

2
6

]

+

[

1
−1

]

[2]+

[

0
−1

]

[0],

= 0;

µ̂(Cx̂− d̂) = [0]

(

[0 −1]

[

2
2

]

− [−2]

)

,

= [0]× [0],
= [0];

Ax̂ = [1 −1]

[

2
2

]

,

= [0],
= b;
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Example of second-order sufficient conditions not holding,continued

Cx̂ = [0 −1]

[

2
2

]

,

= [−2],
≤ [−2],

= d̂; and
µ̂ = [0],

≥ [0].

• Notice that againCx̂= d̂ andµ̂= [0].

• Therefore, if ˆx=

[

2
2

]

andµ̂= [0] werethe minimizer and the Lagrange

multiplier corresponding to the constraintCx≤ d̂, then this constraint
would be degenerate.
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Example of second-order sufficient conditions not holding,continued
• For this problem:

A+(x̂, µ̂) = {ℓ ∈ {1, . . . , r}|Cℓx̂= d̂ℓ, µ̂ℓ > 0},
= /0,

N+ = {∆x∈ R
2|A∆x= 0,Cℓ∆x= 0,∀ℓ ∈ A+(x̂, µ̂)},

= {∆x∈ R
2|A∆x= 0},

= {∆x∈ R
2|∆x1 = ∆x2}.

• However, we note that∇2φ(x̂) =
[

−2 0
0 −2

]

is not positive definite on

N+.
• Therefore the second-order sufficient conditions do not hold.
• In fact, x̂ is not a minimizer of the problem, since the objective can be

reduced by moving away from ˆx along the equality constraint so as to
make the inequality constraint strictly feasible.
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Example of second-order sufficient conditions not holding,continued
• The fact that ˆx is not a minimizer can be seen from Figure17.2, on noting

that the contours ofφ are the same as those off , except that the heights of

the contours ofφ decreaseawayfrom the point

[

1
3

]

.

• If we haderroneouslyconsidered the null space:

N = {∆x∈ R
2|A∆x= 0,Cℓ∆x= 0,∀ℓ ∈ A(x̂)},

= {∆x∈ R
2|∆x1 = ∆x2,−∆x2 = 0},

= {0},

• then we would not have realized that ˆx is not a minimizer.
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17.2 Convex problems
17.2.1 First-order sufficient conditions

17.2.1.1 Analysis
• If the constraints consist of linear equality and inequality constraints and

if f is convex on the feasible set then the problem is convex.
• In this case, the first-order necessary conditions are also sufficient for

optimality.
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Theorem 17.3 Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ R

m×n,b∈ R
m,C∈ R

r×n,d ∈ R
r .

Consider Problem (17.1):

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d},

and points x⋆ ∈ R
n, λ⋆ ∈ R

m, and µ⋆ ∈ R
r . Let M⋆ = diag{µ⋆ℓ}. Suppose

that:
(i) f is convex on{x∈ R

n|Ax= b,Cx≤ d},
(ii) ∇f (x⋆)+A†λ⋆+C†µ⋆ = 0,

(iii) M⋆(Cx⋆−d) = 0,
(iv) Ax⋆ = b and Cx⋆ ≤ d, and
(v) µ⋆ ≥ 0.

Then x⋆ is a global minimizer of Problem (17.1).

Proof The proof is very similar to the proof of Theorem16.3in
Chapter16. ✷

• In addition to the first-order necessary conditions, the first-order sufficient
conditions require thatf is convex on the feasible set.
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17.2.1.2 Example
• Again consider Problem (2.18) from Sections2.3.2.3, 17.1.1.2,

and17.1.2.2.

• In Section17.1.1.2, we observed thatx⋆ =

[

3
3

]

, λ⋆ = [−4], andµ⋆ = [4]

satisfy the first-order necessary conditions for this problem.
• Moreover, f is twice continuously differentiable with continuous partial

derivatives and the Hessian is positive definite.
• Therefore,f is convex andx⋆ is the global minimizer of the problem.
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17.2.2 Duality
• As we discussed in Section3.4and as in the discussion of linear equality

constraints in Section13.2.2, we can define a dual problem where the role
of variables and constraints is partly or fully swapped.

• We recall some of the discussion in Section3.4 in the following sections.
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17.2.2.1 Dual function
• We have observed in Section17.1.1.4that if f is convex thenx⋆ is a

global minimizer ofL(•,λ⋆,µ⋆).
• Recall Definition3.3of thedual function andeffective domain.
• For Problem (17.1), the dual functionD : Rm×R

r → R∪{−∞} is
defined by:

∀

[

λ
µ

]

∈ R
m+r ,D(λ,µ) = inf

x∈Rn
L(x,λ,µ). (17.5)

• The effective domain ofD is:

E=

{[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

D(λ,µ)>−∞
}

.

• Recall that by Theorem3.12, E is convex andD is concave onE.
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Example

• We continue with Problem (2.18).
• The problem is:

min
x∈R2

{ f (x)|Ax= b,Cx≤ d},

• where:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,
d = [−3] .

• The LagrangianL : R2×R×R→ R for this problem is defined by:

∀x∈ R
2,∀λ ∈ R,∀µ∈ R,

L(x,λ,µ) = f (x)+λ†(Ax−b)+µ†(Cx−d),

= (x1−1)2+(x2−3)2+λ [1 −1]x+µ([0 −1]x+3) .
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Example, continued

• For any givenλ andµ, the LagrangianL(•,λ,µ) is strictly convex.
• By Corollary10.6, the first-order necessary conditions∇xL(x,λ,µ) = 0

are sufficient for minimizingL(•,λ,µ).
• Moreover, a minimizer exists, so that the inf in the definition of D can be

replaced by min.
• Furthermore, there is a unique minimizerx(λ,µ) corresponding to each

value ofλ andµ:

∀x∈ R
2,∀λ ∈ R,∀µ∈ R,

∇xL(x,λ,µ) = ∇f (x)+A†λ+C†µ,

=

[

2 0
0 2

]

x+

[

−2
−6

]

+

[

1
−1

]

λ+
[

0
−1

]

µ,

∀λ ∈ R,∀µ∈ R,x(λ,µ) = −

[

2 0
0 2

]−1[[
−2
−6

]

+

[

1
−1

]

λ+
[

0
−1

]

µ

]

,

=

[

1
3

]

+

[

−0.5
0.5

]

λ+
[

0
0.5

]

µ. (17.6)
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Example, continued

• Consequently, the effective domain isE= R×R and the dual function
D : R×R→ R is given by:

∀

[

λ
µ

]

∈ R
2,D(λ,µ) = inf

x∈Rn
L(x,λ,µ),

= L(x(λ,µ),λ,µ), sincex(λ,µ) minimizesL(•,λ,µ),
= (x(λ,µ)1 −1)2+(x(λ,µ)2 −3)2

+λ [1 −1]x(λ,µ)+µ
(

[0 −1]x(λ,µ)+3
)

,

= −
1
2
(λ)2−

1
4
(µ)2−2λ−

1
2

µλ,

• on substituting from (17.6) for x(λ,µ).
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17.2.2.2 Dual problem
Analysis

• As in the equality-constrained case, if the objective is convex onRn then
the minimum of Problem (17.1) is equal toD(λ⋆,µ⋆), whereλ⋆ andµ⋆

are the Lagrange multipliers that satisfy the necessary conditions for
Problem (17.1).

• As in the equality-constrained case, under certain conditions, the
Lagrange multipliers can be found as the maximizer of thedual problem:

max
[λµ]∈E

{D(λ,µ)|µ≥ 0}, (17.7)

• whereD : E→ R is the dual function defined in (17.5).
• Again, Problem (17.1) is called theprimal problem to distinguish it from

Problem (17.7).
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Theorem 17.4 Suppose that f: Rn → R is convex and partially
differentiable with continuous partial derivatives, A∈R

m×n, b∈ R
m,

C∈ R
r×n, and d∈ R

r . Consider the primal problem, Problem (17.1):

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d}.

Also, consider the dual problem, Problem (17.7). We have the following.

(i) If the primal problem possesses a minimum then the dual problem
possesses a maximum and the optima are equal. That is:

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d}= max
[λµ]∈E

{D(λ,µ)|µ≥ 0}.

(ii) If:

•

[

λ
µ

]

∈ E,

• minx∈Rn L(x,λ,µ) exists, and
• f is twice partially differentiable with continuous second

partial derivatives and∇2f is positive definite,
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thenD is partially differentiable at

[

λ
µ

]

with continuous partial

derivatives and:
[

∇λD(λ,µ)
∇µD(λ,µ)

]

= ∇D(λ,µ) =
[

Ax(λ,µ)−b
Cx(λ,µ)−d

]

, (17.8)

where x(λ,µ) is the unique minimizer ofminx∈Rn L(x,λ,µ).
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Proof
(i) Suppose that Problem (17.1) possesses a minimum with

minimizerx⋆. By Theorem17.1,

∃λ⋆ ∈ R
m,∃µ⋆ ∈ R

r
+ such that0 = ∇f (x⋆)+A†λ⋆+C†µ⋆,

= ∇xL(x⋆,λ⋆,µ⋆),

where we note thatL(•,λ⋆,µ⋆) is convex and partially
differentiable with continuous partial derivatives, so that, by
Corollary10.6, x⋆ is also a minimizer ofL(•,λ⋆,µ⋆). Therefore,

D(λ⋆,µ⋆) = inf
x∈Rn

L(x,λ⋆,µ⋆),

= L(x⋆,λ⋆,µ⋆), becausex⋆ minimizesL(•,λ⋆,µ⋆),

= f (x⋆)+ [λ⋆]†(Ax⋆−b)+ [µ⋆]†(Cx⋆−d), by definition,
= f (x⋆), sincex⋆ is feasible and, by Theorem17.1,

µ⋆ℓ(Cℓx⋆−dℓ) = 0,∀ℓ= 1, . . . , r,
≥ D(λ,µ),∀λ ∈ R

m,∀µ∈ R
r
+, by Theorem3.13.
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That is,

[

λ⋆

µ⋆

]

maximizes the dual function overλ ∈ R
m and

µ∈ R
r
+:

f (x⋆) = max
[λµ]∈E

{D(λ,µ)|µ≥ 0},

= D(λ⋆,µ⋆).

(ii) Proved in an exercise.
✷

Discussion

• As in the equality-constrained case, it is possible forD to not be partially

differentiable at a point

[

λ
µ

]

∈ E if:

L(•,λ,µ) is bounded below (so that infx∈RnL(x,λ,µ) ∈ R) yet the
minimum minx∈RnL(x,λ,µ) does not exist, or

there are multiple minimizers of minx∈RnL(x,λ,µ).
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Corollary 17.5 Let f : Rn → R be twice partially differentiable with
continuous second partial derivatives and with∇2f positive definite,
A∈ R

m×n,b∈ R
m,C∈ R

r×n,d ∈ R
r . Consider Problem (17.1):

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d},

the Lagrangian of this problem, and the effective domainE of the dual
function. If:

• the effective domainE containsRm×R
r
+, and

• for eachλ ∈ R
m and µ∈ R

r
+, minx∈Rn L(x,λ,µ) exists,

then necessary and sufficient conditions for

[

λ⋆

µ⋆

]

∈ R
m+r to be the

maximizer of the dual problem:

max
[λµ]∈E

{D(λ,µ)|µ≥ 0},
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are:

Ax(λ
⋆,µ⋆) = b;

Cx(λ
⋆,µ⋆)−d ≤ 0;

M⋆(Cx(λ
⋆,µ⋆)−d) = 0; and

µ⋆ ≥ 0,

where{x(λ
⋆,µ⋆)}= argminx∈Rn L(x,λ⋆,µ⋆) and M⋆ = diag{µ⋆ℓ}.

