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Three introductory chapters



1
Introduction

1.1 Road map
e In this course, we are going to:

— “formulate” various types of numerical problems, and
— develop techniques for solving them.



Road map, continued
e We will use a number of case studies to:

(i) illustrate the process dbrmulating a problem, that is, translating
from an intuitive idea of the problem by writing it down
mathematically,

(i) motivate and developlgorithms to solve problems, that is,
descriptions of operations that can be implemented in swéwo
take a problem specification and return a solution, and

(iii) illustrate how to match the formulation of the problémthe
capabilities of available algorithms, involving, in sonases,
transformation of the problem from its initial formulation.



Road map, continued
e We will consider five general problem classes:

() linear systems of equations
(i) non-linear systems of equations
(iif) unconstrained optimization,
(iv) equality-constrained optimization, and
(v) inequality-constrained optimization.



Road map, continued

e Mostly consider problems that are defined in termsmbothfunctions
of continuousvariables.
e We will emphasize issues that have proved pivotal in algorit
development and problem formulation:
(i) monotonicity,
(i) convexity,
(i) problem transformations,
(iv) symmetry, and
(V) sparsity.



1.2 Goals
e At the end of the course, you should be able to:

(i) take a description of your problem,
(i) translate it into a mathematical formulation,
(i) evaluate if optimization techniques will be succasgsf
(iv) if the problem is tractable, solve small- to mediumisozersions
of it using commercial code, and
(v) use the solution of the problem to calculate sensigsitio
changes in problem specifications.



1.3 Pre-requisites

e The course assumes familiarity withAviLAB and MaTLAB M-files and
that you have access to theavlL.AB Optimization Toolbox.

¢ In downloadable Appendix A there are notational converstiand a
number of results that we will use in the course.



2
Problems, algorithms, and solutions

e In this chapter, we define the various types of problems tieatill treat
in the rest of the course.



Outline

e In Section2.1, we define thalecision vector

e In Section2.2we define two problems involvingolution of
simultaneous equations

e In Section2.3we describe threeptimization problems.

e We define aralgorithm in Section2.4in reference to two general
schemata:

— direct algorithms, which, in principle, obtain the exact soluttorihe
problem in a finite number of operations, and

— iterative algorithms, which generate a sequence of approximate
solutions or “iterates” that, in principle, approach tha&xsolution to
the problem.



2.1 Decision vector

e The problems will involve choices of a value oflacision vectorfrom
n-dimensional Euclidean spaé or from some subsét of R", where:

— R is the set of real numbers, and
— R"is the set oh-tuples of real numbers.

e We will usually denote the decision vector Ry



2.2 Simultaneous equations
2.2.1 Definition

e Consider a vector functiog that takes values of a decision vector in a
domain R" and returns values of the function that lie ineage R™,

e We writeg: R" — R™to denote the domain and range of the function.

e Suppose we want to find a vale of the argumenk that satisfies:

g(x) =0. (2.1)

e A value,x®, that satisfiesd.1) is called a solution of theimultaneous
equationsg(x) = 0.



Example

e Figure2.1shows the case of a functigt R? — R2.

e There are two sets illustrated by the solid curves.

e These two sets intersect at two poinds X, illustrated as bullets.

e The pointsx* andx™ are the two solutions of the simultaneous equations
g(x) =0, so that{x € R"g(x) = 0} = {x*,x**}.

X2

{x € R*gu(x) = 0}

X*
e Fig. 2.1. Example of
{x € R?|g2(x) = 0} simultaneous equations
X1 and their solution.



Inconsistent and redundant equations

e If there are no solutions to the equations tHe&re R"|g(x) = 0} = 0,
where0 is the empty set, and we say that the equationsnaensistent

e |If some linear combination of the entriesg{with coefficients not all
zero) yields a function that is identically zero then we dmat the
equations areedundant.

e For example, if two entries aj are the same then the equations are
redundant.

X2

{x € R*gu(x) = 0}

N J

Fig. 2.2. Example of

f \ {x € R?|gy(x) = 0} inconsistent simultane-
X1 ous equations.




2.2.2 Types of problems
2.2.2.1 Linear simultaneous equations

e Suppose thag: R" — RMin (2.1) is affine, that is, of the form:

vx € R", g(x) = Ax—h.
e Then we have a set tihear simultaneous equations:
Ax—b=0.

Examples
e For example, if:

e then:

e IS a solution.

(2.2)



Examples, continued

X2
0}
| Fig. 2.3. Solution
of linear simulta-
neous equations
gx) = Ax—b =0
1 with A andb defined as
T S e S T S S S S in (2.2.



Examples, continued
e As another example, if:

A —

e then:

e IS a solution.

Number of solutions

(2.3)

e There may be several values that satisfy the equations.

Case studies

e Nodal analysis of a direct current linear circuit (in Seatbl), and
e Control of a discrete-time linear system (in SectbB).



2.2.2.2 Non-linear simultaneous equations
Examples

e For example, suppose that the functgppnR — R is defined by:
vx € R,g(X) = (X)2+ 2x— 3. (2.4)
e The “quadratic equation” shows that the two solutions are:

X=-3,Xx*=1



Examples, continued
e As another example, letj: R? — R? be defined by:

2 | (x4 (X2)? + 2% — 3

Vx e R, g(x) = Xt % | (2.5)
X2
1 {x € R?|gz(x) = 0}
ir X**
2 X*
Sl | Fig. 2.4. Solution  of

{x € R?|gy(x) =0} non-linear simultaneous

) ’ equationgy(x) = 0 with
R e N R AP g defined as inZ.5).




Examples, continued
e As a third example, leg : R — R be defined by:

vxeR,g(x) = (x—2)3+1. (2.6)
e By inspectionx* = 1 is the unique solution tg(x) = 0.

Algorithms and number of solutions

e Larger problems may also possess multiple solutions or lutigios
under some circumstances.

Case studies

e Nodal analysis of a non-linear direct current electricuitr¢in
Section6.1), and
e Analysis of an electric power system (in Sect®g).



2.2.2.3 Eigenvalue problems

e Let K be the set of complex numbers.

e Then (not necessarily distinct) eigenvalues of a makizx R"" are
given by the (possibly complex) solutions of tblearacteristic equation
for A:

g(A) =0,
e whereg : K — K is thecharacteristic polynomial, defined by:
VA € K,g(A) =defA—Al),
e Theeigenvectorsassociated with an eigenvaldere the solutions of:
(A—Al)x=0.



Example
2 1
A::[—s —4]’
VA e K,g(A) = detfA—Al),

2—\ 1
= det[ 5 _4_)\],

= (2=MN)(=4-2)—(1)(-9),
= (A)2+22-3.
e From the previous example, we already know that the two swisitto
g(A) =0 are:
AN = -3 N =1,

e SO these are the eigenvaluesfof



Example, continued

e The eigenvectors associated with= —3 are the vectors in the set:
{x € R?|(A+3l)x=0}.

e The eigenvectors associated wittt = 1 are the vectors in the set:
{x e R?|(A—1)x=0}.

Discussion

e There are special iterative algorithms for eigenvalue il that are
somewhat different in flavor to the algorithms we will deberfor
solving general linear and non-linear equations.

e We will not discuss general algorithms for eigenvalue dalton.



2.3 Optimization
2.3.1 Definitions
2.3.1.1 Objective

e Consider a functiorf : R" — R that denominates the “cost” or lack of
desirability of solutions for a particular model or system.

e That s, f(X) is the cost of using as the solution.

e The function is called anbjective function.



Example
e An example of ayuadratic function f : R? — R is given by:

¥x e R2, f(X) = ()2 + (X2)%+ 2% — 3. (2.7)

Fig. 2.5. Graph of the
example objective func-
tion defined in 2.7).




Discussion

e \We can categorize objectives according to the highest pofamny entry
in the argument.,

e We will categorize objectives in a different way in Sectii.3.4once
we have discussed optimization in more detail.



2.3.1.2 Feasible set

e Our problem might involve restrictions on the choices ofreal ofx.
e We can imagine #easible setS C R" from which we must select a
solution.

2.3.1.3 Problem

e A minimization problem means to find the minimum value &fx) over
choices ofx that lie in the feasible sét

Definition 2.1 LetSCR", f: S — R, andf* € R. Then by:
f*=minf(x), (2.8)

XES
we mean that:

Ix* € S such that(f*= f(x*)) and((xe S) = (f(X) < f(x))). (2.9)
[



2.3.1.4 Set of minimizers
e The set ofall the minimizers of migs f(x) is denoted by:

arg)r(relignf (X).

e If the problem has no minimum (and, therefore, no minimigdren we
define:
argminf (x) = 0.

XES
e To emphasize the role & we also use the following notations:

min{ f(x)|x € S} and argmid f(x)|x € S}.
XeRN XeRN
e We will often use a more explicit notationSfis defined as the set of
points satisfying a criterion.
e For example, iff :R"—= R, g:R"— R™ h:R" — R, and
S = {x € R"|g(x) = 0,h(x) < 0} then we will write
mingern{ f(X)|g(x) = 0,h(x) < 0} for minycs f(X).



Multiple minimizers
e For example, consider the functidn R — R defined by:

YxeR, f(x) =[x+ 1" (x—1)3+1.