Moreover, if

[

λ⋆

µ⋆

]

maximizes the dual problem then the corresponding

minimizer of the Lagrangian, x(λ
⋆,µ⋆), together withλ⋆ and µ⋆ satisfy the

first-order necessary conditions for Problem (17.1).
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Proof Note that the hypothesis implies that the dual function is finite
for all λ ∈ R

m and allµ∈ R
r
+ so that dual problem is a non-negatively

constrained maximization of a real-valued function and, moreover, by
Theorem3.12, −D is convex and partially differentiable with continuous
partial derivatives on the convex set:

{[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

µ≥ 0
}

.

Moreover, by Theorem17.4,

∇λD(λ⋆,µ⋆) = Ax(λ
⋆,µ⋆)−b,

∇µD(λ⋆,µ⋆) = Cx(λ
⋆,µ⋆)−d.

Applying Theorems17.1and17.3to the dual problem and some
substitution yields the conclusion.✷
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Discussion

• Theorem17.4shows that an alternative approach to finding the minimum
of Problem (17.1) involves finding themaximumof the dual function
D(λ,µ) overλ ∈ R

m,µ∈ R
r ,µ≥ 0.

• Theorem3.12shows that the dual function has at most one local
maximum.

• To seek the maximum ofD(λ,µ) overλ ∈ R
m,µ∈ R

r ,µ≥ 0, we can, for
example, utilize the value of the gradient ofD from (17.8) as part of an
active set or interior point algorithm.

• As in the equality-constrained case, under some circumstances, it is also
possible to calculate the Hessian ofD.
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Example

• Continuing with the dual of Problem (2.18), we recall that the effective
domain isE= R×R and the dual functionD : R×R→ R is:

∀

[

λ
µ

]

∈ R
2,D(λ,µ) =−

1
2
(λ)2−

1
4
(µ)2−2λ−

1
2

µλ,

• with unique minimizer of the Lagrangian specified by (17.6).
• The dual function is twice partially differentiable with continuous second

partial derivatives.
• In particular,

∀

[

λ
µ

]

∈ R
2,∇D(λ,µ) =

[

−2−λ−µ/2
−λ/2−µ/2

]

,

∀

[

λ
µ

]

∈ R
2,∇2D(λ,µ) =

[

−1 −0.5
−0.5 −0.5

]

.

• We claim that

[

λ⋆

µ⋆

]

=

[

−4
4

]

maximizes the dual function overµ≥ [0].
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Example, continued

• In particular∇D(λ⋆,µ⋆) = 0, µ⋆ > [0], and∇2D is negative definite.

• Consequently,

[

λ⋆

µ⋆

]

is the unique maximizer of dual Problem (17.7).

• We also observe thatλ⋆ = [−4] andµ⋆ = [4] satisfy the conditions
specified in Corollary17.5for maximizing the dual.

• To see this, we first use (17.6) to evaluatex(λ,µ) at λ⋆ = [−4] andµ⋆ = [4].

• We obtainx(λ
⋆,µ⋆) =

[

3
3

]

.

• We will also show that the necessary and sufficient conditions in
Corollary17.5for maximizing the dual are satisfied.
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Example, continued

µ⋆(Cx(λ
⋆,µ⋆)−d) = [4]

(

[0 −1]

[

3
3

]

− [−3]

)

,

= [0];

Ax(λ
⋆,µ⋆)−b = [1 −1]

[

3
3

]

,

= [0];

Cx(λ
⋆,µ⋆)−d = [0 −1]

[

3
3

]

− [−3],

= [0],
≤ [0]; and

µ⋆ = [4],
≥ [0].

• Moreover,x(λ
⋆,µ⋆) together withλ⋆, andµ⋆ satisfy the first-order

necessary conditions for Problem (2.18).
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Discussion

• As in the equality-constrained case, it is essential in Theorem17.4for f
to be convex on thewholeof Rn, not just on the feasible set because the
inner minimization ofL(•,λ,µ) is taken over the whole ofRn.

• Unfortunately, if f is not strictly convex thenL(•,λ,µ) may have
multiple minimizers overx for fixed λ andµ.

• In this case, it may turn out that some of the minimizers ofL(•,λ⋆,µ⋆) do
not actually minimize (17.1).

• Moreover, if there are multiple minimizers ofL(•,λ,µ) thenD(λ,µ) may
be not partially differentiable.

• The issues are similar to the equality-constrained case.
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Discussion, continued

• In the particular cases of linear and of strictly convex quadratic programs,
we can calculate the dual function and characterize the effective domain
explicitly.

• This allows us to use duality for the not strictly convex caseof linear
programs.

• The dual problem is non-negatively constrained of the form of
Problem (16.1) and we can apply essentially the same algorithms as we
developed for Problem (16.1).

• We will take this approach in Section17.3.2.
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17.2.2.3 Dual of linear and quadratic programs
• In the case of linear and of strictly convex quadratic programs, we can

characterize the effective domain and the dual function explicitly by
solving the first-order necessary conditions for minimizing the
Lagrangian:

∇xL(x,λ,µ) = 0.

• The approach parallels that of the Wolfe dual, described in
Section13.2.2.2.

• We first consider the case of linear objective and then strictly convex
quadratic objective.
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Linear program

∀x∈ R
n, f (x) = c†x,

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,L(x,λ,µ) = c†x+λ†(Ax−b)+µ†(Cx−d),

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,∇xL(x,λ,µ) = c+A†λ+C†µ.

• The first-order necessary and sufficient conditions for minimizing the
Lagrangian arec+A†λ+C†µ= 0.

• These conditions do not involvex, but also do not necessarily have a
solution for all values ofλ andµ.
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Linear program, continued

If c+A†λ+C†µ 6= 0 thenL(•,λ,µ) is unbounded below and

[

λ
µ

]

6∈ E.

If c+A†λ+C†µ= 0 then, after substituting, we find that:

D(λ,µ) = −λ†b−µ†d,
> −∞.

• That is:

E =

{[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

c+A†λ+C†µ= 0
}

,

∀

[

λ
µ

]

∈ E,D(λ,µ) = −λ†b−µ†d.

• We now substitute the characterization of the dual functionand effective
domain into the definition of the dual problem and apply Theorem17.4.

• We assume that minx∈Rn{c†x|Ax= b,Cx≤ d} possesses a minimum.
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Linear program, continued

min
x∈Rn

{c†x|Ax= b,Cx≤ d}

= max
[λµ]∈E

{D(λ,µ)|µ≥ 0}, by Theorem17.4,

= max
[λµ]∈Rm+r

{D(λ,µ)|c+A†λ+C†µ= 0,µ≥ 0},

sinceE=

{[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

c+A†λ+C†µ= 0
}

,

= max
[λµ]∈Rm+r

{−λ†b−µ†d|c+A†λ+C†µ= 0,µ≥ 0},

sinceD(λ,µ) =−λ†b−µ†d for c+A†λ+C†µ= 0,

= − min
[λµ]∈Rm+r

{λ†b+µ†d|c+A†λ+C†µ= 0,µ≥ 0},

= − min
[λµ]∈Rm+r

{

[

b
d

]†[λ
µ

]

∣

∣

∣

∣

∣

[

A
C

]†[λ
µ

]

=−c,µ≥ 0

}

. (17.9)
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Linear program, continued

• The dual problem in the last line of (17.9) has a linear objective, linear
equality constraints, and non-negativity constraints on the variablesµ.

• Since the primal problem has a minimum, there is at least one point in the
feasible set of the dual problem,

E+ =

{

[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

∣

[

A
C

]†[λ
µ

]

=−c,µ≥ 0

}

,

namely the Lagrange multipliers

[

λ⋆

µ⋆

]

that correspond to the minimizer

x⋆ of the primal problem.
• We say that the problem isdual feasible.
• We have transformed a primal problem withn variables,mequality

constraints, andr inequality constraints into a dual problem withm+ r
variables,n equality constraints, andr inequality constraints.

• The dual of a linear program is therefore also a linear program, but with
non-negativity constraints instead of general linear inequalities.
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Quadratic program

∀x∈ R
n, f (x) = 1

2x†Qx+c†x,
∀x∈ R

n,∀λ ∈ R
m,∀µ∈ R

r ,

L(x,λ,µ) = 1
2x†Qx+c†x+λ†(Ax−b)+µ†(Cx−d),

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,

∇xL(x,λ,µ) = Qx+c+A†λ+C†µ.

• The first-order necessary conditions for minimizingL(•,λ,µ) are that
Qx+c+A†λ+C†µ= 0.

• Assuming thatQ is positive definite, these conditions have a solution for
all values ofλ andµ, namelyx=−Q−1[c+A†λ+C†µ], yielding:

∀

[

λ
µ

]

∈ R
m+r ,

D(λ,µ) = −
1
2
[c+A†λ+C†µ]

†
Q−1[c+A†λ+C†µ]−λ†b−µ†d,

> −∞,

• so thatE= R
m+r .
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Quadratic program, continued

• If minx∈Rn{1
2x†Qx+c†x|Ax= b,Cx≤ d} possesses a minimum then by

Theorem17.4:

min
x∈Rn

{
1
2

x†Qx+c†x|Ax= b,Cx≤ d}

= max
[λµ]∈E

{D(λ,µ)|µ≥ 0},

= max
[λµ]∈Rm+r

{

−
1
2
[c+A†λ+C†µ]

†
Q−1[c+A†λ+C†µ]−λ†b−µ†d

∣

∣

∣

∣

µ≥ 0
}

,

= − min
[λµ]∈Rm+r

{

1
2
[c+A†λ+C†µ]

†
Q−1[c+A†λ+C†µ]+λ†b+µ†d

∣

∣

∣

∣

µ≥ 0
}

.

(17.10)

• The dual problem in the last line of (17.10) has a quadratic objective and
non-negativity constraints.
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Quadratic program, continued

• We have transformed a primal problem withn variables,mequality
constraints, andr inequality constraints into a dual problem withm+ r
variables andr inequality constraints.

• The dual of a quadratic program is therefore also a quadraticprogram.
• Again, the form of the inequality constraints in the dual is simpler than in

the primal problem since they are non-negativity constraints.
• If we solve the problem in the last line of (17.10) for optimalλ⋆ andµ⋆

then the minimizer,x⋆, of the primal problem can be recovered as
x⋆ =−Q−1[c+A†λ⋆+C†µ⋆].
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Discussion

• There is considerable literature on the relationship between primal and
dual linear programs and on primal and dual quadratic programs.

• The standard treatment of duality in linear programming differs from the
way we have discussed it here, there are a variety of special cases, and we
have omitted many details.

• For example, we have not discussed how to recover a minimizerof the
primal problem from the solution of the dual of a linear program.

• Furthermore,primal–dual algorithms (including the primal–dual
interior point algorithm described in Section16.4.3.3) representboth the
primal and dual variables and simultaneously solve for boththe
minimizer and the Lagrange multipliers.

• The primal–dual interior point algorithm is therefore essentially the same
whether it is applied to the primal or dual problem.
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17.2.2.4 Partial duals
Analysis

• We can define thepartial dual with respect to some of the constraints.
• For example, defineD= : Rm→ R∪{−∞} andD≤ : Rr → R∪{−∞} by:

∀λ ∈ R
m,D=(λ) = inf

x∈Rn
{ f (x)+λ†(Ax−b)|Cx≤ d},

∀µ∈ R
r ,D≤(µ) = inf

x∈Rn
{ f (x)+µ†(Cx−d)|Ax= b}.

• The functionD= is called the partial dual with respect to the equality
constraints, whileD≤ is called the partial dual with respect to the
inequality constraints.
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Theorem 17.6 Suppose that f: Rn → R is convex and partially
differentiable with continuous partial derivatives, A∈R

m×n, b∈ R
m,

C∈ R
r×n, and d∈ R

r . Suppose that Problem (17.1) possesses a
minimum. Then:

min
x∈Rn

{ f (x)|Ax= b,Cx≤ d}= max
λ∈E=

{D=(λ)}= max
µ∈E≤

{D≤(µ)|µ≥ 0},

whereD= is the partial dual with respect to the equality constraintsand
E= is its effective domain andD≤ is the partial dual with respect to the
inequality constraints andE≤ is its effective domain.✷

• It is also possible to take a partial dual with respect to onlysome of the
equality or some of the inequality constraints or some of both of the
equality and inequality constraints, leaving the other constraints explicitly
in the problem.
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Separable problems

• To see an example of the usefulness of partial duality, consider the case
where:
f is separable and strictly convex, so thatf (x) = ∑n

k=1 fk(xk), and
the inequality constraints consist only of upper and lower bound

constraintsx≤ x≤ x.
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Separable problems, continued

∀λ ∈ R
m,D=(λ)

= min
x∈Rn

{ f (x)+λ†(Ax−b)|Cx≤ d},

= min
x∈Rn

{ f (x)+λ†(Ax−b)|x≤ x≤ x},

= min
x∈Rn

{

n

∑
k=1

fk(xk)+λ†
n

∑
k=1

Akxk−λ†b

∣

∣

∣

∣

∣

xk ≤ xk ≤ xk,∀k= 1, . . . ,n

}

,

whereAk is thek-th column ofA,

= min
x∈Rn

{

n

∑
k=1

(

fk(xk)+λ†Akxk

)

−λ†b

∣

∣

∣

∣

∣

xk ≤ xk ≤ xk,∀k= 1, . . . ,n

}

,

on re-arranging,

=
n

∑
k=1

min
xk∈R

{ fk(xk)+λ†Akxk|xk ≤ xk ≤ xk}−λ†b, (17.11)

• on swapping the minimum and the summation.
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Separable problems, continued

• For a given value ofλ, the dual with respect to the equality constraints is
the sum of:
a constant(−λ†b), and
n one-dimensional optimization sub-problems that can each be evaluated

independently.
• The primal problem has beendecomposedinto a collection of

sub-problems using the partial dual.
• For a problem with constraints that couple between sub-problems, by

dualizing with respect to thesecoupling constraintswe can decompose
the problem into the sub-problems.

• If each sub-problem is simple enough, it may be possible to evaluate its
minimizer and minimum explicitly without resorting to an iterative
technique.

• This applies to the least-cost production case study from Section15.1and
will be described in detail in Section18.1.2.2.
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17.3 Approaches to finding minimizers
• In this section we will show two basic ways in which

inequality-constrained Problem (17.1) can be transformed into the form
of Problem (16.1) from Chapter16.

• We can then use the algorithmic development from Chapter16 to solve
Problem (17.1).
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17.3.1 Primal algorithm
17.3.1.1 Transformation

Slack variables

• To handle the inequality constraints of the primal problem,we consider
the following problem incorporatingslack variablesas introduced in
Section3.3.2:

min
x∈Rn,w∈Rr

{ f (x)|Ax= b,Cx+w= d,w≥ 0}. (17.12)

• The variablesw are called theslack variablesbecause they account for
the “slack” in the constraintsCx≤ d.

• By Theorem3.8, Problem (17.12) is equivalent to Problem (17.1).
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Slack variables, continued

• In Problem (17.12), if we consider:
[

x
w

]

∈ R
n+r to be the decision vector,

f to be the objective, and
[

A 0
C I

][

x
w

]

=

[

b
d

]

to be the equality constraints,

• then Problem (17.12) can be expressed in the form of Problem (16.1)
(except that we have non-negativity constraints on justw and not on the

whole of the decision vector

[

x
w

]

.)

• The equivalent problem is:

min
x∈Rn,w∈Rr

{

f (x)

∣

∣

∣

∣

[

A 0
C I

][

x
w

]

=

[

b
d

]

, w≥ 0
}

. (17.13)

• In the next section, we will apply the primal–dual interior point algorithm
from Section16.4to Problem (17.13).
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17.3.1.2 Primal–dual interior point algorithm
Barrier objective and problem

• Given a barrier functionfb : Rr
++ → R for the constraintsw≥ 0 and a

barrier parametert ∈ R++, we form thebarrier objective
φ : Rn×R

r
++ → R defined by:

∀x∈ R
n,∀w∈ R

r
++,φ(x,w) = f (x)+ t fb(w).

• Instead of solving (17.13), we will consider solving thebarrier problem :

min
x∈Rn,w∈Rr

{

φ(x,w)
∣

∣

∣

∣

[

A 0
C I

][

x
w

]

=

[

b
d

]

, w> 0
}

. (17.14)

• We seek (approximate) minimizers of Problem (17.14) for a decreasing
sequence of values of the barrier parameter.
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Slater condition

• As in the case of non-negativity constraints described in Section 16.4.2.2,
in order to apply the interior point algorithm effectively,we must assume
that theSlater condition holds so that there are feasible points for
Problem (17.14).

• That is, we assume that{x∈R
n|Ax= b,Cx< d} 6= /0.
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Equality-constrained problem

• To solve Problem (17.14), we can take a similar approach to the
primal–dual interior point algorithm for non-negativity constraints
presented in Section16.4of Chapter16.

• We partially ignore the inequality constraints and seek a solution to the
following linear equality-constrained problem:

min
x∈Rn,w∈Rr

{

φ(x,w)
∣

∣

∣

∣

[

A 0
C I

][

x
w

]

=

[

b
d

]}

, (17.15)

• which has first-order necessary conditions:

∇f (x)+A†λ+C†µ = 0, (17.16)
Ax = b, (17.17)

Cx+w = d, (17.18)
t∇fb(w)+µ = 0, (17.19)

• whereλ andµ are the dual variables on the constraintsAx= b and
Cx+w= d, respectively.
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Equality-constrained problem, continued

• We can use the techniques for minimization of linear equality-constrained
problems from Section13.3.2of Chapter13 to solve Problem (17.15).

• In particular, in Section17.3.1.3, we will consider the Newton–Raphson
method for solving the first-order necessary conditions of
Problem (17.15).
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Logarithmic barrier function

• As in the primal–dual interior point algorithm for non-negativity
constraints, we will use the logarithmic barrier function:

∀w∈ R
r
++, fb(w) = −

r

∑
ℓ=1

ln(wℓ),

∀w∈ R
r
++,∇fb(w) = −[W]−11,

• whereW = diag{wℓ} ∈ R
r×r is a diagonal matrix with diagonal entries

equal towℓ, ℓ= 1, . . . , r.
• Substituting the expression for∇fb into (17.19) and re-arranging, we

obtain:

Wµ− t1= 0. (17.20)

• Note that (17.20) is analogous to (16.27) and can again be interpreted as
approximating the complementary slackness constraints bya
hyperbolic-shaped set.
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17.3.1.3 Newton–Raphson method
Analysis

• The Newton–Raphson step direction to solve (17.20) and (17.16)–(17.18)
is given by the solution of:









M(ν) 0 0 W(ν)

0 ∇2f (x(ν)) A† C†

0 A 0 0
I C 0 0

















∆w(ν)

∆x(ν)

∆λ(ν)

∆µ(ν)









=









−W(ν)µ(ν)+ t1
−∇f (x(ν))−A†λ(ν)−C†µ(ν)

b−Ax(ν)

d−Cx(ν)−w(ν)









,

• whereM(ν) = diag{µ(ν)ℓ } andW(ν) = diag{w(ν)
ℓ }.
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Analysis, continued

• As in the case of the primal–dual interior point algorithm for
non-negativity constraints discussed in Section16.4.3.3, we can
re-arrange these equations to make them symmetric and use block
pivoting on the top left-hand block of the matrix since it is diagonal.

• This results in a system that is similar to (13.35), except that a diagonal

block of the form[M(ν)]
−1

W(ν) is added to the Hessian∇2f (x(ν)).
• Issues regarding solving the first-order necessary conditions, such as

factorization of the indefinite coefficient matrix, approximate solution of
the conditions, sparsity, and step-size selection, are similar to those
described in Sections16.4.3.3and13.3.2.3.
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Example

• In this section, we will apply the primal–dual algorithm to the example
quadratic program, Problem (2.18):

min
x∈R2

{ f (x)|Ax= b,Cx≤ d},

• where:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,
d = [−3] .
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Example, continued

• The Newton–Raphson update for the corresponding barrier problem is:










µ(ν) 0 0 0 w(ν)

0 2 0 1 0
0 0 2 −1 −1
0 1 −1 0 0
1 0 −1 0 0



















∆w(ν)

∆x(ν)

∆λ(ν)

∆µ(ν)









=

















−w(ν)µ(ν)+ t

−2(x(ν)1 −1)−λ(ν)

−2(x(ν)2 −3)+λ(ν)+µ(ν)

−x(ν)1 +x(ν)2

−3+x(ν)2 −w(ν)

















.
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17.3.1.4 Other issues
Adjustment of barrier parameter

• To reduce the barrier parameter, we can use the approach described in
Section16.4.4of Chapter16.

Initial guess

• We can take an approach analogous to that in Section16.4.5to find an
initial feasible guess for Problem (17.13) that is strictly feasible for the
non-negativity constraints.

Title Page ◭◭ ◮◮ ◭ ◮ 77 of 180 Go Back Full Screen Close Quit



Other issues, continued
Stopping criterion

• f (x(ν)) will be within ε f of the minimum of the non-negatively
constrained problem if:

[µ(ν)]
†
w(ν) ≤ ε f ,

• whereµ is the vector of dual variables corresponding to the constraints
w≥ 0 (and corresponding to the constraintsCx≤ d.)

Non-negativity and lower and upper bound constraints onx

• If we add constraints of the formx≥ 0 to Problem (17.1) then we can
also include them in the barrier function and Problem (17.14).

• Box constraints of the formxℓ ≤ xℓ ≤ xℓ can be treated with a barrier
function of the form:

−t (ln(xℓ−xℓ)+ ln(xℓ−xℓ)) .
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17.3.2 Dual algorithm
17.3.2.1 Inequality constraints

• We can take the dual with respect to some or all of the inequality
constraints.

• Under convexity assumptions, the dual and primal problems have the
same optima.

• If the objective is strictly convex, the minimizer of the primal problem
can be recovered from the solution of the dual problem.

• Whereas Problem (17.1) has general linear inequality constraints, taking
the dual with respect to all the constraints or with respect to the inequality
constraints yields a dual problem where the inequality constraints are
non-negativity constraints on variables only.

• We can apply algorithms developed for Problem (16.1).
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17.3.2.2 Equality constraints
• Taking the dual with respect to the equality constraints yields a dual

problem with no equality nor inequality constraints, but with inner
problems having inequality constraints.

• To maximize the dual function, we can apply the algorithms developed in
Section10.2.

• Taking the dual with respect to only some of the equality constraints
yields a dual problem with equality constraints.

• We can apply the algorithms developed in Section13.5.2.
• Taking the partial dual of a problem with separable objectives can yield

an inner problem with a simple structure.
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17.3.2.3 Non-quadratic objectives
• Although the dual can be found for general non-quadratic objectives, it is

often not as useful because the non-linearity of the optimality conditions
in the definition of the dual function prevents us from simplifying the
objective of the dual as in the linear and quadratic cases.

• If the primal problem is non-convex, we can still apply the algorithm to
the dual problem.

• We must be more cautious about interpreting the results since the
corresponding value of the primal variables may be infeasible or not
optimal for the primal problem.
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17.4 Sensitivity
17.4.1 Analysis

• In this section we will analyze a general and a special case ofsensitivity
analysis for Problem (17.1).

• For the general case, we imagine that we have solved the
inequality-constrained minimization problem:

min
x∈Rn

{ f (x;χ)|A(χ)x= b(χ),C(χ)x≤ d(χ)}, (17.21)

• for a base-case value of the parameters, sayχ = 0, to find the base-case
local minimizerx⋆ and the base-case Lagrange multipliersλ⋆ andµ⋆.