Fig. 2.6. Function

having multiple un-
constrained minimizers
‘ ‘ ‘ ‘ ‘ X indicated by the bullets

-15 -1 -0.5 0 0.5 1 15
ko k
X X o,




2.3.1.5 Lower bound

Definition 2.2 LetSCR", f : S — R, andf € R. If f satisfies:
vxeSs, f < f(x),

then we say that is alower bound for the problem migs f(x) or that the
problem miRcs f(X) is bounded belowby f. If S # 0 but no suchf exists,

then we say that the problem mig f (x) is unbounded below(or
unbounded if the “below” is clear from context)

e Considerf : R? — R defined in 2.7), which we repeat here:
¥x e R2, f(X) = (x0)? + (X2)% + 2% — 3.

e This function is illustrated in Figurg.5.
e For the feasible s& = R?, the valuef = —10 is a lower bound for the

problem mincs f(x), as shown in Figur@.5.



2.3.1.6 Level and contour sets

Definition 2.3 LetS CR", f : S — R, andf € R. Then thdevel setat
value f of the functionf is the set:

L¢(f) = {xeS|f(x) < f}.
Thecontour setat valuef of the functionf is the set:
Ct(f) = {xes|f(x) = f}.

For each possible functioh, we can think ofL; andCt themselves as

set-valued functionsom R to (2)(®"), where(2)®") denotes theet of all
subsets ofR", sometimes called th@ower setof R". O



Example
e Consider the functiori : R? — R defined by:

vx e R?, f(X) = (x1 — 1)+ (xo— 3)°. (2.10)

100

80

i Fig. 2.7. Graph of
X2 X1 function defined
= in (2.10.



Contour set for example

~

e The contour set€(f) can be shown in a two-dimensional
representation.

Fig. 2.8. Contour sets
C¢(f) of the function
defined in 2.10 for
valuesf =0,2,4,6,....
The heights of the con-
tours decrease towards

the point % , Which is
illustrated with ae and

is the contour of height
0.




2.3.2 Types of problems
e The three general forms 8fthat we will consider are:

— unconstrainedoptimization,
— equality-constrainedoptimization, and
— inequality-constrained optimization.



2.3.2.1 Unconstrained optimization
e If S=R"then the problem is said to hmconstrained

Example
e For example, consider the objectife R? — R defined in 2.10):
¥x e R?, f(X) = (x1 — 1)%+ (xo — 3)%.
e From Figure2.8, which shows the contour sets bfwe can see that:

minf(x) = f*=0,
x€R?

g - {[J}

e SO that there is a minimurfi* = 0 and a unique minimizet = [%] of

this problem.



Another example

e Consider a linear systefx— b = 0 that does not have a solution.

e \WWe may try to seek a value of the decision vector that “mostlyiea
satisfiesAx = b in the sense of minimizing a criterion.

e A natural criterion is to considerrgorm ||e|| and then seek that

minimizes||Ax— b|:
min [|[AX—Db||. (2.11)
xeRN

Case studies
e Multi-variate linear regression (in Secti@nl), and
e Power system state estimation (in Sect®od).



2.3.2.2 Equality-constrained optimization
e If g: R"— RMandS = {x € R"|g(x) = 0} then the problem is said to be
equality-constrained.

Sub-types of equality-constrained optimization problems

Linearly constrained
e If gis affine then the problem is calldéidearly constrained.

Example
YxeR2 f(X) = (x1—1)%+(x2—3)%,
YxeR2,g(X) = X1—Xo, (2.12)
min{ f(x)|g(x) =0} = min{f(X)|xy —x2 = 0}. (2.13)
xcR?2 XcR2



Example, continued

e The unique minimizer of Problen2(13) is x* = [g] :

X2

4/ Fig. 2.9. Contour sets

Al ) C¢(f) of function re-
peated from Figure.8

’ with feasible set from

1f Problem 2.13 super-

. imposed. The heights
of the contours de-

l\ crease towards the point

* [%] The minimizer
2] ..

4 / X = [2] is illustrated

B 3 2 a4 o0 1 2 s A4/5 X1 with ae.




Non-linearly constrained

e If there is no restriction og then the problem is calledon-linearly
constrained

Example

e For example, consider the same objective as previofisig? — R
defined in 2.10):

¥x e R?, f(X) = (x1 — 1)%+ (x2 — 3)%.
e However, leg: R? — R be defined by:
vx € R?,g(X) = (x1)%+ (x2)2 + 2% — 3.
e Consider the equality-constrained problem:
min{ f (x)|g(x) = 0}. (2.14)

xeR



Example, continued

e The unique minimizer of Problen2(14) is x* ~ [

X2

0.5
0.9

Fig. 2.10. Contour sets
C¢(f) of function repeated
from Figure 2.8 with feasi-
ble set from Problem2(14)
superimposed. The heights
of the contours decrease

towards the poin % . The

minimizer x* is illustrated
as ae.



Case studies

e Least-cost production of a group of manufacturing faeitthat must
collectively meet a demand constraint (in Secti@l), and
e Power system state estimation with zero injection buseSdttion12.2.



2.3.2.3 Inequality-constrained optimization
o If g:R"— R™ h:R"— R", andS = {x € R"|g(x) = 0,h(x) < 0} then
the problem is said to heequality-constrained.

Sub-types of inequality-constrained optimization problens

Non-negatively constrained
e If his of the form:
VX, h(X) = —X,

e SO that the constraints are of the fox» 0 then the problem is
non-negatively constrained

Linear inequality constraints
e If his affine then the problem Isear inequality-constrained.



Linear program

e If the objective is linear and andh are affine then the problem is called a
linear program or alinear optimization problem.

Example
YxeR2 f(X) = x1—Xo,
vxe R2,g(x) = X14+X —1,

vx € RZh(x) = [_Xll,

min{ f(x)|g(x) = 0,h(x) <0} = min{x; —X2|X1+X2—1=0,x1 > 0,x2 > 0}.
XER2 XER?2 (2.15)



Example, continued
X2

2/ Fig. 2.11. Contour sets
1 C¢(f) of objective function
and feasible set for Prob-

lem 2.15. The contour
sets are the parallel lines.

1.6

1.4

12 The feasible set is shown
N as the line joining the two
0 points [(1)] and [2] The

06 heights of the contours

decrease to the left and up.

02 % The minimizerx: = [(1)] IS

o 02 04 06 08 1 12 14 16 18 2 X1 illustrated as a.




Linear program, continued
e \We often emphasize the linear and affine functions by writing

min{c'x|Ax= b,Cx < d},
XeR2

e Wwherece R\, Ac R™"N be RM CeR™" andd € R".
e For Problem 2.15), the appropriate vectors and matrices are:

c— [_ﬂ A=[1 1],b=[1,C= [_(1) _f] = [8].

e \We can write this non-negatively constrained problem everem
concisely as:

min{c'x|Ax= b,x > 0}. (2.16)

xeR2



Linear program, continued

e There is a rich body of literature on linear programming drefé are
special purpose algorithms to solve linear programmindpleras.
e The best known are:

— thesimplex algorithm (and variants), and
— interior point algorithms .
Standard format

e If gis affine and the inequality constraints are non-negatsatystraints
then the problem is said to be in te@ndard format.
e Problem .16 is a linear program in standard format.



Quadratic program

e If f is quadratic and andh are affine then the problem is called a
guadratic program or aquadratic optimization problem.

Example
YxeR% f(x) = (x¢—1)%+ (x2—3)?,
VXERZG(X) = X1—Xe,
vxeRZh(x) = 3—xo. (2.17)



Example, continued

Fig. 2.12. Contour sets
C¢(f) of objective function
and feasible set for Prob-
lem (2.18. The heights
of the contours decrease

towards the poin % . The

feasible set is the “half-line”
starting at the point[g :

The minimizerx* = g] 1S

illustrated with ae.



Example, continued
min{ f(x)|g(x) = 0,h(x) <0} = 4, (2.18)
XcR?2

argmin(f(9]gx) = 0.n <0} = {|3]} = .

Quadratic program, continued
e We can emphasize the quadratic and linear functions byngriti
. (1
min {—xTQx+ cTx|Ax=b,Cx < d} ,
xeR2 | 2

e Where we have omitted the constant term.
e For Problem 2.18), the appropriate vectors and matrices are:

o2

Q- [o o|.c= [_é],A:[l _1],b=[0,C=[0 —1],d=[-3].



Non-linear program

e If there are no restrictions ofy g, andh, then the problem is called a
non-linear program or anon-linear optimization problem.

Example
min{ f (x)|g(x) = 0,h(x) < 0}, (2.19)

xeR3
e wheref : R3 - R, g: R% — R?, andh: R? — R are defined by:

YxeR3 f(X) = (x1)2+2(x)?,

wxeR%g(x) = [2__21::2&3]

vxeR3 h(x) = sin(xz) —0.5.

Convexity
e We will see in Sectior2.6.3that we can also classify problems on the
basis of the notion ofonvexity.