• We consider the sensitivity of the local minimum of Problem (17.21) to
variation of the parameters aboutχ = 0.
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Analysis, continued
• As well as considering the general case of the sensitivity ofthe local

minimum of Problem (17.21) to χ, we also specialize to the case where
only the right-hand sides of the equality and inequality constraints vary.

• That is, we now consider perturbationsγ ∈ R
m andη ∈ R

r and the
problem:

min
x∈Rn

{ f (x)|Ax= b− γ,Cx≤ d−η}. (17.22)

• For the parameter valuesγ = 0 andη = 0, Problem (17.22) is the same as
Problem (17.1).

• We consider the sensitivity of the local minimum of Problem (17.22) to
variation of the parameters aboutγ = 0 andη = 0.
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Corollary 17.7 Consider Problem (17.21) and suppose that
f : Rn×R

s→ R is twice partially differentiable with continuous second
partial derivatives and that A: Rs→R

m×n, b : Rs→ R
m, C : Rs→R

r×n,
and d: Rs→ R

r are partially differentiable with continuous partial
derivatives. Also consider Problem (17.22) and suppose that the function
f : Rn → R is twice partially differentiable with continuous second
partial derivatives. Suppose that x⋆ ∈ R

n, λ⋆ ∈ R
m, and µ⋆ ∈ R

r satisfy:

• the second-order sufficient conditions for Problem (17.21) for the value
of parametersχ = 0, and

• the second-order sufficient conditions for Problem (17.22) for the value
of parametersγ = 0 andη = 0.

In particular:

• x⋆ is a local minimizer of Problem (17.21) for χ = 0, and
• x⋆ is a local minimizer of Problem (17.22) for γ = 0 andη = 0,
in both cases with associated Lagrange multipliersλ⋆ and µ⋆. Moreover,
suppose that the matrix̂A has linearly independent rows, whereÂ is the
matrix with rows consisting of:

• the m rows of A (or A(0)), and
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• those rows Cℓ of C (or of C(0)) for whichℓ ∈ A(x⋆).
Furthermore, suppose that there are no degenerate constraints at the
base-case solution.
Then, for values ofχ in a neighborhood of the base-case value of the
parametersχ = 0, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problem (17.21). Moreover, the
local minimum, local minimizer, and Lagrange multipliers are partially
differentiable with respect toχ and have continuous partial derivatives
in this neighborhood. The sensitivity of the local minimum f⋆ to χ,
evaluated at the base-caseχ = 0, is given by:

∂ f ⋆

∂χ (0) =
∂L
∂χ (x⋆,λ⋆,µ⋆;0),

whereL : Rn×R
m×R

r ×R
s→ R is theparameterized Lagrangian

defined by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,∀χ ∈ R

s,

L(x,λ,µ;χ) = f (x;χ)+λ†(A(χ)x−b(χ))+µ†(C(χ)x−d(χ)).

Furthermore, for values ofγ andη in a neighborhood of the base-case
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value of the parametersγ = 0 andη = 0, there is a local minimum and
corresponding local minimizer and Lagrange multipliers for
Problem (17.22). Moreover, the local minimum, local minimizer, and
Lagrange multipliers are partially differentiable with respect toγ andη
and have continuous partial derivatives. The sensitivities of the local
minimum toγ andη, evaluated at the base-caseγ = 0 andη = 0, are
equal to[λ⋆]† and [µ⋆]†, respectively.✷
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Discussion

• The Lagrange multipliers yield the sensitivity of the objective to the
right-hand side of the equality constraints and inequalityconstraints.

• Corollary17.7does not apply directly to linear programming problems;
however, sensitivity analysis can also be applied to linearprogramming
and, as with linear programming in general, the linearity ofboth objective
and constraints leads to various special cases.
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17.4.2 Example
• Consider Problem (2.18) from Sections2.3.2.3, 17.1.1.2, . . . ,17.3.1.3,

which has objectivef : R2 → R and constraintsAx= b andCx≤ d
defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] ,
C = [0 −1] ,
d = [−3] .

• We have already verified that the second-order sufficient conditions hold
at the base-case solution.

• The matrix:

Â=

[

A
C

]

=

[

1 −1
0 −1

]

,

• has linearly independent rows, and, furthermore, the inequality constraint
is not degenerate at the base-case solution.
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Example, continued
• Suppose that the inequality constraint was changed toCx≤ d−η.
• If η is small enough, then by Corollary17.7the minimum of the

perturbed problem differs from the minimum of the original problem by
approximately[µ⋆]†η.
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17.5 Summary
• In this chapter, we considered linear inequality-constrained problems and

showed that they could be solved using the techniques developed for
non-negatively constrained problems in two ways:

(i) using slack variables, and
(ii) using duality.

• We also considered sensitivity analysis.
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18
Solution of the linear inequality-constrained case

studies

Solution of the linear inequality-constrained case studies

• Least-cost production with capacity constraints (Section18.1),
• Optimal routing in a data communications network (Section18.2),
• Least absolute value estimation (Section18.3), and
• Optimal margin pattern classification (Section18.4).
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18.1 Least-cost production with capacity constraints
18.1.1 Problem and analysis

• Recall Problem (15.1):

min
x∈Rn

{ f (x)|Ax= b,x≤ x≤ x},

• whereA=−1†, b= [−D].
• This problem has:

– a convex separable objective,
– one equality constraint, and
– two inequality constraints for each variable.

• The inequality constraints are simple bounds on variables.
• We can solve this problem using slight modifications of the algorithms

developed in Section17.3.
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18.1.2 Algorithms
18.1.2.1 Primal–dual interior point algorithm

• To enforce the boundsxℓ ≤ xℓ ≤ xℓ, the corresponding term in the barrier
objective is:

−t (ln(xℓ−xℓ)+ ln(xℓ−xℓ)) .

• Alternatively, we can represent the bound constraints as general linear
inequalities in the formCx≤ d.
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18.1.2.2 Dual algorithm
• Taking the partial dual with respect to the equality constraints

decomposes the problem into a set of sub-problems, one for each machine
k, each with two bound constraintsxk ≤ xk ≤ xk.

• Suppose that for eachk, the costfk of machinek is convex and quadratic
and of the form defined in (12.6):

∀xk ∈ Sk, fk(xk) =
1
2

Qkk(xk)
2+ckxk+dk.
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Dual algorithm, continued
• For any value ofλ, we obtain constrained sub-problems:

∀k= 1, . . . ,n,min
xk∈R

{

1
2

Qkk(xk)
2+ckxk+dk−λxk

∣

∣

∣

∣

xk ≤ xk ≤ xk

}

.

• Theunconstrainedminimizer of the objective of each sub-problem is
given by setting the derivative of the objective equal to zero, yielding:

xk =
1

Qkk
(λ−ck).

• If the unconstrained minimizer is within the range allowed by the upper
and lower bound constraints then, by Theorem3.10, the unconstrained
minimizer is also the minimizer of the constrained sub-problem.

• If the unconstrained minimizer lies outside the range allowed by the
bound constraints then the minimizer of the sub-problem is the nearest
bound.
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Dual algorithm, continued
• For a given value ofλ, the minimizer of the inner problem in the

definition of the partial dual isx(λ), where:

∀k= 1, . . . ,n,x(λ)k = min

{

xk,max

{

xk,
1

Qkk
(λ−ck)

}}

.

• Substituting the solutionx(λ)k into the expression for the dual, we obtain:

∀λ ∈ R,D(λ) =
n

∑
k=1

fk(x
(λ)
k )+λ

(

D−
n

∑
k=1

x(λ)k

)

.

• The dual variable can be updated using a steepest ascent algorithm based
on the satisfaction of the equality constraint according to:

∆λ = ∇D(λ),
= Ax(λ)−b,

= D−
n

∑
k=1

x(λ)k .
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Dual algorithm, continued
• Since each machine cost function is strictly convex, the minimizer of the

primal problem can be found from the solution of the dual algorithm.
• As in Section13.5.3, we can interpretλ as the tentative price per unit of

production.

Title Page ◭◭ ◮◮ ◭ ◮ 97 of 180 Go Back Full Screen Close Quit



18.1.3 Changes in demand and capacity
• Corollary17.7can be used to estimate the changes in costs due to a

change in demand or capacity.
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18.2 Optimal routing in a data communications network
18.2.1 Problem and analysis

• Recall Problem (15.6):

min
x∈Rn

{ f (x) |Ax= b,x≥ 0,Cx< y} ,

• where f : S→ R, with S= {x∈ R
n|x≥ 0,Cx< y}, was defined in (15.7):

∀x∈ S, f (x) = φ(Cx),
= ∑

(i, j)∈L

φi j
(

C(i, j)x
)

.

• The delay functionφi j in the objective increases without bound as a flow
approaches its capacity.

• Consequently, assigning a flow to be arbitrarily close to thelink capacity
can never be optimal.

• The delay function has the same form as thereciprocal barrier function .
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Problem and analysis, continued
• Because of the form of the delay function, the strict inequality constraints:

Cx< y,

• can be ignored so long as:
– an initial feasible solution can be found that satisfies these constraints,

and
– a step-size is chosen at each iteration to avoid going outside the feasible

region.
• We effectively have a problem with a barrier objective that enforces the

strict inequality constraintsCx< y and that must be solved for a single
fixed value of the barrier parameter.

• That is, to solve Problem (15.6) we can effectively solve the problem:

min
x∈Rn

{ f (x)|Ax= b,x≥ 0}. (18.1)
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18.2.2 Algorithms
• Problem (18.1) is non-negatively constrained and these constraints can be

treated using an active set or interior point algorithm, so long as we
ensure that the step-size is chosen at each iteration to alsosatisfyCx< y.

• A step-size rule analogous to that for the primal–dual interior point
algorithm from Section16.4.3.3can be used to ensure satisfaction of the
strict inequality constraintsCx< y.

18.2.3 Changes in links and traffic
• Corollary17.7and extensions can be used to estimate the changes in

optimal routing to respond to a change in traffic or link capacities.
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18.3 Least absolute value estimation
18.3.1 Problem

• Recall Problem (15.10):

min
z∈Rm,x∈Rn,e∈Rm

{1†z|Ax−b−e= 0,z≥ e,z≥−e}.

• This problem has a linear objective and linear inequality constraints.
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18.3.2 Algorithms
• We can solve this problem using the primal or the dual algorithms

developed in Section17.3.
• The solution to the correspondingleast-squaresestimation problem can

provide a suitable initial guess forx(0).

18.3.3 Changes in the number of points and data
• Corollary17.7and extensions can be used to estimate the changes in

parameters specifying the affine fit if additional data points are added or if
the data changes.
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18.4 Optimal margin pattern classification
18.4.1 Problem and analysis

• Recall Problem (15.13):

max
z∈R,x∈Rn

{

z
∣

∣

∣
ζ(ℓ)(β†ψ(ℓ)+ γ)≥ ‖β‖2z,∀ℓ= 1, . . . , r,β 6= 0

}

,

• wherex=

[

β
γ

]

.

• This problem has the drawback that its feasible set is not closed and may
not be convex.

• Furthermore, the inequality constraints are non-linear.
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Problem and analysis, continued
• Suppose that Problem (15.13) has maximizer:

[

z⋆

x⋆⋆

]

=

[

z⋆

β⋆⋆

γ⋆⋆

]

,

and letκ ∈ R++.
• Then:

[

z⋆

x⋆

]

=

[

z⋆

β⋆

γ⋆

]

,

=

[

z⋆

β⋆⋆/κ
γ⋆⋆/κ

]

(18.2)

• is also a maximizer of Problem (15.13) with the same maximum.
• This is because the coefficients in the equation for a hyperplane can be

scaled without changing the hyperplane.