Satisfaction of constraints

Definition 2.4 Leth:R" — R". An inequality constrainh,(x) < 0 is
called abinding constraint or anactive constraintatx* if h,(x*) =0. Itis
callednon-binding or inactive atx* if hy(x*) < 0. The set:

AX) ={le{L,....r}|h(x") =0}
is called theset of active constraintsor theactive setfor h(x) < 0 atx*. O

Definition 2.5 Leth: R" — R". The pointx* is calledstrictly feasible for
the inequality constrairtty(x) < 0 if hy(x*) < 0. The pointx* is called
strictly feasible for the inequality constraints(x) < 0if h(x*) < 0. O
e If h: R"— R" is continuous and satisfies certain other conditions then:
— theboundary of S = {x € R"|h(x) < 0} is the set
{x € R"|h(x) < 0and, for at least ong h,(x) = 0}, and
— itsinterior is the set{x € R"|h(x) < 0}.
e That is, the set of strictly feasible points for the inegtyationstraints is
the interior ofS.



Example ¥x € R? h(x) = [x1+xZ3—_i%]'

X2

10

Fig. 2.13. Points
X<, X, andx** that are
feasible with respect to
X* 1 inequality constraints.
X | The feasible set is the
i 1 shaded triangular region
il ] for which x, > 3 and
I T R S S e N I D] X1+ X < 10.




Example, continued

)
*
x_[4

e The constraintsi; (x) < 0 andhy(x) < 0 are non-binding so that the
active setisA(x*) = 0.
e This point is in the interior of the sdk € R?|h(x) < 0}.

o

e The constrainhy(x) < 0 is non-binding while the constraint
h1(x) < 0is binding so that the active setdgx**) = {1}.
e This point is on the boundary of the sptc R?|h(x) < 0}.

7
3
e The constraints; (x) < 0 andhy(x) < 0 are both binding so that the

active set iA (x*) = {1, 2}.
e This point is on the boundary of the setc R?|h(x) < 0}.

*kk
X —




Example in higher dimension

e Consider Figur.14 which shows alodecahedron a twelve-sided
solid, inRR3.

e The dodecahedron is an example of a set that can be desaribeziform
S = {x € R3|h(x) < 0} with h: R® — R*? affine.

Fig. 2.14. Dodecahe-
dron inR3,.



Various cases for a point i

X* is in the interior of the dodecahedron.
e We haveh(x*) < 0 andA(x*) = 0.
X** is on a face of the dodecahedron but not on an edge or vertex.

e That is, exactly one constraifis binding andA (x™) = {/}.
e X** is on the boundary.

X** is on an edge but not a vertex of the dodecahedron.

e That is, exactly two constraints/’ are binding and
AX™) = {4, 0},
e X is on the boundary.
X*** is a vertex of the dodecahedron.

e That is, exactly three constraits’, and¢” are binding and
A=) = {0,007},
e X is on the boundary.



Discussion

e The importance of the notion of binding constraints is that typical for
some but not all of the inequality constraints to be bindintpa
optimum.

Representation of inequality constraints

e Most optimization software can deal directly with:

— double-sided functional inequalitiessuch a$ < h(x) < hand
— double-sided inequalities on variablesuch ax < x <,

e For notational simplicity, we will usually restrict oursek to inequalities
of the formh(x) < 0, but recognize that problems may be easier to

express in terms of the more comprehensive farhix < X, h < h(x) < h.
e Itis almost always worthwhile to take advantage of the more
comprehensive form when the software has the capability.



Case studies

e Least-cost production with capacity constraints (in Sect5. 1),

e Optimal routing in a data communications network (in Setti6.2),

e Least absolute value data fitting (in Sectith3),

e Optimal margin pattern classification (in Sectiti4),

e Sizing of gate interconnects in integrated circuits (intecl5.5), and
e Optimal power flow (in Sectiod5.6).



2.3.2.4 Summary

e For small example problems, inspection of a carefully draagram can
yield the minimum and minimizer.

e For larger problems where the dimensiorxkancreases significantly past
two, or the dimension af or h increases, the geometry becomes more
difficult to visualize and intuition becomes less relialsigoredicting the
solution.



2.3.3 Problems without minimum and the infimum
2.3.3.1 Analysis

e To discuss problems that do not have a minimum, we need a neoerg
definition.

Definition 2.6 LetS CR", f : S — R. Then, infcs f(x), theinfimum of
the corresponding minimization problem, rpig f (X), is defined by:

the greatest lower bound for
inf f(x) = Minyes f(X), if minys f(x) is bounded below
xeS () = —oo, if minyes f(X) is unbounded below
oo, if minyes f(X) is infeasible.

By definition, the infimum is equal to the minimum of the copesding
minimization problem migs f(x) if the minimum exists, but the infimum
exists even if the problem has no minimum. To emphasize tleef, we
also use the notation igfrn{ f (x)|x € S} and analogous notations for the
infimum. O



2.3.3.2 Examples
Unconstrained problem with unbounded objective

Vx e R, f(x) =x (2.20)

e There is nof* € R such that'x € R, f* < f(x).
e The problem mig.r f(X) is unbounded below.
e The infimum is infcg f(X) = —oo.



Unconstrained problem with objective that is bounded below

e f =0is alower bound for migg f(x), wherevx € R, f(x) = exp(x).
e The problem has no minimum but the infimum isif f (x) = 0.

()

50

45

40t

35

30

251

20

151

10

Fig. 2.15. The function
exp is bounded below
on the feasible s&k but
has no minimum.



Strict inequalities
e Again consider the objectiveé: R — R defined in 2.20):
Vx e R, f(X) =X,
e but let the feasible set be:
S = {xe R|x> 0}.

e Figure2.16shows the objective on the feasible set.

e Note thatyx € S, f(x) > 0, so that the problem is bounded below by O.

e However, there is n&@ € S such thatf (x*) = 0.

¢ In this example, the problem is bounded, but does not havegrmm
nor a minimizer.

e For this problem, the infimum is ipfr{ f (x)|x > 0} = 0.



Strict inequalities, continued

f(x) Fig. 2.16. Function that is
o— bounded below on feasible
set but where the problem
has no minimum because
the feasible set is defined
by a strict inequality. The

35

3k

25r-

r 1 function is illustrated only
1 on the feasible set. The cir-
i : cleo atx=0, f(x) = 0 indi-

] cates that this point is not in-

cluded in the graph but that
points to the right oix =0
and arbitrarily close ta =0
Sows o s 115 @ 2 3 s+ X areincluded in the graph.

oF

-0.5F




Inconsistent constraints
e Consider any objectivé : R — R and let:

S ={x e R|g(x) =0},
e whereg: R — R? is defined by:

[ x+1
vx e R,g(x) = [x— 1] :
e Then there are no feasible solutions, since the equalitgtcaints are
inconsistentand saS = 0.
¢ In this example, there are no feasible valuex ahd therefore no

minimum.
e The infimum is infcr{ f (X)|g(X) = 0} = oo.



Discontinuous objective

e Finally, let:
S = {xe R|x> 0},

e and definef : S — R by:

1, ifx=0
Vx eSS, f(x) :{ x: if x;«éof (2.21)



Discontinuous objective, continued

e The problem mig.s f(X) is bounded below by zero, but there is again no
minimum nor minimizer.
e The infimum is infcr{ f(X)|x > 0} = 0.

f(x)

4

35

Fig. 2.17. Function Z4.2])
that is bounded below on

3k

] feasible set but where the
2 1 problem has no minimum
: because the function is
o . ] discontinuous. The function

Is illustrated only on the
feasible set. The bulleé
atx =0, f(x) = 1 indicates
1 that this is the value of the
o5 o w5 1 15 7 25 5 s« X function atx = 0.
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2.3.3.3 Summary
e In all five cases, argmjar f(x) is the empty seb.

e Careful formulation of a problem can avoid these issues.
2.3.4 Conditions for problems to possess a minimum and miizien

Theorem 2.1 LetS C R" be non-empty, closed, and bounded and let
f 1S — R be continuous. Then the problemn,.s f (X) possesses a
minimum and minimizef]



2.3.5 Maximization problems and the supremum

maxf (x) = —min(—f(x)). (2.22)
XeS XES
Definition 2.7 LetS CR", f : S — R. Then, sups f(X), thesupremum
of the corresponding maximization problem maxf (x) is defined by:

theleast upper boundfor
supf (x) = Maxes f(X), if maxges f(X) is bounded above
S - oo, if maxyes f(X) is unbounded above
—oo, if maxycg f(X) is infeasible
The supremum is equal to the maximum of the corresponding
maximization problem maxs f (X) if the maximum existsd



2.3.6 Extended real functions

Definition 2.8 LetSCR", f : S - RU{—m, o}, andf* € R. Then by:

f* =minf(x),
XeS

we mean that:
Ix* € S such thatf* = f(x*) e Rand(x € S) = (f(x*) < f(x)).



2.4 Algorithms
e Two basic types of algorithms:

— Direct, to be described in Secti@¥.1 and
— Iterative, to be described in Secti@.2



2.4.1 Direct
e A finite list of operationsthat calculates the solution of the problem.

2.4.1.1 Discussion
e Under the (usually unrealistic) assumptions that:

— all numbers in the problem specification are representetitote
precision,
— all arithmetic operations are carried out to infinite pregisand
— the answers to each arithmetic operation are representefiite
precision,
e then the answer obtained from a direct algorithm would b&texa

2.4.1.2 Applicability

e Some problemsannotbe solved by direct algorithms.

e Considerg: R — R such thag is apolynomial.

e For non-linear equations involving arbitrary fifth or higlteegree
polynomials, there iprovablyno direct algorithm available to find the
solution.