Title Page ◭◭ ◮◮ ◭ ◮ 105 of 180 Go Back Full Screen Close Quit



18.4.1.1 First approach to transforming constraints
• Let κ = ‖β⋆⋆‖2 in (18.2).
• If there is a maximizer to Problem (15.13) then there is a maximizer that

satisfiesβ⋆ = β⋆⋆/‖β⋆⋆‖2, so that‖β⋆‖2 = 1.
• That is, we can impose the additional constraint‖β‖2 = 1 in

Problem (15.13) without changing its maximum.
• Furthermore, since‖β‖2 = 1 implies thatβ 6= 0, we can ignore the

constraintβ 6= 0.
• We can use Theorem3.10to show that if Problem (15.13) has a

maximum then maximizing the objective over the “smaller” feasible set:

Ŝ=

{[

z
x

]

∈ R
n+1
∣

∣

∣

∣

ζ(ℓ)(β†ψ(ℓ)+ γ)≥ ‖β‖2z,∀ℓ= 1, . . . , r,‖β‖2 = 1

}

,

• will yield the same maximum and hyperplane as Problem (15.13).
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First approach to transforming constraints, continued
• The smaller feasible setŜ is closed and bounded, which as we saw in

Section2.3.3avoids the difficulties that non-closed and unbounded sets
present.

• However, a constraint of the form‖β‖2 = 1 is still difficult to handle
directly because it defines a non-convex set.

• One way to deal with this is to convert the representation into polar
coordinates.
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First approach to transforming constraints, continued
• Instead, note that if Problem (15.13) has a strictly positive maximum then:

max
z∈R,x∈Rn

{

z
∣

∣

∣
ζ(ℓ)(β†ψ(ℓ)+ γ)≥ ‖β‖2z,∀ℓ= 1, . . . , r,β 6= 0

}

= max
z∈R,x∈Rn

{

z
∣

∣

∣
ζ(ℓ)(β†ψ(ℓ)+ γ)≥ ‖β‖2z,∀ℓ= 1, . . . , r,‖β‖2 = 1

}

,

by the argument above,

= max
z∈R,x∈Rn

{

z
∣

∣

∣
ζ(ℓ)(β†ψ(ℓ)+ γ)≥ z,∀ℓ= 1, . . . , r,‖β‖2 = 1

}

,

since‖β‖2 = 1,

= max
z∈R,x∈Rn

{

z
∣

∣

∣
ζ(ℓ)(β†ψ(ℓ)+ γ)≥ z,∀ℓ= 1, . . . , r,‖β‖2 ≤ 1

}

,

• where any maximizer

[

z⋆

x⋆

]

=

[

z⋆

β⋆

γ⋆

]

of the last problem will satisfy

‖β⋆‖2 = 1, since if‖β⋆‖2 < 1 then we could find a feasible point having a
larger objective by dividing bothz⋆ andx⋆ by max{0.5,‖β⋆‖2}.
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First approach to transforming constraints, continued
• Therelaxationof the problem to having the larger feasible set with the

constraint‖β‖2 ≤ 1 yields a convex feasible set with the same maximum
as Problem (15.13) and its maximizer specifies the same hyperplane as a
maximizer of Problem (15.13).

• Since‖β‖2 is not smooth, we will use the equivalent condition‖β‖2
2 ≤ 1.

• By definingC∈ R
r×n to haveℓ-th row:

Cℓ =−ζ(ℓ)
[

ψ(ℓ)† 1
]

,

• and noting thatz−ζ(ℓ)(β†ψ(ℓ)+ γ) = z+Cℓx, we can transform the
problem to the equivalent problem:

max
z∈R,x∈Rn

{

z
∣

∣

∣
1z+Cx≤ 0,‖β‖2

2 ≤ 1
}

, (18.3)

• where we have squared the norm ofβ to obtain a differentiable function.
• This problem has a linear objective,r linear inequality constraints, and

one quadratic inequality constraint.
• We will treat the solution of this formulation of the problemin

Section20.1.
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18.4.1.2 Second approach to transforming constraints

• Consider a maximizer

[

z⋆

x⋆⋆

]

=

[

z⋆

β⋆⋆

γ⋆⋆

]

of Problem (15.13).

• Suppose thatz⋆ ∈ R++ so that the margin is strictly positive.
• Sinceβ⋆⋆ is feasible, we have thatβ⋆⋆ 6= 0.
• We can chooseκ = ‖β⋆⋆‖2z⋆ in (18.2).
• If there is a maximizer to Problem (15.13) with positive margin then there

is a maximizer that satisfiesβ⋆ = β⋆⋆/(‖β⋆⋆‖2z⋆), so that‖β⋆‖2z⋆ = 1.
• We can impose the additional constraint‖β‖2z= 1 in Problem (15.13)

without changing its maximum.
• Furthermore, since‖β‖2z= 1 implies thatβ 6= 0, we can again ignore the

constraintβ 6= 0.
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Second approach to transforming constraints, continued
• We can again use Theorem3.10to show that if Problem (15.13) has a

maximizer and strictly positive maximumz⋆ thenz⋆ will also be the
maximum of a problem having the same objective but with “smaller”
feasible set:

S=

{[

z
x

]

∈ R
n+1
∣

∣

∣

∣

ζ(ℓ)D(ψ(ℓ))
‖β‖2

≥ z,∀ℓ= 1, . . . , r,‖β‖2z= 1

}

.

• Moreover, if Problem (15.13) has a maximum and maximizer, then at
least one of maximizers of the problem is an element ofS.
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Second approach to transforming constraints, continued

• If Problem (15.13) has a maximum and the margin is strictly positive
then:

max
z∈R,x∈Rn

{

z
∣

∣

∣
ζ(ℓ)(β†ψ(ℓ)+ γ)≥ ‖β‖2z,∀ℓ= 1, . . . , r,β 6= 0

}

= max
z∈R,x∈Rn

{

z
∣

∣

∣
ζ(ℓ)(β†ψ(ℓ)+ γ)≥ ‖β‖2z,∀ℓ= 1, . . . , r,‖β‖2z= 1

}

,

by the argument above,

= max
z∈R,x∈Rn

{

z
∣

∣

∣
ζ(ℓ)(β†ψ(ℓ)+ γ)≥ 1,∀ℓ= 1, . . . , r,‖β‖2z= 1

}

,

since‖β‖2z= 1,

= max
z∈R,x∈Rn

{

1
‖β‖2

∣

∣

∣

∣

ζ(ℓ)(β†ψ(ℓ)+ γ)≥ 1,∀ℓ= 1, . . . , r,‖β‖2z= 1

}

,

sincez= 1/‖β‖2,

= max
x∈Rn

{

1
‖β‖2

∣

∣

∣

∣

ζ(ℓ)(β†ψ(ℓ)+ γ)≥ 1,∀ℓ= 1, . . . , r

}

, by Corollary3.7,

on eliminating the variablezusing the constraint‖β‖2z= 1.
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Second approach to transforming constraints, continued
• Also:

max
x∈Rn

{

1
‖β‖2

∣

∣

∣

∣

ζ(ℓ)(β†ψ(ℓ)+ γ)≥ 1,∀ℓ= 1, . . . , r

}

=

[

1

minx∈Rn
{

‖β‖2|ζ(ℓ)(β†ψ(ℓ)+ γ)≥ 1,∀ℓ= 1, . . . , r
}

]

,

• by Theorem3.1, since the reciprocal function is monotonically
decreasing.
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Second approach to transforming constraints, continued
• As in Section18.4.1.1, by definingC∈ R

r×n to haveℓ-th row:

Cℓ =−ζ(ℓ)
[

ψ(ℓ)† 1
]

,

• and definingd =−1∈ R
r , we can transform the problem in the

denominator to the equivalent problem:

min
x∈Rn

{

1
2
‖β‖2

2

∣

∣

∣

∣

Cx≤ d

}

, (18.4)

• which has a quadratic objective and linear constraints and so is a
quadratic program.

• If Problem (18.4) has a minimizerx⋆ =

[

β⋆

γ⋆
]

andβ⋆ 6= 0 then the optimal

margin is given by 1/‖β⋆‖2.
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18.4.2 Algorithms
18.4.2.1 Primal algorithm

• Problem (18.4) has a convex quadratic objective, linear inequality
constraints, and no equality constraints.

• If the number,r, of patterns is extremely large then a further relaxation of
the problem may be much easier to solve.

• In particular, we can first solve the problem using only some of the
patterns to find a tentative separating hyperplane.

• The feasible set using only some of the patterns is a relaxed version of the
feasible set of Problem (18.4).

• Then the rest of the patterns are searched until a pattern is found that is
not correctly identified by the tentative separating hyperplane.

• The problem is re-solved with the new pattern incorporated and the
process repeated.

• If a separating hyperplane is found after only a modest number of patterns
are added then we have avoided the computational effort of solving the
problem will all r constraints explicitly represented.
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18.4.2.2 Dual algorithm
• The dual of Problem (18.4) has a quadratic objective, non-negativity

constraints, and one linear equality constraint.

18.4.3 Changes
• Adding a pattern would add an extra row to the inequality constraints

Cx≤ d.
• The relaxation procedure described in Section18.4.2.1can be applied or

the dual can be updated and solved.
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19
Algorithms for non-linear inequality-constrained

minimization

• In this chapter we will develop algorithms for constrained optimization
problems of the form:

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0}. (19.1)
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Key issues
• The notion of aregular point of constraints as one characterization of

suitable formulations of non-linear equality and inequality constraint
functions,

• linearization of non-linear constraint functions,
• optimality conditions and the definition and interpretation of the

Lagrange multipliers,
• theSlater condition as an alternative characterization of suitable

formulation of constraint functions for convex problems,
• algorithms that seek points that satisfy the optimality conditions, and
• sensitivity analysis.
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19.1 Geometry and analysis of constraints
• Our approach will be to linearize the constraint functionsg andh about a

current iterate and seek step directions.
• We must explore conditions under which this linearization yields a useful

approximation to the original feasible set.
• The notion of a regular point, introduced in Section14.1.1for non-linear

equality-constrained problems and suitably generalized here for
non-linear inequality constraints, provides one suchconstraint
qualification.
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19.1.1 Regular point

Definition 19.1 Let g : Rn → R
m andh : Rn → R

r . Then we say thatx⋆ is a
regular point of the constraintsg(x) = 0 andh(x)≤ 0 if:

(i) g(x⋆) = 0 andh(x⋆)≤ 0,
(ii) g andh are both partially differentiable with continuous partial

derivatives, and
(iii) the matrix Â has linearly independent rows, whereÂ is the matrix

with rows consisting of:

• them rows of the JacobianJ(x⋆) of g evaluated atx⋆, and
• those rowsKℓ(x⋆) of the JacobianK of h evaluated atx⋆ for which
ℓ ∈ A(x⋆).

The matrixÂ consists of the rows ofJ(x⋆) together with those rows
of K(x⋆) that correspond to the active constraints. If there are no
equality constraints then the matrixÂ consists of the rows ofK(x⋆)
corresponding to active constraints. If there are no binding
inequality constraints then̂A= J(x⋆). If there are no equality
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constraints and no binding inequality constraints then thematrix Â
has no rows and, by definition, it has linearly independent rows.

✷
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Regular point, continued
• Let r̂ be the number of active inequality constraints atx⋆.
• Forx⋆ to be a regular point of the constraintsg(x) = 0 andh(x)≤ 0, we

must have thatm+ r̂ ≤ n, since otherwise them+ r̂ rows ofÂ cannot be
linearly independent.

• If x⋆ is a regular point, then we can find a sub-vectorω ∈ R
m+r̂ of x such

that the(m+ r̂)× (m+ r̂) matrix consisting of the correspondingm+ r̂
columns ofÂ is non-singular.

• At a regular point of inequality constraints, linearization of the equality
constraints and of the binding inequality constraints yields a useful
approximation to the feasible set or its boundary, at least locally in the
vicinity of the regular point.
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19.1.2 Example
• Recall thedodecahedronfrom Section2.3.2.3and illustrated in

Figure2.14.

Fig. 19.1. The dodeca-
hedron in R

3 repeated
from Figure2.14.
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Example, continued
• The dodecahedron can be described as the set of points satisfying the

inequality constraintsh(x)≤ 0, with h : R3 → R
12 affine:

∀x∈ R
3,h(x) =Cx−d,

• where:
C ∈R

12×3 with each row ofC not equal to the zero vector, and
d ∈ R

12.
• The Jacobian ofh is K =C and theℓ-th row of K is theℓ-th row ofC,

which we will denote byCℓ.
• If h(x⋆) 6≤ 0 so thatx⋆ is not in the dodecahedron thenx⋆ is not a regular

point by definition.
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Example, continued
• If h(x⋆)≤ 0 then consider the matrix̂A consisting of the rowsCℓ of C for

which ℓ ∈ A(x⋆).

Various cases forx⋆

x⋆ is in the interior of the dodecahedron.
• That is,h(x⋆) =Cx⋆−d < 0,
• A(x⋆) = /0,
• Â has no rows, and
• x⋆ is a regular point by definition.

x⋆ is on a face of the dodecahedron but not on an edge or vertex.
• That is, exactly one constraintℓ is binding,
• A(x⋆) = {ℓ},
• Â=Cℓ, whereCℓ is theℓ-th row ofC.
• The single row ofÂ is linearly independent, since it is a single row

that is not equal to the zero vector.
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Various cases forx⋆, continued

x⋆ is on an edge but not a vertex of the dodecahedron.
• That is, exactly two constraintsℓ, ℓ′ are binding,

• A(x⋆) = {ℓ, ℓ′}, andÂ=

[

Cℓ
Cℓ′

]

.

• Since the corresponding two faces of the dodecahedron are not
parallel then the two corresponding rows ofC, namelyCℓ andCℓ′,
are linearly independent.

x⋆ is on a vertex of the dodecahedron.
• That is, exactly three constraintsℓ, ℓ′, andℓ′′ are binding,

• A(x⋆) = {ℓ, ℓ′, ℓ′′}, andÂ=

[

Cℓ
Cℓ′

Cℓ′′

]

.

• The corresponding three faces are oblique to each other and
therefore the three corresponding rows ofC are linearly
independent.

• In summary, every feasible point is a regular point of the constraints
h(x)≤ 0.
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Example, continued
• Now add an additional, redundant inequality constraint corresponding to

a plane that just grazes the dodecahedron at one of its vertices, sayx⋆.
• We augment an additional row toC to formC̃∈ R

13×3 and augment an
additional entry tod to form d̃ ∈ R

13.
• We define the functioñh : R3 → R

13 to consist of the entries ofh together
with a thirteenth entrỹh13 : R3 → R defined by:

∀x∈ R
3, h̃13(x) = C̃13x− d̃13.

• We now have that{x∈ R
3|h(x)≤ 0}= {x∈ R

3|h̃(x)≤ 0}.
• The vertexx⋆ is not a regular point of the constraintsh̃(x)≤ 0 because

there arefour constraints active atx⋆ and the four corresponding rows of
C̃ cannot be linearly independent inR3.

• {x∈ R
3|h(x)≤ 0} and{x∈ R

3|h̃(x)≤ 0} represent thesameset.
• Therefore, whether or not a pointx⋆ is a regular point of the constraints

depends on the choice of representation of the constraints.
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19.2 Optimality conditions
19.2.1 First-order necessary conditions

19.2.1.1 Analysis

Theorem 19.1 Suppose that the functions f: Rn → R, g : Rn → R
m, and

h : Rn → R
r are partially differentiable with continuous partial

derivatives. Let J: Rn → R
m×n and K : Rn → R

r×n be the Jacobians of g
and h, respectively. Consider Problem (19.1):

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0}.

Suppose that x⋆ ∈ R
n is a regular point of the constraints g(x) = 0 and

h(x)≤ 0.

Title Page ◭◭ ◮◮ ◭ ◮ 128 of 180 Go Back Full Screen Close Quit



If x⋆ is a local minimizer of Problem (19.1) then:

∃λ⋆ ∈ R
m,∃µ⋆ ∈ R

r such that:∇f (x⋆)+J(x⋆)†λ⋆+K(x⋆)†µ⋆ = 0;
M⋆h(x⋆) = 0;

g(x⋆) = 0;
h(x⋆) ≤ 0; and

µ⋆ ≥ 0,
(19.2)

where M⋆ = diag{µ⋆ℓ} ∈ R
r×r . The vectorsλ⋆ and µ⋆ satisfying the

conditions (19.2) are called the vectors of Lagrange multipliers for the
constraints g(x) = 0 and h(x)≤ 0, respectively. The conditions that
M⋆h(x⋆) = 0 are called thecomplementary slackness conditions. They
say that, for eachℓ, either theℓ-th inequality constraint is binding or the
ℓ-th Lagrange multiplier is equal to zero (or both).✷
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Discussion

• As previously, we refer to the equality and inequality constraints in (19.2)
as thefirst-order necessary conditions(or FONC) or the
Karush–Kuhn–Tucker conditions.

• As in the case of non-linear equality constraints, the condition thatx⋆ be a
regular point of the constraints is again called aconstraint qualification.

• In Section19.3.1, we will see an alternative constraint qualification for
the case of convex problems.
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19.2.1.2 Lagrangian
• Recall Definition3.2of theLagrangian.
• Analogously to the discussion in Section17.1.1.4, by defining the

LagrangianL : Rn×R
m×R

r → R by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,L(x,λ,µ) = f (x)+λ†g(x)+µ†h(x),

• we can again reproduce some of the first-order necessary conditions as:

∇xL(x⋆,λ⋆,µ⋆) = 0,
∇λL(x⋆,λ⋆,µ⋆) = 0,
∇µL(x⋆,λ⋆,µ⋆) ≤ 0.
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19.2.1.3 Example
• Recall the example non-linear program, Problem (2.19), from

Section2.3.2.3:

min
x∈R3

{ f (x)|g(x) = 0,h(x)≤ 0},

• where f : R3 → R, g : R3 → R
2, andh : R3 → R are defined by:

∀x∈ R
3, f (x) = (x1)

2+2(x2)
2,

∀x∈ R
3,g(x) =

[

2−x2−sin(x3)
−x1+sin(x3)

]

,

∀x∈ R
3,h(x) = [sin(x3)−0.5].

• We claim thatx⋆ =

[

0.5
1.5

π/6

]

, λ⋆ =

[

6
1

]

, andµ⋆ = [5] satisfy the first-order

necessary conditions in Theorem19.1.
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Example, continued
• First,x⋆ is feasible.

∀x∈ R
3,∇f (x) =

[

2x1
4x2
0

]

,

∀x∈ R
3,J(x) =

[

0 −1 −cos(x3)
−1 0 cos(x3)

]

,

J(x⋆) =

[

0 −1 −cos(π/6)
−1 0 cos(π/6)

]

,

∀x∈ R
3,K(x) = [0 0 cos(x3) ] ,

K(x⋆) = [0 0 cos(π/6) ] .

• Note thatÂ=

[

J(x⋆)
K(x⋆)

]

has linearly independent rows so thatx⋆ is a

regular point of the constraints.
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Example, continued

∇f (x⋆)+J(x⋆)†λ⋆+K(x⋆)†µ⋆

=

[

1
6
0

]

+

[

0 −1
−1 0

−cos(π/6) cos(π/6)

]

[

6
1

]

+

[

0
0

cos(π/6)

]

5,

= 0;
µ⋆h(x⋆) = [5]× [0],

= [0];
g(x⋆) = 0;
h(x⋆) = [0],

≤ [0]; and
µ⋆ = [5],

≥ [0].

• That is,x⋆,λ⋆, andµ⋆ satisfy the first-order necessary conditions.
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19.2.2 Second-order sufficient conditions
19.2.2.1 Analysis

Theorem 19.2 Suppose that the functions f: Rn → R, g : Rn → R
m, and

h : Rn → R
r are twice partially differentiable with continuous second

partial derivatives. Let J: Rn → R
m×n and K : Rn → R

r×n be the
Jacobians of g and h, respectively. Consider Problem (19.1):

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0},

and points x⋆ ∈ R
n,λ⋆ ∈ R

m, and µ⋆ ∈ R
r . Let M⋆ = diag{µ⋆ℓ}.
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Suppose that:

∇f (x⋆)+J(x⋆)†λ⋆+K(x⋆)†µ⋆ = 0,
M⋆h(x⋆) = 0,

g(x⋆) = 0,
h(x⋆) ≤ 0,

µ⋆ ≥ 0, and

∇2f (x⋆)+
m

∑
ℓ=1

λ⋆
ℓ∇2gℓ(x

⋆)+
r

∑
ℓ=1

µ⋆ℓ∇2hℓ(x
⋆)

is positive definite on the null space:
N+ = {∆x∈ R

n|J(x⋆)∆x= 0,Kℓ(x
⋆)∆x= 0,∀ℓ ∈A+(x

⋆,µ⋆)},
whereA+(x

⋆,µ⋆) = {ℓ ∈ {1, . . . , r}|hℓ(x
⋆) = 0,µ⋆ℓ > 0}.

Then x⋆ is a strict local minimizer of Problem (19.1). ✷
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Discussion

• The function∇2
xxL : Rn×R

m×R
r → R

n×n defined by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,

∇2
xxL(x,λ,µ) = ∇2f (x)+

m

∑
ℓ=1

λℓ∇2gℓ(x)+
r

∑
ℓ=1

µℓ∇2hℓ(x),

• is called theHessian of the Lagrangian.
• In addition to the first-order necessary conditions, the second-order

sufficient conditions require that:
f , g, andh are twice partially differentiable with continuous second

partial derivatives, and
the Hessian of the Lagrangian evaluated at the minimizer and

corresponding Lagrange multipliers,∇2
xxL(x⋆,λ⋆,µ⋆), is positive

definite on the null spaceN+ defined in the theorem.
• Constraintsℓ for whichµ⋆ℓ = 0 andhℓ(x⋆) = 0 are calleddegenerate

constraints.
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19.2.2.2 Example
• Continuing with Problem (2.19) from Sections2.3.2.3and19.2.1.3, we

note thatf , g, andh are twice partially differentiable with continuous
second partial derivatives.

• By the discussion in Section19.2.1.3, the first-order necessary conditions

are satisfied byx⋆ =

[

0.5
1.5

π/6

]

, λ⋆ =

[

6
1

]

, andµ⋆ = [5].

• Also,A(x⋆) = A+(x⋆,µ⋆) = {1}.
• That is, the constraint is not degenerate.

N+ = {∆x∈ R
n|J(x⋆)∆x= 0,Kℓ(x

⋆)∆x= 0,∀ℓ ∈ A+(x
⋆,µ⋆)},

= {∆x∈ R
n|J(x⋆)∆x= 0,K1(x

⋆)∆x= 0},
= {0},

• so that the Hessian of the Lagrangian∇2
xxL(x⋆,λ⋆,µ⋆) is positive definite

on the null spaceN+.
• That isx⋆, λ⋆, andµ⋆ satisfy the second-order sufficient conditions.
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19.3 Convex problems
• Consider affineg : Rn → R

m and convexh : Rn → R
r :

min
x∈Rn

{ f (x)|Ax= b,h(x)≤ 0}, (19.3)

• whereA∈ R
m×n andb∈ R

m.
• If f : Rn → R is convex on the feasible set then Problem (19.3) is convex.
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19.3.1 First-order necessary conditions
19.3.1.1 Slater condition

• In the case of affineg and convexh, we can obtain first-order necessary
conditions with an alternative constraint qualification tothe assumption of
regular constraints.