2.4.2 lterative

2.4.2.1 Recursion to define iterates
o xVHD) = xV) 4+ aAxV) v =0,1,2, ..., is the iteration counter,
e x(9 is theinitial guessof the solution,
e xV) is the value of the iterate at tiveth iteration,
e aV) ¢ R, is thestep-size with usually 0< aV) < 1,
e V) € R"is thestep direction, and
e the product V") is theupdate to add to the current iterasé”).

step directionx") _ _
Fig. 2.18. Update of iterate

in R2. The bulletss indicate
x(V+1) the locations of the points
V) andx+Y . while the ar-
(V) Ag(V) XV anax , W )
Updatea™Ax rows " indicate the magni-
x(V) tudes and directions of the
X1 vectors®&"Y) anda ™ AxY),




2.4.2.2 Sequence of iterates and closeness to a solution

Definition 2.9 Let ||e|| be a norm oR". Let {xV)}_, be a sequence of
vectors inR". Then, the sequende™)}>_, convergesto alimit x* if:

< s) .
The setZ, is the set of non-negative integers.
If the sequencéxV)}>_, converges ta* then we write limy ., xV) = x* or

lim X = x* and callx* thelimit of the sequencgx”)} 4. O

Ve > 0,3N® € Z, such thafv € Z, andv > N?) = (Hx(") — X"



2.4.2.3 Rate of convergence
Analysis

Definition 2.10 Let |[e|| be a norm. A sequen({ed")}ffzo that converges to
x* € R"is said to converge ate Re R, (whereR . is the set of
strictly positive real numbers) and withte constantC € R . if:

Hx(v+1) oyt

— 2.23
o e e e

If (2.23 is satisfied folR= 1 and some value &@ in therange < C < 1
then the rate is callelthear. If (2.23 is satisfied folR= 2 and somé€ in
the range B< C < o then the rate is calleguadratic. If (2.23 is satisfied
for someR in the range k R < 2 and som&€ in the range G< C < oo then
the rate is calleduper-linear. O



Discussion

e Qualitatively, the larger the value & the faster the iterates converge, at
least asymptotically.

x|

0
10 *—o 9 O O O© ©® ©
X U%$+ o O ©
.

5 x
10" - X « +

10k

. ] Fig. 2.19. Rates of con-
1 vergence for several se-
‘ | guences, with: R =1
and C = 0.9 shown as
1 o R=1andC = 0.2
shown asx; R= 2 and
C =0.9 shown a®; and

1 R=15 andC = 0.9

1 1 \% shown ast-.
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2.5 Solutions of simultaneous equations
2.5.1 Number of solutions

e Consider a linear equation in one varialde,= b, whereA b € R.
e The possible cases are:

Ox =0, infinitely many solutions,
Ox="Db, b0, no solutions,
Ax=Db, A=z0, one solution.

2.5.2 Uniqueness of solution for linear equations

e Necessary and sufficient conditions for there to be a uniqugisn to a
square system of equations is that the coefficient mathe
non-singular.



Number of solutions, continued
e Consider a quadratic equation in one varialQéx)? + Ax = b. where
A b, QeR.

e The possible cases are:

0(x)?4+0x=0, infinitely many solutions,

0(x)°4+0x=bh, b0, no solutions,
(x)? b, A0, one solution,
(X)2+Ax=b, Q=#0,A?+4Qb< 0, no (real) solutions,
(x)? b, Q<0,A’>+4Qb= 0, one solution,
(x)? b, Q=£0,A%+4Qb> 0, two solutions.



2.5.3 Uniqueness of solution for non-linear equations

e To study uniqueness, we will consider simultaneous egusitichere the
number of equations equals the number of variables.

2.5.3.1 Monotone functions

Definition 2.11 LetS C R"and letg : S — R". We say thatj is monotone
ons if:

vx,X €5, (g(X) —9(x) (¥ —x) > 0. (2.24)
We say thag is strictly monotone onS if:
vx,X €S, (x#X) = (g(X) —g(x))T(x’—x) > 0.

If gis monotone oR" then we say thag is monotone. Ifg is strictly
monotone oR" then we say thag is strictly monotone™d



Monotone functions, continued

e Geometricallyg is monotone off if, for all pairs of vectorsx andx’ in S,
the vectorgx' — x) and(g(x') — g(x)) point in directions that are within
less than or equal to 9®f each other.

X2

Fig. 2.20. lllustration
of definition of mono-
tone. For allx andx in
S, the vectors(X' — x)

g(x)
X /
%) (9(x) —9(x)) and (g(x) — g(x)) point
in directions that are
X 9(x) within less than or equal
~ Xq to 90’ of each other.




Example

e Even if a functiong™ R" — R" is not strictly monotone, by permuting the
entries ofg’it may be possible to create a strictly monotone function.
e Consider the function:

2 Aoy | X2
Vx e R §(X) = [XJ'

e This function is not strictly monotone since:
~ aron T
(G0X) —G(x) (X =x) = 2(xz—%2) (X —Xa),
< 0, if X5 > x2 andx] < Xi.

e However, the functiom : R? — R? obtained by swapping the entriesgf "
Is strictly monotone, since:

(00)—9() (¢ =x) = [[¥ =x]3,
> 0, for X #x.



Analysis

Theorem 2.2 LetS C R"and g: S — R" be strictly monotone o8. Then
there is at most one solution of the simultaneous equati@xs=g0 that
is an element of.

Proof Suppose that there are two solutiofisx™ € S with X* # X,
That is,g(x*) = g(x**) = 0. Consequently,

(g(x*) — g(x**))T(x* —Xx**) = 0. But by definition of strictly monotone
applied tox* andx*™, (g(x*) — g(x**))T(x* —X*) > 0. Thisis a
contradiction.rd

Discussion

e It is possible for a functiomg to be not strictly monotone and yet there
may be a unique solution or no solution to the equatgms = O.



Example

e Considerg: R — R defined byyx € R,g(x) = (X)3 —x— 6.
e This function is not strictly monotone, yet there is only @aodution to
g(x) = 0, namelyx* = 2.

9(x)

10

Fig. 2.21. Function ¢

that is not strictly mono-
tone but for which there
IS only one solution,
X* =2,tog(x) =0. The

solution is illustrated
: X with thee.
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2.5.3.2 Characterizing monotone and strictly monotone&tions
Jacobian
e The entries of thdacobianJ : R" — R™" are defined by:

Vk:1,...,n,V£:1,...,m,Jgk:g—)?lf.

Positive definite and positive semi-definite
e A matrix Q € R™" s positive semi-definiteif:

vx € R" x"Qx> 0.
e The matrix ispositive definiteif:
vx e R", (x+#£0) = (X' Qx> 0).



Convex sets

Definition 2.12 LetS C R". We say tha$ is aconvex sebr thatS is
convexif Vx, X' € S,vt € [0,1], (1 —t)x+tx' € S. O

e The setRR", R", andR" | are all convex.

Fig. 2.22. Convex sets
with pairs of points
joined by line segments.



Examples of non-convex sets
e Non-convex sets can have “indentations.”

K & Fig. 2.23. Non-convex
sets.



Conditions for strictly monotone

Theorem 2.3 LetS C R" be a convex set and:@ — R". Suppose that g is
partially differentiable with continuous partial deriviaes onS.
Moreover, suppose that the Jacobian J is positive semiitiefin
throughoutS. Then g is monotone d If J is positive definite
throughoutS then g is strictly monotone ds

Proof Suppose thal is positive semi-definite througho8t Let
x, X' € S. For 0<t < 1 we have thatx+t[xX —x]) € S sinceS is a convex
set. Ast varies from 0 to 1(x+t[xX' —x]) traces out the line segment
joining x andx'. Define@: [0,1] — R by:
vte(0.1,0t) = (X —x)'gx+t[ —x]).
= g(x+tX —x) (X —x).



Proof, continued We have:
®1) - 90) = (X —x)'(g(x) —g(x)).
= (g(x) —9(x) (X —x).
and so we must prove thatl) — @(0) > 0. Notice that:

3{"( t) = (X'—X)TJ(XH[X’—X])(X’—X), by the chain rule,
> 0, for0<t <1, (2.25)
sinceJ(x+t[X' —x]) is positive semi-definite. We have:
®1) = ®0)+ /

by the fundamental theorem of calculus appliegto
> @(0), since the integrand is non-negative everywhereZg5).

This is the result we were trying to prove. A similar analysplies for
J positive definite, noting that the integrand is then styiptsitive and
continuous ™



2.6 Solutions of optimization problems
2.6.1 Local and global minima
2.6.1.1 Definitions
e Recall ProblemZ.8) and its minimumf*:
f* = min f(x).
XeS

e Sometimes, we call* in Problem 2.8) theglobal minimum of the
problem to emphasize that there isxn@ S that has a smaller value of

f(X).

Definition 2.13 Let ||e|| be a norm oR", S CR", x* € S, andf : S — R.
We say thak* is alocal minimizer of the problem mig.s f(x) if:

Je > 0 such thavx € S, (||[x—X*|| <€) = (f(X*) < f(X)). (2.26)
The valuef* = f(x*) is called docal minimum of the problem O



Local minimizer and minimum

e A local minimum may or may not be a global minimum but if a pehl
possesses a minimum then there is exactly one global minjraym
definition.

e The global minimum is also a local minimum.

e Formally,Xis not a local minimizer if:

Ve > 0,3x° € S such tha||x—x°|| <€) and(f(X) > f(x*)). (2.27)



2.6.1.2 Examples
Multiple local minimizers over a convex set

e f:R — R has two local minimizers at* = 3, x** = —3 oversS.

f(X)

3

f** 2r

- local minimum
and minimizer

i

not a local minimu Fig. 2.24. Local min-

NI 1 ima, f* and f**, with
1 corresponding local
fx ocal and aloba minimizers x* and
T ocal and global ok
. T X, over a setS. The
st minimum and minimizer point x* is the global
B I e ; - . . L X minimizer and f* the
X X X global minimum oves.



lllustration of definition of not a local minimizer

e Fore = 1 there is a point, namely+ 5 = 2 that is within a distance of
X = 1.5 and which has lower value of objective than the paiat I.5.

f(x)

Fig. 2.25. A pointx'=
1.5, illustrated with a
2r 7 o, that is not a local
] minimizer and another
point, X+ 5 = 2, illus-
trated with ae, that is

] within a distancee = 1
e : - . . b X of X and has a lower ob-
X jective value.



lllustration of definition of not a local minimizer, continu ed

e Fore = 0.5 there is a point, namely+ £ = 1.75 that is within a distance
€ of X= 1.5 and which has lower value of objective than the p&iat I.5.

f(x)

Fig. 2.26. A pointx =
1.5, illustrated with ao,
2r 1 that is not a local mini-
] mizer and another point,
X+ 5 = 1.75, illustrated
with a e, that is within

1 a distances = 0.5 of X
e : - . . b X and has a lower objec-
X tive value.



Multiple local minimizers over a non-convex set

e Over the non-convex s@t= {xe€ R| -4 <x<1or2<x<4}there are
three local minimizers¢ = 3, x** = —3, andx™* = 1.

f(X)

3
f** 2r

1+ local minimum
f==*and minimizer

local minimum
and minimizer

Ll ] Fig. 2.27. Local
e ] and global minima
~ local and global and minimizers of a
st minimum and minimizer problem over a set
5 X P={XeR-4<x<
X+ X* X lor2<x<4}.



Multiple local minimizers over a non-convex set in higher dmension

2.4

e The local minimizers arg” ~ [—O 1] andx™ ~ [

X1

0.8
—0.7|"

Fig. 2.28. Contour sets
of the function defined
in (2.10 with feasi-
ble set shaded. The
two local minimizers
are indicated by bullets.
The heights of the con-
tours decrease towards

.1
the p0|nt[3] :



2.6.1.3 Discussion

e |terative algorithms involve generating a sequence ofsssigely
“better” points that provide successively better valuethefobjective or
closer satisfaction of the constraints or both.

e With an iterative improvement algorithm, we can usuallyyomlarantee,
at best, that we are moving towards a local minimum and miemi



2.6.2 Strict and non-strict minimizers
2.6.2.1 Definitions
e There can be more than one minimizer even if the minimum ibajlo

f(x)

ol ] Fig. 2.29. A function
Al with  multiple global
i minimizers. The set of
1 minimizers is indicated
e = a4 o 1 2 s+ X by a thick line.



Definition 2.14 We say thak* € S is astrict global minimizer of the
problem miggs f(X) if:

vxe S, (X#X) = (f(X) < f(X)).
The valuef* = f(x*) is called astrict global minimum of the problemO

Definition 2.15 We say thak* € S is astrict local minimizer of the
problem miRes f(X) if:

Je > 0 such tha’x € S, (0 < ||[x—X'|| < €) = (f(X*) < f(X)).
The valuef* = f(x*) is called astrict local minimum of the problem

2.6.2.2 Examples

e The two local minimizers¢* = 3 andx™ = —3, in Figure2.24are strict
local minimizers.

e All three local minimizersx* = 3,x* = —3,x"* =1, in Figure2.27are
strict local minimizers.



2.6.3 Convex functions
2.6.3.1 Definitions

Definition 2.16 LetS C R" be a convex set and Iét: S — R. Then,f is a
convex functiononS§ if:

vx,X €S, ¥t € [0,1], f([L—t]x+tx) < [1—t]f(x) +tf(X).  (2.28)

If f:R"— Risconvex orR"then we say thaf is convex. A function
h:S — R"is convex orS if each of its componentsy is convex orS. If
h:R" — R" is convex orR" then we say that is convex. The sef is
called thetest set

Furthermore f is astrictly convex function ons if:
vx,X €S, (x#X) = (Vt € (0,1), f([1—-t]x+tx) < [1—t]f(x) +tf(X)).

If f:R"— Ris strictly convex orR" then we say that is strictly convex.
A functionh: S — R' is strictly convex orf if each of its components, is
strictly convex orfS. If h: R" — R is strictly convex orR" then we say
thath is strictly convex.OI



Discussion

e The condition in 2.28 means that linear interpolation of convéx
between points on the curve is never below the function galue

f(x)

10

Fig. 2.30. Linear in-
terpolation of a convex
function between points

°f 1 never under-estimates
5t . 1 the function. (For clar-
o ] ity, the line interpolating

f betweenx = 0 and
x = 1 is drawn slightly
above the solid curve:
it should be coincident
! 5 T : ; s X with the solid curve.)




Definition 2.17 LetS C R" be a convex set and Iét: S — R. We say that
f is aconcave functiononS if (—f) is a convex function ofs. O

2.6.3.2 Examples

e A linear or affine function is convex and concave on any corsetx

e The functionf : R — R shown in Figure2.24is not convex on the convex
setS ={xe R| -4 <x< 4},

e Qualitatively, convex functions are “bowl-shaped” andén&wvel sets that
are convex sets as specified in:

Definition 2.18 LetS C R"andf : S — R. Then the functiorf hasconvex
level setson S if for all f € R we have thal.¢(f) is convex. Iff : R" — R
has convex level sets @& then we say thaf has convex level set§]

e Note that a function with convex level sets need not itsel leenvex
function.



Convexity of level sets of convex function
¥x e R?, f(X) = (x1—1)%+ (%2 — 3)> — 1.8(xy — 1) (x2 — 3). (2.29)

/

Fig. 2.31. Contour sets
C¢(f) of the function
defined in 2.29. The
heights of the contours

decrease towards the

BT 4 5 2 a4 o 1 2 3 4 s X1 pOint [% .



2.6.3.3 Relationship to optimization problems

Theorem 2.4 LetS C R" be a convex set and:fS — R. Then:

() If f is convex orf then it has at most one local minimum oger
(ii) If f is convex orB and has a local minimum ové&rthen the local
minimum is the global minimum.
(i) If f is strictly convex orf then it has at most one minimizer over
S.

Proof We prove all three items by contradiction.

(i) For the sake of a contradiction, suppose tha convex, yet that it
has two local minima ove$; that is, there are two distinct valué¢s € R
and f** € R, say, withf* #£ f** that each satisfy DefinitioB.13

For concreteness, suppose that- f** and letx* € S andx™ € S be
any two local minimizers associated with and f**, respectively. The
situation is illustrated in Figur2.32



Proof of (i), contd The solid line showd (x) as a function ok while the
dashed line shows the linear interpolationfdfetweenx* andx™.

f(x)
fro2p
f>°L
Fig. 2.32. Multiple
N minima and minimizers
B B ; - . - . X inproof of Theoren?.4,
X X Item (i).



Proof of (i), continued We are going to show that satisfies the
condition @.27) for x* not to be a local minimizer, which we repeat here

for reference:

Ve > 0,3x € S such that||x" — x¢|| < €) and(f(x*) > f(x¢)).
We have:

vt € [0,1], f (X" +t[x"* —x*])

f(X*) +t[f(xX™) — f(X)], by convexity off,
f*+t[f* — ], by definition of f* and f**,
f*, for0 <t <1, sincef* > f**,
f(x*). (2.30)

A 1IN



Proof of (i), continued For 0<t <1, we have* +t(X** —x*) € S since
S is convex. But this means that there are feasible point$rariby close
to x* that have a lower objective value. In particular, given aogm||e ||
and any numbeg > 0, we can defing® = x* +t(x™* — x*) wheret is

specified by:

t=min<1 £
a 2|} —x*]|



Proof of (i), continued Note that¢ € S since 0<t < 1 and thai®
satisfies:

X" =X = [|X"—[X"+t(X™*—x")]||, by definition ofx¢,

= [|=tx™ =),

= |t| x |[|[X**—X"||, by a property of norms,

€
< X —x*||, by definition oft,
2T x| I I

_ L

= 3¢,

< &



Proof of (i), continued Furthermore G<t < 1 by construction, so
by (2.30):
f(x) > ().

That is,x* satisfies 2.27) and is therefore not a local minimizer of
which is a contradiction. As suggested by the “humpfiatx ~ —1, the
situation illustrated in Figur2.32is inconsistent with the assumption
that f is convex. We conclude thdthas at most one local minimum.