• In particular, we will assume that:

{x∈ R
n|Ax= b,h(x)< 0} 6= /0. (19.4)

• This alternative constraint qualification is called theSlater condition.
• The Slater condition was first introduced in Section16.4.2.3in the context

of the interior point algorithm for linear inequality-constrained problems.
• We will see in Section19.4.1.2that we also need to make a similar

assumption for applying the interior point algorithm to non-linearly
constrained problems.
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19.3.1.2 Analysis

Theorem 19.3 Suppose that f: Rn → R and h: Rn → R
r are partially

differentiable with continuous partial derivatives and with h convex,
A∈ R

m×n, and b∈ R
m. Let K : Rn → R

r×n be the Jacobian of h.
Consider Problem (19.3) and suppose that the Slater condition (19.4)
holds. If x⋆ ∈ R

n is a local minimizer of Problem (19.3) then:

∃λ⋆ ∈ R
m,∃µ⋆ ∈ R

r such that:∇f (x⋆)+A†λ⋆+K(x⋆)†µ⋆ = 0;
M⋆h(x⋆) = 0;

Ax⋆ = b;
h(x⋆) ≤ 0; and

µ⋆ ≥ 0,

where M⋆ = diag{µ⋆ℓ} ∈ R
r×r . ✷
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19.3.2 First-order sufficient conditions
19.3.2.1 Analysis

Theorem 19.4 Suppose that f: Rn → R and h: Rn → R
r are partially

differentiable with continuous partial derivatives, A∈R
m×n, and b∈R

m.
Let K : Rn → R

r×n be the Jacobian of h. Consider Problem (19.3) and
points x⋆ ∈ R

n, λ⋆ ∈ R
m, and µ⋆ ∈ R

r . Let M⋆ = diag{µ⋆ℓ}. Suppose that:
(i) h is convex,

(ii) f is convex on{x∈ R
n|Ax= b,h(x)≤ 0},

(iii) ∇f (x⋆)+A†λ⋆+K(x⋆)†µ⋆ = 0,
(iv) M⋆h(x⋆) = 0,
(v) Ax⋆ = b and h(x⋆)≤ 0, and

(vi) µ⋆ ≥ 0.
Then x⋆ is a global minimizer of Problem (19.3).

Proof The proof is very similar to the proofs of Theorem16.3in
Chapter16 and of Theorem17.3in Chapter17. ✷
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19.3.2.2 Example

∀x∈ R
2, f (x) = x1+x2,

∀x∈ R
2,h(x) = (x1)

2+(x2)
2−2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

Fig. 19.2. Contour sets
of objective function de-
fined in Section19.3.2.2
with feasible set shaded.
The heights of the con-
tours decrease to the left
and down. The mini-
mizer, x⋆ = −1, is indi-
cated with the•.
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Example, continued
• f andh are partially differentiable with continuous partial derivatives and

convex.
• We claim thatx⋆ =−1 is the global minimizer with Lagrange multiplier

µ⋆ = [0.5]:

∀x∈ R
2,∇f (x) = 1,

∀x∈ R
2,K(x) = [2x1 2x2 ] ,

K(x⋆) = [−2 −2] ,

∇f (x⋆)+K(x⋆)†µ⋆ = 1+[−2 −2]†× [0.5],
= 0;

µ⋆h(x⋆) = 0;
h(x⋆) = [0],

≤ [0]; and
µ⋆ = [0.5],

≥ [0].
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19.3.3 Duality
19.3.3.1 Dual function

Analysis

• If f andh are convex andg is affine thenL(•,λ,µ) is convex forµ≥ 0
and sox⋆ is a global minimizer ofL(•,λ⋆,µ⋆).

• For Problem (19.3), the dual functionD : Rm×R
r → R∪{−∞} is

defined by:

∀λ ∈ R
m,µ∈ R

r ,D(λ,µ) = inf
x∈Rn

L(x,λ,µ). (19.5)

• The effective domain ofD is:

E=

{[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

D(λ,µ)>−∞
}

.

• Recall that by Theorem3.12, E is convex andD is concave onE.
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Example

• Continuing with the example problem from Section19.3.2.2, the
LagrangianL : R2×R→ R for this problem is defined by:

∀x∈ R
2,∀µ∈ R,L(x,µ) = f (x)+µ†h(x),

= x1+x2+µ((x1)
2+(x2)

2−2).

• Forµ> 0, the LagrangianL(•,µ) is strictly convex and therefore, by
Corollary10.6, the first-order necessary conditions∇xL(x,µ) = 0 are
sufficient for minimizingL(•,µ) and, moreover, a minimizer exists, so
that the inf in the definition ofD can be replaced by min.

• Furthermore, there is a unique minimizerx(µ) corresponding to each value
of µ> 0.
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Example, continued

• In particular, we have:

∀x∈ R
2,∀µ∈ R,∇xL(x,µ) = ∇f (x)+K(x)†µ,

=

[

1+2µx1
1+2µx2

]

,

∀µ∈ R++,x
(µ) =

[

−1/(2µ)
−1/(2µ)

]

,

∀µ∈ R++,D(µ) = −
1
2µ

−2µ.

• On the other hand, ifµ≤ 0 then the objective in the dual function is
unbounded below.

• Consequently, the effective domain isE= R++.
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19.3.3.2 Dual problem
Analysis

• Thedual problem:

max
[λµ]∈E

{D(λ,µ)|µ≥ 0}, (19.6)

• whereD : E→ R is the dual function defined in (19.5).
• Problem (19.3) is called theprimal problem in this context to distinguish

it from Problem (19.6).
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Theorem 19.5 Suppose that f: Rn → R and h: Rn → R are convex and
partially differentiable with continuous partial derivatives, A∈ R

m×n,
and b∈ R

m. Consider the primal problem, Problem (19.3):

min
x∈Rn

{ f (x)|Ax= b,h(x)≤ 0},

and suppose that the Slater condition (19.4) holds. Also, consider the
dual problem, Problem (19.6). We have that:

(i) If the primal problem possesses a minimum then the dual problem
possesses a maximum and the optima are equal. That is:

min
x∈Rn

{ f (x)|Ax= b,h(x)≤ 0}= max
[λµ]∈E

{D(λ,µ)|µ≥ 0}.

(ii) If:

•

[

λ
µ

]

∈ E,

• minx∈Rn L(x,λ,µ) exists, and
• f and h are twice partially differentiable with continuous

Title Page ◭◭ ◮◮ ◭ ◮ 149 of 180 Go Back Full Screen Close Quit



second partial derivatives,∇2f is positive definite, and
∇2hℓ, ℓ= 1, . . . , r, are all positive definite,

thenD is partially differentiable at

[

λ
µ

]

with continuous partial

derivatives and:

∇D(λ,µ) =
[

Ax(λ,µ)−b
h(x(λ,µ))

]

. (19.7)

✷

Discussion

• It is possible forD to not be partially differentiable at a point

[

λ
µ

]

∈ E if:

L(•,λ,µ) is bounded below (so that infx∈RnL(x,λ,µ) ∈ R) yet the
minimum minx∈RnL(x,λ,µ) does not exist, or

there are multiple minimizers of minx∈RnL(x,λ,µ).
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Corollary 19.6 Let f : Rn → R and h: Rn → R
r be twice partially

differentiable with continuous second partial derivatives,∇2f be positive
definite, and∇2hℓ, ℓ= 1, . . . , r, all be positive definite; A∈ R

m×n; and
b∈ R

m. Consider Problem (19.3):

min
x∈Rn

{ f (x)|Ax= b,h(x)≤ 0},

the Lagrangian of this problem, and the effective domainE of the dual
function. If:

• the effective domainE containsRm×R
r
+, and

• for eachλ ∈ R
m and µ∈ R

r
+, minx∈Rn L(x,λ,µ) exists,

then necessary and sufficient conditions for

[

λ⋆

µ⋆

]

∈ R
m+r to be the

maximizer of the dual problem:

max
[λµ]∈E

{D(λ,µ)|µ≥ 0},
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are:

M⋆h(x(λ
⋆,µ⋆)) = 0;

Ax(λ
⋆,µ⋆) = b;

h(x(λ
⋆,µ⋆)) ≤ 0; and

µ⋆ ≥ 0,

where{x(λ
⋆,µ⋆)}= argminx∈Rn L(x,λ⋆,µ⋆) and M⋆ = diag{µ⋆ℓ}.

Moreover, ifλ⋆ and µ⋆ maximize the dual problem then x(λ⋆,µ⋆), λ⋆, and
µ⋆ satisfy the first-order necessary conditions for Problem (19.3).

Proof The proof is very similar to the proof of Corollary17.5in
Chapter17. ✷
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Discussion

• Theorem19.5shows that an alternative approach to finding the minimum
of Problem (19.3) involves finding themaximumof the dual function over
λ ∈ R

m andµ∈ R
r
+.

• Theorem3.12shows that the dual function has at most one local
maximum.

• To seek the maximum ofD(λ,µ) overλ ∈ R
m,µ∈ R

r
+, we can, for

example, utilize the value of the gradient ofD from (19.7) as part of an
active set or interior point algorithm.
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Example

• Continuing with the dual of the example problem from Sections 19.3.2.2
and19.3.3.1, the effective domain isE= R++ and the dual function
D : R++ → R is:

∀µ∈ R++,D(µ) = −
1
2µ

−2µ,

∀µ∈ R++,∇D(µ) =
1

2(µ)2 −2,

∀µ∈ R++,∇2D(µ) = −
1

4(µ)3,

< 0.

• We cannot apply Corollary19.6directly becauseE= R++ does not
containR+.

• However, by inspection ofD, µ⋆ = [0.5] maximizes the dual overE.
• Moreover, the corresponding minimizer of the Lagrangian,x(µ

⋆), together
with µ⋆ satisfy the first-order necessary conditions for the primalproblem.
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Discussion

• It is essential in Theorem19.5for f andh to be convex on thewholeof
R

n, not just on the feasible set.
• This is because the inner minimization ofL(•,λ,µ) is taken over the

whole ofRn.
• We generally require strict convexity off andh to ensure that there are

not multiple minimizers of the Lagrangian.
• The issues are similar to the discussion in Section17.2.2.2.
• Problem (19.6) is non-negatively constrained of the form of

Problem (16.1) and so we can apply essentially the same algorithms as we
developed for Problem (16.1).

• We will take this approach in Section19.4.2.
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19.3.3.3 Partial duals
• As in Section17.2.2.4, it is also possible to take the partial dual with

respect to some of the equality and some of the inequality constraints.
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19.4 Approaches to finding minimizers
19.4.1 Primal algorithm
19.4.1.1 Transformation

• To handle the inequality constraints involvingh we consider the following
problem:

min
x∈Rn,w∈Rr

{ f (x)|g(x) = 0,h(x)+w= 0,w≥ 0}. (19.8)

• By Theorem3.8, Problems (19.1) and (19.8) are equivalent.
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19.4.1.2 Primal–dual interior point algorithm
Barrier objective and problem

• Given a barrier functionfb : Rr
++ → R and a barrier parametert ∈ R++,

we form thebarrier objective φ : Rn×R
r
++ → R defined by:

∀x∈ R
n,∀w∈ R

r
++,φ(x,w) = f (x)+ t fb(w).

• Instead of solving Problem (19.8), we will consider solving thebarrier
problem:

min
x∈Rn,w∈Rr

{φ(x,w)|g(x) = 0,h(x)+w= 0,w> 0}. (19.9)

• We then decrease the barrier parametert.
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Slater condition

• Analogously to the discussion in Sections16.4.2.2and17.3.1.2, we must
assume that Problem (19.9) is feasible.

• That is, we assume that{x∈R
n|g(x) = 0,h(x)< 0} 6= /0.