(i) Suppose that the local minimum 1% € R with corresponding local
minimizerx* € S. Suppose that it is not a global minimum and
minimizer. That is, there exist€™ € S such thatf™ = f(x*) < f(x*).
Then the same argument as in It@jnshows thatf* is not a local
minimum.



(i) Suppose that is strictly convex, yet that it has two local
minimizers,x* £ X, say. Since is convex, then by Iten(), both
minimizers correspond to the uniqgue minimum, gayof f overS. We
have:

Vt € (0,1), f(X*+t[X™* —x]) < f(X)4+t[f(xX™)— f(X*)],
by strict convexity off,
= f*4t[f*— f*], by definition of f*,

= f*7

which means that neither nor x** were local minimizers of, since
feasible points of the form* +t (X — x*) have a lower objective value
forallt € (0,1). Thatis, by a similar argument to that in It€ih, we can
construct a feasiblg that is within a distance of x* having a smaller
value of objective thar*.

O

Definition 2.19 If S C R"is a convex set anfl: R" — R is convex ors,
then mincg f(X) is called aconvex problem O



2.6.3.4 Discussion
Local versus global minimizers

e Theorem2.4 shows that a convex problem has at most one local
minimum.

e If we find a local minimum for a convex problem, it is in fact thebal
minimum.

Choice of step directions

e Convexity enables us to relate the two goals of:

(i) moving from the current iterate in a direction that deses the
objective while still maintaining feasibility, and

(i) moving from the current iterate towards the minimizétioe
problem.

e If we have a convex problem, then these goals are not indensis



Convex problems

o If:

— the functionf : R" — R is convex,
— the functiong : R" — R™Mis affine, withvx € R" g(x) = Ax— b, and
— the functionh : R" — R' is convex,

e then:

min{f(x)[g(x) = 0,h(x) < 0}

XeRN

e iS a convex problem.
e Some problems involving non-convex functions also spemiyvex
problems.



Weakening the convexity assumption

e For example, a function with convex level sets has only onallo
minimum.

Fig. 2.33. A non-
convex function with
X convex level sets.




Maximizing a convex function

Definition 2.20 LetS C R" andx € S. We say thak is anextreme point
of S if:

X, X" €S, (X #x) and(x” #x)) = <x7é %(X’—I—X")) :

[

e That is,x is an extreme point d if it cannot be expressed as the
“average” of two other points if.
e In Figure2.22 there are three polygons:

— The extreme points of each polygon are its vertices.

e The extreme points of the dodecahedron in Figudelare its vertices.
e In Figure2.22 the extreme points of the filled ellipse are the points on the

ellipse.



Theorem 2.5 LetS C R" be a convex set and:fS — R be convex of.
Consider the maximization problem:

maxf (x),

XeS
Suppose this problem possesses a maximum. Then there isnaineax
of this problem that is an extreme point ®f O

e In principle, we can maximize a convex objective over a carset by
searching over all the extreme points of the feasible set.

e There may be a very large number of extreme points of a setasd t
approach is not practical in general.

e However, for affine objectives and affine constraints (andesother
cases), this approach leads to a practical method of oftrarz the
simplex methodof linear programming.

We will discuss the simplex method in Chapiéx



2.6.3.5 Characterizing convex functions
First partial derivatives

Theorem 2.6 LetS C R" be a convex set and suppose thatSf— R is
partially differentiable with continuous partial deriviaes onS. Then f

Is convex ord if and only if:
vx,X €8, f(x) > f(x)+0f (x) (x—X). (2.31)

O
e The functiong: R" — R on the right-hand side o2(31) defined by:

¥x € R™, g(x) = f(xX)+D0f (X)) (x=X),

e is called thdirst-order Taylor approximation of the functionf,
linearized aboux’.



First-order Taylor expansion

e The inequality in 2.31) shows that the first-order Taylor approximation
of a convex function never over-estimates the function.

F(x), @(x)

10

s 1 Fig. 2.34. First-order
o . ] Taylor approximation

B : about x = —2 (shown
dashed) and about= 3
(shown dotted) of a
. convex function (shown
s a1 5 X solid).




Sandwiching of convex function

f(x), 9(x)
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Fig. 2.35. Sandwiching of
o ] convex function between
Al two affine functions. The
first-order Taylor approx-
T imation about x = —2
°r 1 (shown dashed) is a lower
TN 1 bound to the function.
ot A ] The linear interpolation
Lo of f betweenx = —3 and
i X = —0.5 (shown dash-
dotted) is an upper bound to
il . the function on the interval
a5 X {X€R|-3<x< 0.5},



Second partial derivatives

e There are also tests of convexity involving positive seefirdteness of
the matrix of second partial derivatives, which is callegllfessianand

is denotedJ?f or 2 f.

Theorem 2.7 LetS C R" be convex and suppose that§ — R is twice
partially differentiable with continuous second partiardsatives orS.
Suppose that the second derivatiV# is positive semi-definite
throughoutS. Then f is convex of. If 0% is positive definite
throughoutS then f is strictly convex throughofit O



2.6.3.6 Further examples of convex functions
Quadratic functions

1
vx e R, f(x) = éxTQXJr c'x, (2.32)

e whereQ € R™" andc € R" are constants an@ is symmetric.

e The Hessian of this function 19, which is constant and independentxof
e If Qis positive semi-definite then, by Theoré@y, f is convex.

e If Qs positive definite then, by Theorepay, f is strictly convex.



Piece-wise functions may or may not be convex

X+ 5)?, if x<0,
VXERJ(X):{ Ex—sgz if x> 0.

F(x)

30

25+

20

15+

10

St Fig. 2.36. Example of
a piece-wise quadratic

. g T 2 s+ X non-convex function.



Point-wise maxima of convex functions are convex

vx e R", f(x) = ,max fo(X). (2.33)
f1(x), f2(x)
“l Fig. 2.37. Functions
used to define point-
B wise maximum.




Point-wise maxima, continued

e, 100 =ma (o), 200} = { (72 320

20

il Fig. 2.38. Example of
a piece-wise quadratic
T D I convex function.



2.7 Sensitivity and large change analysis
2.7.1 Motivation
¢ In many cases, the solution of a particular set of simultas@&muations

or a particular optimization problem forms only a part of @&x design
process in which the definition of the problem can be changed.

2.7.2 Parameterization

e Let us represent the change in the problem by supposingi@airoblem
is parameterizedy a vectory € RS,
e For example, for linear equations:

A(X)x = b(X).
e \We solve the base-case equatié8)x = b(0) for a base-case solution
X,
¢ \We might then want to solve the equations for another valygansfd we
consider solving\(x)x = b(x) for the change-case solution.



Parameterization, continued
e Non-linear equations:

g(xx) =0.
e Optimization:

min{f(x;X)[g(x;x) = 0,h(x;x) < 0}.

xeRN



2.7.3 Sensitivity

e We calculate the partial derivatives of the minimum and miréer with
respect to entries of, evaluated at the base-case solution corresponding
to x = 0, and estimate the change in the solution based on the partial
derivatives.

e Abusing notation, we will considef* andx* to befunctionsof x and
* ok
write % andgTX for the sensitivities of the minimum and minimizer
with respect to.
e \We will generally only evaluate these sensitivities o« O.
¢ In general, we would prefer not to have to solve the change-ca

explicitly in order to calculate the derivatives.

2.7.4 Large changes

e By “large change” we mean a change that is so large that asdigsed
on the derivatives is or may be inaccurate.



2.7.5 Examples

e In this section we consider examples of sensitivity analf@i each of the
five problem classes.

2.7.5.1 Linear simultaneous equations
11 24 |1
weRA0= |5 5 b= 1] @3
2.7.5.2 Non-linear simultaneous equations

vx e R,Vx € R,g(xX) = (x—2—sinx)3+ 1.

2.7.5.3 Unconstrained minimization

vx € R%¥X € R, f(x;X) = (x1 —exp(X))?+ (x2 — 3exp(X))? + 5x.



2.7.5.4 Equality-constrained minimization

min{f(x)|Ax=b(x)},

XeR2

VXERZ F(X) = (x1—1)2+ (xo—3)%,
A = [1 _1]7
VX €R,b(X) = [-XI

2.7.5.5 Inequality-constrained minimization

min{ f (x)|g(x) = 0,h(x; x) < O},

X€R2
YXeR? f(X) = (x¢—1)%+ (xo—3)?,
VXeR%g(X) = X1—X2,

vxe R2Vx e R,h(x;X) = 3—X2—X.



2.7.6 lll-conditioned problems
2.7.6.1 Motivation

Definition 2.21 A problem is said to bél-conditioned if a relatively
small change in the problem specification leads to a relgtigege change
in the solution.dd

2.7.6.2 Simultaneous equations example

e Consider simultaneous equations that are redundant.

e For example, suppose that two entrigsandgy, of g: R" — R™ are the
same.

e Suppose that" is a solution ofg(x) = 0, so thatg; (x*) = g2(x*) = 0.

e An arbitrarily small change in the problem specificatiorulesin a large
qualitative change in the solution: the problem can changa having a
solution to having no solution.

e That is, redundant simultaneous equations are ill-coorkil.

e For this reason, we will generally try to avoid redundantagopuns in the
formulation of simultaneous equations problems and awddindancy in
formulating equality constraints in optimization problkem



2.7.6.3 Optimization example

e Suppose that we wish to minimize a convex function and cengide
problem of finding a step direction that points towards theimizer of
the problem based on “local” first derivative informatioroabthe
function at a particular iteraté").

e The directionperpendicularo the surface of the contour set at a point is
particularly easy to find.

e This direction is the negative of the gradientfoévaluated at the point.



Example

e For circular contour sets, the direction perpendiculahtdurface of the
contour set points directly towards the unconstrained mmier of f.

X2

Fig. 2.39. Directions
perpendicular to con-
2 4 3 2 1 o T 2 3 4 35 X1 tour sets.




Example

e For elliptical contour sets, movement perpendicular tocthr@our set will
not point directly towards the minimizer.

X2

Fig. 2.40. Directions
/,, perpendicular to con-
5 4 s X1 tour sets.




Eccentric contour sets

e If the contour sets are highly eccentric then the problemsofaithe
gradient to find the direction that points towards the miainiis
ill-conditioned.

e Suppose that the function changes slightly, so that itsmia@r is at
X = i instead ofx* = % :

e A contour plot of the changed function is shown in Fig@rél

e The arrows in Figur@.4l1are in essentially the same direction as those
shown in Figure2.4Q

e The change in minimizer has had negligible effect on therm#fdion
provided by the direction perpendicular to the contour.sets

e The problem of finding a direction that points towards theiminer
using the information provided by the direction that is @eghcular to
the contour set is ill-conditioned.






2.7.6.4 Discussion

¢ In both examples, small changes in the problem led to largegds in
the solution, in either a qualitative or quantitative sense

e We will consider ill-conditioning in several contexts thughout
the course.



2.8 Summary
¢ In this chapter we have defined two main classes of problems:
(i) simultaneous equations, and
(ii) optimization problems,
e illustrating particular types of problems with elementagamples.
e We definedirect anditerative algorithms and characterized:

— conditions for uniqueness of solution of simultaneous &qoa using
the notion of a monotone function,

— local and global and strict and non-strict minima and miaens of
optimization problems using the notion of convexity,

— conditions for uniqueness of a local minimum and minimizer.

e We also discussed sensitivity analysis and ill-condittbpeoblems.



3
Transformation of problems

Outline

e Transformations of the objective in Sectidrd;
e Transformations of the variables in Sect®2;
e Transformations of the constraints in Sect®8 and

e Transformation of the problem involving a notion called adity” in
Section3.4.



3.1 Objective
e Basic techniques for transforming the objective that wé aviicuss are:
(i) monotonically increasing transformations
(i) adding terms,
(i) moving the objective into the constraints and
(iv) approximating the objective.



3.1.1 Monotonically increasing transformations

Theorem 3.1 LetS C R", let f : R" — R, and letn”" : R — R be strictly
monotonically increasing oR. Defineg: R" — R by:

vx € R" (%) =n”"(()).
Consider the problemsninycs @(x) andminycs f(x). Then:
(i) minyes f(x) has a minimum if and only hiny.s @(X) has a
minimum.

(ii) If either one of the problems in Ite() possesses a minimum (and
consequently, by Iteifn), each one possesses a minimum), then:

n" (minf(x)) = ming(x),

XeS XeS
argminf(x) = argming(x).
XES XES



Discussion

e Two transformations of objective that will prove particijyauseful in our
case studies involve the exponential function and (foctyrpositive
objective) the logarithmic function.

e The squared function provides another example of a monzabni
increasing transformation for a functidn R" — R, .

3.1.2 Adding terms

e Consider adding terms that depend on the constraint funetith a view
to incorporating the constraints into the objective so Hiter:

— we do not have to consider the constraints explicitly, or
— the constraints are easier to deal with.



3.1.2.1 Penalty function

Theorem 3.2 LetS C R"and f: R" — R. Consider the optimization
problemminycs f(x). Let §, : R" — R, be such that
(xeS) = (fp(x) =0) and letl € R,.. Then:
(i) minyes f(X) has a minimum if and only ihinyeg(f(X) + M fy(x))
has a minimum.
(ii) If either one of the problems in Ite() possesses a minimum (and
consequently, by Itef), each one possesses a minimum), then:
minf(x) = min(f(x)+Mfy(x)),
XeS XeS

arg)r(rgignf(x) = arg)r(r;igr(f(x)Jrl'lfp(x)).



Discontinuous penalty function

Example
e Consider the objectivé : R — R defined by:

vx e R, f(x) =x (3.1)
e The problem:

min{ f(x)|1 < x < 3},
XeR
e has minimumf* = 1 and minimizex* = 1.
e Letl =1 and consider the penalty functidp: R — R defined by:

0, Ifl<x<3,

10, otherwise. (3.2)

VxeR, fp(X) = {



Example, continued

fo(X)

15

10

Fig. 3.1. The penalty
function fp(x) versus
X. In this figure and the
next, the circleso in-
dicate that the function
has a point of disconti-
nuity asx approaches 1
from below or 3 from
above.



Example, continued

(), £()+ M fp(x)

15

101

Fig. 3.2. The objective
function f(x) versus x

(shown solid) and the
penalized objective func-
tion f(x) + Mfy(x) versus

X (shown dashed). (For
clarity, for 1 < x < 3 the

penalized objective function
Is drawn slightly above the
solid curve: it should be
coincident with the solid
curve.) One local minimizer
of f+TIf, in the region

{XeR—4<x<4}is

indicated by the bulles.



Example, continued

e The pointx* = 1 is an unconstrained local minimizer bf-I1fy in the
region{x € R| —4 <x <4} and is indicated in Figurd.2 by a bullete.

e The penalty function allows us to consider the effect of thestraints by
considering the penalized objective only.

Discussion

e The drawback of the penalty functidp defined in 8.2) is that the
penalized objective functioh + I f, is not continuous because of the
form of fp.

e Moreover, local information at a feasible point in the imer
S = {xe€ R|1 < x < 3} of S does not inform about the boundary of the
feasible region.



Continuous penalty function

Corollary 3.3 Suppose that fR" — R,g:R" — R™ M € R, and that
||| is @ norm onR™. Consider the optimization problems
mri]nxeR”{ f(x)]g(x) = 0} andminyegn{ f (x) + M [|g(¥)[|*|9(x) = O}
Then:

(i) the problenminycrn{ f(x)|g(x) = 0} has a minimum if and only
if the problemmingcgn{ f (X) + M [|g(X)||*|g(x) = 0} has a
minimum.

(ii) If either one of the problems in Ite() possesses a minimum (and
consequently, by Itef), each one possesses a minimum), then

min{f(x)|g(x) =0} = min{f(x)+M]g(9)|*g(x) =0},

xeRN

argmind f(x)[g(x) =0} = argmin{f(x) +M||g(x) I*9(x) = 0}.



Proof In the hypothesis of Theore®2, letS = {x € R"|g(x) = 0} and
definef, : R" — R, by fy(e) =||g(e)||°. Then:

(xeS) < (9(x)=0),
= (fp(x) =0),

so that the hypothesis and therefore the conclusion of Eme8r2 holds.
[



Example
X2

/

3k

Fig. 3.3. Contour sets
=) C¢(f) of objective func-
2 tion and the feasible set
from Problem 2.13.

The heights of the con-

" / tours decrease towards
‘ ‘ ‘ = 1

> 4 3 —2 -1 o 1 2 3 4 5 X1 the pOIﬂtlg .




Example, continued

e Figure3.3shows the contour sets of the objectiveR? — R of
Problem 2.13):

¥x € R? f(X) = (x1— 1)%+ (x2 — 3)%,

e and a line that represents the feasible{set R?|g(x) = 0}, where
g:R? — R is defined by:

¥x € R?,g(X) = X1 — Xo.
e As discussed in Sectidh2.2 the minimizer of mig_p2{ f (X)|g(x) = 0}
: 2
ISX* = [2]

e Figure3.4shows the contour sets (d(e)).
e The contours are parallel, singas affine, and decrease towards the line
representing the feasible set.



Example, continued

Fig. 3.4. Contour sets

-2 1 ~

C(g)z(f) of (g(-))z. The
heights of the contours
/ decrease towards the

D% 4 s 2 1 o 1 2 3 4 s X1 ||neX1:X2




Example, continued

X2
) Fig. 3.5. Contour sets
) Ct11(g2(f) of penalized
objective function and
the feasible set from
B /| Problem 2.13. The
& / heights of the contours
-4 decrease _towards the
M — = 5/3

5 -4 -3 -2 -1 0 1 2 3 4 5 Xl p0|nt 7/3 .