• We again call this theSlater condition.
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Equality-constrained problem

• To solve Problem (19.9), we partially ignore the inequality constraints
and the domain of the barrier function and seek a solution to the
following non-linear equality-constrained problem:

min
x∈Rn,w∈Rr

{φ(x,w)|g(x) = 0,h(x)+w= 0}, (19.10)

• which has first-order necessary conditions:

∇f (x)+J(x)†λ+K(x)†µ = 0, (19.11)
g(x) = 0, (19.12)

h(x)+w = 0, (19.13)
t∇fb(w)+µ = 0, (19.14)

• whereJ andK are the Jacobians ofg andh, respectively, andλ andµ are
the dual variables on the constraintsg(x) = 0 andh(x)+w= 0,
respectively.
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Logarithmic barrier function

• We again use the logarithmic barrier function:

∀w∈ R
r
++, fb(w) = −

r

∑
ℓ=1

ln(wℓ),

∀w∈ R
r
++,∇fb(w) = −[W]−11,

• whereW = diag{wℓ} ∈ R
r×r .

• Substituting the expression for∇fb into (19.14) and re-arranging, we
again obtain:

Wµ− t1= 0. (19.15)
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19.4.1.3 Newton–Raphson method
• The Newton–Raphson step direction to solve (19.15) and (19.11)–(19.13)

is:










M(ν) 0 0 W(ν)

0 ∇2
xxL(x(ν),λ(ν),µ(ν)) J(x(ν))

†
K(x(ν))

†

0 J(x(ν)) 0 0
I K(x(ν)) 0 0



















∆w(ν)

∆x(ν)

∆λ(ν)

∆µ(ν)









=











−W(ν)µ(ν)+ t1

−∇f (x(ν))−J(x(ν))
†λ(ν)−K(x(ν))

†
µ(ν)

−g(x(ν))
−h(x(ν))











,

• whereM(ν) = diag{µ(ν)ℓ } andW(ν) = diag{w(ν)
ℓ }.
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Newton–Raphson method, continued
• We can re-arrange the equations to make them symmetric and use block

pivoting on the top left-hand block of the matrix since the top left-hand
block is diagonal.

• This results in a system that is similar to (14.12), except that a diagonal

block of the form[M(ν)]
−1

W(ν) is added to the Hessian of the Lagrangian.
• Issues regarding solving the first-order necessary conditions, such as

factorization of the indefinite coefficient matrix, approximate solution of
the conditions, sparsity, the merit function, step-size selection, and
feasibility, are similar to those described in Sections14.3.1and16.4.3.3.
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19.4.1.4 Other issues
Adjustment of barrier parameter

• To reduce the barrier parameter, we can again use the approach described
in Section16.4.4of Chapter16.

Initial guess

• The effort to find a feasible initial guess may be significant.
• An alternative is to begin withw(0) > 0,x(0),λ(0),µ(0) > 0 that do not

necessarily satisfy the equality constraintsg(x) = 0 nor h(x)+w= 0.
• Feasibility is approached during the course of iterations from this

infeasible start.

Stopping criterion

• We can develop a stopping criterion based on duality using Theorem3.13.
• If f or h are non-quadratic org is non-linear, however, we can typically

only approximately evaluate the dual function.
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19.4.2 Dual algorithm
• Problem (19.6):

max
[λµ]∈E

{D(λ,µ)|µ≥ 0},

• has non-negativity constraints.
• If the dual function can be evaluated conveniently, then thealgorithms

from Section16.3and16.4for non-negativity constraints can be applied
to the dual problem.

• For example, if the objective and inequality constraint function are
quadratic and strictly convex and the equality constraintsare linear then
the dual function can be evaluated through the solution of a linear
equation.

• A dual algorithm can be particularly attractive if there areonly a few
constraints or if apartial dual is taken with respect to only some of the
constraints.
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19.5 Sensitivity
19.5.1 Analysis

• We consider a general and a special case of sensitivity analysis for
Problem (19.1).

• For the general case, we suppose that the objectivef , equality constraint
functiong, and inequality constraint functionh are parameterized by a
parameterχ ∈ R

s.
• We imagine that we have solved the non-linear inequality-constrained

minimization problem:

min
x∈Rn

{ f (x;χ)|g(x;χ) = 0,h(x;χ)≤ 0}, (19.16)

• for a base-case value of the parameters, sayχ = 0, to find the base-case
solutionx⋆ and the base-case Lagrange multipliersλ⋆ andµ⋆.

• We now consider the sensitivity of the minimum of Problem (19.16) to
variation of the parameters aboutχ = 0.
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Analysis, continued
• We also specialize to the case where only the right-hand sides of the

equality and inequality constraints vary.
• That is, we return to the special case wheref : Rn → R, g : Rn → R

m, and
h : Rn → R

r are not explicitly parameterized.
• We now consider perturbationsγ ∈ R

m andη ∈ R
r and the problem:

min
x∈Rn

{ f (x)|g(x) =−γ,h(x)≤−η}. (19.17)

• For the parameter valuesγ = 0 andη = 0, Problem (19.17) is the same as
Problem (19.1).

• We consider the sensitivity of the minimum of Problem (19.17) to
variation of the parameters aboutγ = 0 andη = 0.
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Corollary 19.7 Consider Problem (19.16) and suppose that the functions
f : Rn×R

s→ R, g : Rn×R
s→ R

m, and h: Rn×R
s→ R

r are twice
partially differentiable with continuous second partial derivatives. Also
consider Problem (19.17) and suppose that the functions f: Rn → R,
g : Rn → R

m, and h: Rn → R
r are twice partially differentiable with

continuous second partial derivatives. Suppose that x⋆ ∈ R
n, λ⋆ ∈ R

m,
and µ⋆ ∈ R

r satisfy:

• the second-order sufficient conditions for Problem (19.16) for the value
of parametersχ = 0, and

• the second-order sufficient conditions for Problem (19.17) for the value
of parametersγ = 0 andη = 0.

In particular:

• x⋆ is a local minimizer of Problem (19.16) for χ = 0, and
• x⋆ is a local minimizer of Problem (19.17) for γ = 0 andη = 0,

in both cases with associated Lagrange multipliersλ⋆ and µ⋆. Moreover,
suppose that x⋆ is a regular point of the constraints for the base-case
problems and that there are no degenerate constraints at thebase-case
solution.
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Then, for values ofχ in a neighborhood of the base-case value of the
parametersχ = 0, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problem (19.16). Moreover, the
local minimum, local minimizer, and Lagrange multipliers are partially
differentiable with respect toχ and have continuous partial derivatives
in this neighborhood. The sensitivity of the local minimum f⋆ to χ,
evaluated at the base-caseχ = 0, is given by:

∂ f ⋆

∂χ (0) =
∂L
∂χ (x⋆,λ⋆,µ⋆;0),

whereL : Rn×R
m×R

r ×R
s→ R is theparameterized Lagrangian

defined by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,∀χ ∈ R

s,

L(x,λ,µ;χ) = f (x;χ)+λ†g(x;χ)+µ†h(x;χ).

Furthermore, for values ofγ andη in a neighborhood of the base-case
value of the parametersγ = 0 andη = 0, there is a local minimum and
corresponding local minimizer and Lagrange multipliers for
Problem (19.17). Moreover, the local minimum, local minimizer, and
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Lagrange multipliers are partially differentiable with respect toγ andη
and have continuous partial derivatives. The sensitivities of the local
minimum toγ andη, evaluated at the base-caseγ = 0 andη = 0, are
equal to[λ⋆]† and [µ⋆]†, respectively.✷
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19.5.2 Discussion
• We can again interpret the Lagrange multipliers as the sensitivity of the

minimum to the right-hand side of the equality constraints and inequality
constraints.

19.5.3 Example
• Continuing with Problem (2.19) from Sections2.3.2.3, 19.2.1.3, and

19.2.2.2, we have already verified that the second-order sufficient
conditions are satisfied at the base-case solution, thatx⋆ is a regular point
of the constraints, and that there are no degenerate constraints.

• Suppose that the first entry in the equality constraint changed to
2−x2−sin(x3) =−γ1 and that the inequality constraint changed to
sin(x3)−0.5≤−η.

• By Corollary19.7, if γ1 andη are small enough the change in the
minimum is given approximately byλ⋆

1γ1+µ⋆η = 6γ1+5η.
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19.6 Summary
• In this chapter we have considered problems with non-linearequality and

inequality constraints, providing optimality conditions.
• We considered the convex case and sketched application of the

primal–dual interior point method and dual algorithm to these problems.
• Finally, we provided sensitivity analysis.
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20
Solution of the non-linear inequality-constrained case

studies

• Optimal margin pattern classification (Section20.1),

• Sizing of interconnects in integrated circuits (Section20.2), and

• Optimal power flow (Section20.3).
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20.1 Optimal margin pattern classification
• The first transformation in Section18.4.1.1yielded the maximization

Problem (18.3), which we recast into a minimization problem as:

min
z∈R,x∈Rn

{

−z
∣

∣

∣
1z+Cx≤ 0,‖β‖2

2 ≤ 1
}

. (20.1)

• This problem has a linear objective,r linear inequality constraints, and
one convex quadratic inequality constraint.

• This can be solved using the algorithms developed in Section19.4.
• The dual of Problem (20.1) is equivalent to a quadratic program.
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20.2 Sizing of interconnects in integrated circuits
20.2.1 Problem and analysis

• Problem (15.19):

min
x∈Rn

{ f (x)|h̃(x)≤ h,x≤ x≤ x},

• used the Elmore delay approximationh̃ to the actual delayh.
• This problem has a linear objective but has inequality constraints defined

in terms of functions that are, in general, non-convex.
• However, as discussed in Section15.5.4, the objective and constraint

functions areposynomial.
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Problem and analysis, continued
• Each posynomial function can be transformed into a convex function

through a transformation involving the exponential of eachentry of the
decision vector and the logarithm of the function.

• The transformed problem is convex and therefore possesses at most one
local minimum.

• Because the transformation of the decision vector is one-to-one and onto
and the transformations of the objective and constraints are monotonically
increasing then, by Theorems3.1, 3.5, and3.9, the original problem also
possesses at most one local minimum.
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20.2.2 Algorithms
20.2.2.1 Primal algorithm

• In principle, we can apply the optimization techniques developed in
Section19.4to either the original problem or the transformed problem
and be guaranteed that any local minimum is the global minimum.

• However, since the inequality constraint functions are notconvex in the
original problem, the Hessian of the Lagrangian for the original problem
will typically not be positive definite and so we can expect that pivots will
be modified significantly during factorization, potentially retarding the
progress towards the minimizer.

20.2.2.2 Dual algorithm
• Since the transformed problem is convex, we can also dualizethe

transformed problem.
• Further transformation of the dual problem is possible to simplify the

dual problem to having linear constraints.
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20.2.2.3 Accurate delay model
• Recall Problem (15.20):

min
x∈Rn

{ f (x)|h(x)≤ h,x≤ x≤ x},

• which used the more accurate delay modelh instead of the Elmore delay
modelh̃.

• In general, we cannot expect thath will have any particular functional
form.

• However,h̃ may be a reasonable approximation ofh.
• The algorithms we have described typically require both function

evaluationsandderivative evaluations.
• To solve the problem with the more accurate delay model, we can

combine accurate delay values calculated according toh with
approximate first and second derivatives calculated from the functional
form of h̃.

• Furthermore, we can apply such an algorithm to the original problem or
to the transformed problem.
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20.2.3 Changes
• Corollary19.7and extensions can be used to estimate the changes in area

and width due to changes in parameters and allowed delays.
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20.3 Optimal power flow
• Recall Problem (15.23):

min
x∈Rn

{ f (x)|g(x) = 0,x≤ x≤ x,h≤ h(x)≤ h}.

• This problem has non-linear objective and equality and inequality
constraint functions.

• Under certain assumptions the problem is equivalent to a convex problem.
• We can use the primal–dual interior point algorithm sketched in

Section19.4.1to solve it.
• Corollary19.7and extensions can be used to estimate the changes in costs

due to changes in demand and changes in line and generator capacities.
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