Example, continued

e Figure3.5shows the contour sets of the corresponding penalized
objectivef () +(g(e))? for M = 1, and again shows the line
representing the feasible set.

e Adding the penalty to the objective makes infeasible pdeds
“attractive” and does not change the objective values offiegisible set.

e The unconstrained minimizer ¢fe) +M(g(e))? for M = 1is ??g ,
which is closer to the minimizer of the equality-constraimeoblem than
is the unconstrained minimizer éf



Example, continued

Fig. 3.6. Contour sets
Cti10g2(f) of penal-

ized objective function
and the feasible set from
Problem 2.13. The

heights of the contours
decrease towards a
point that is near to

. Al




Example, continued

e Larger values of the penalty coefficidit such ag1 = 10 as shown in
Figure3.6, make infeasible points even less attractive.
e The unconstrained minimizer dfe) +M(g(e))? for M = 10 is very close

to [g] , which is the minimizer of the equality-constrained praoble



Sequence of problems

e Under certain conditions, the sequence of solutionsnagbnstrained
problems approaches a solution of the constrained probddiin-a oo.

Soft constraints

e A penalty approach can be a very effective means to appraiyna
satisfy “soft constraints.”

lll-conditioning

e For very tight tolerances, the required valud bivill be large.



lll-conditioning, continued
e As 1 becomes large the unconstrained problem becomes diffacsidtive.

Fig. 3.7. The contour
sets from Figure 3.6
shifted up and to the
right. The feasible set
from Problem 2.13 is

-2 1 also shown. The heights
1 of the contours decrease
] towards a point that is

%% 4 . 2 1 o 1 2 3 4 s X1 hear to [j] .



lll-conditioning, continued

e Figure3.7shows the case where the center of the ellipses are shifted up
by two units and to the right by two units.
e As in the example in SectioA7.6.3 the effect on local appearance of the

level sets at a point such &s=

0] .
_5] is only small.

o If xXV) = were the current iterate, for example, then it would be

0
-5
difficult to accurately determine the direction of the mimer from local
first derivative information at this point.



3.1.2.2 Barrier function

e Another approach to enforcing inequality constraints imee adding a
function that grows large as vapproachthe boundary of the feasible
region from the interior.

e Consider again the feasible §e&= {x € R|1 < x < 3} and its interior,
S={xeR|1<x< 3}.



Barrier function, continued

e Figure3.8shows a functiorfy : S — R that is designed to penalize values
of x that are close to the boundary of the feasible region.

fo(X)

15

101

&
T

Fig. 3.8. The barrier
function fp(x) versus
x on the interior of the
4 s = a0 1z s 4+ X feasible set.




Barrier function

e Consider again the objective functidn R — R defined in 8.1) and
illustrated in Figure3.2

e Figure3.9shows this objective together witt{x) + f,(X) for values ofx
that are in the interior of the feasible date R|1 < x < 3}.

e A local minimizer of f + fy is illustrated with ae.

e This point is nearby to the minimizer of the original consteal problem
minger{ f(X)|x € S}.

e We solve asequencef problems where the added term is gradually
reduced towards zero.



15

101

), £(x) + fb(x)

Barrier function

Fig. 3.9. The objective
function f(x) versusx
(shown solid) and the
objective plus barrier
function f(x) + fp(X)
versus X on the inte-
rior of the feasible set
(shown dashed). The
local minimizer of the
objective plus barrier
function is indicated by
the bullete.



3.1.3 Moving the objective into the constraints

vx € R, f(x) = max{(x+5)2, (x—5)2}.

20

A Fig. 3.10. Function de-
fined as point-wise max-
iy = = = o 1 2 3 . X imum.




Theorem 3.4 LetSCR"and let §: R" - Rfor¢=1,...,r. Define
f:R"— R by:

vx e R" f(X) = max fy(x).

(=1,...r
Consider the problemsin,cs f (x) and
min {Z|f,(x)—z<0,V/=1,...,r}. (3.3)

XeS,zeR

Then:

(i) the problenminycs f(x) has a minimum if and only if
MiNyes zer{Z| fr(X) —z2< 0,/ =1,...,r} has a minimum.

(ii) If either one of the problems in Ite() possesses a minimum (and
consequently, by Iten), each one possesses a minimum), then

minf(x) = min {7f,(X)—z<0,V/=1,...,r},

XES XeS,zeR
. X .
argminf(x) = {XER“ [ ]earg min {z
Y4 XeS,zeR

XES




Discu

ssion

e Figure3.11lrepeats Figur@.37and shows the functionfy and f, that
were point-wise maximized to form the objective shown inuf&B.10.

f

100

90F

80

70F

60~

50

40

30

20

10r

0

1(X) ) 1:2 (X>

! ! ! ! ! ! !
-4 -3 -2 -1 0 1 2 3 4

Fig. 3.11. The func-
tions used to define
point-wise maximum,
repeated from Fig-
ure2.37.



Discussion, continued

z

100

90

80

70

60

50

40

Fig. 3.12. Feasible re-
gion, shown shaded, and
contour sets of objective
for transformed prob-

lem. The feasible region

Is the set of point );

that lies “above” both of
the curves. The contour
sets of the objective de-
crease towarda= 0.



Discussion, continued

e Figure3.12re-interprets Figur8.11in terms of Problem3.3).

e |t shows the feasible region, shown shaded, and the congtsinoEthe
objective, which are lines of constant valuezof

e Problem 8.3) tries to find the minimum feasible value nfthat is, it
seeks the “lowest” feasible line.



3.1.4 Approximating the objective
e The four basic techniques we will discuss are:
() linear approximation,
(i) quadratic approximation,
(iii) piece-wise linearization and
(iv) smoothing



3.1.4.1 Linear approximation
e \We linearize an objective about a current estiméte
e A linear programming algorithm is then used to solve for th&aral
x(Vt1) that minimizes the linearized objective while satisfyihg t
(linearized) constraints.
e Extra constraints are added to ensure that linear appreiximis valid at
the updated point:

vk=1,....n[x" " - x| < .

3.1.4.2 Quadratic approximation

e Instead of a linear approximation, a quadratic approxiomatian be made
to the objective at each iteration



3.1.4.3 Piece-wise linearization
e For a functionf : [0,1] — R we might:

— define subsidiary variabl€s, ..., ¢&s,
— include constraints:

5
X = &i

0 <& <02
— define parameters:
d = 1(0),
Cj = T12[f(0.2><j)—f(O.2><(j—1))],j:1,...,5,

and
— replace the objectivé by the piece-wise linearized objective
@: R°> — R defined by:

VE e RS (&) =cTe+d.



Quadratic example function

vx e [0,1], f(x) = (x).

0.9r

0.8r

0.71

0.6

051

0.4r

031

0.2

0.1r =

0 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|
0.8

|
0.9

Fig. 3.13. Piece-wise
linearization (shown
dashed) of a function
(shown solid).



Quadratic example function, continued
e For the functionf illustrated in Figure8.13

d = 1(0)
— 0,
6 = o5 (1(02x )~ 1(02x (j- 1)),

— (04xj)-02j=1,...,5

e To piece-wise linearizé¢ in an optimization problem, we usggas the
objective instead of , augment the decision vector to inclugleand
include the constraints that lirkandx.

e Similarly, non-linear constraints can also be piece-wisedrized.



3.1.4.4 Smoothing
e Consider the absolute value functipn defined by:

X, if x>0,
VXERMZ{ _x ifx<O.

X[, @(x)

Fig. 3.14. Smoothed
version for € = 0.1
(shown dashed) and
€ = 0.01 (shown dot-
ted) of absolute value
X function (shown solid).




Smoothing

e This function is continuous but not differentiable.
e Consider the functiop: R — R defined by:

vx e R, Q(X) =1/ (X2 +¢€). (3.4)

e \We callpasmoothed versiornof |e|.

e It can be verified that for alt > 0, the functionpis differentiable.

e Moreover, the error betweemand|e| decreases with decreasiag

e The smoothed function can be used as an approximatign, tewith a
controllable approximation error determined by the choice



3.2 Variables
e The two basic techniques that we will discuss are:

(i) scaling and
(i) onto transformations.

3.2.1 Scaling

e This simplest way to transform variables is to “scale” them.
e As a practical matter, optimization software often makesithplicit
assumption that the variables have similar magnitudesatphimum.



Example
¥x € R2, f(x) = (1000« )%+ (x2/1000)2. (3.5)

5000

Fig. 3.15. Contour sets
. . =

5 of function f defined
X107 X1 in (35)

-5000
-5



Example, continued

¢ If we want to obtain an solution that yields an objective isatithin one
unit of the minimum then we need to obtain a valustich that
(approximately):

X1 —x1| < 0.001,
X5 —X2| < 100Q

e To appropriately weight the importance of errorxirandx,, suppose
that we define scaled variablés R? by:

&1 = 1000y,
Ez = Xz/looo

e Consider the objective: R? — R defined by:
vE € R% (§) = (81)° + (82) (3.6)



Example, continued

€2

Fig. 3.16. Contour sets

of function @ defined

in (3.6) with scaled vari-
&1 ables.




3.2.2 Onto transformations
3.2.2.1 Analysis
e \We can re-write the problem in terms of new variables so lang a
“exploring” over the new variables also “covers” the whofdlee original
feasible sef.
e This idea is embodied in the definition of anto function.

/_\T S f

P Fig. 3.17. Sets  and
N transformations in
Theorem3.5.

Y




Theorem 3.5 LetS CR" P C R”’, f:S—R,lett:P— Sbeonto S, and
definep: P — R by:

vE e P, (&) = f(T()).

Consider the problemsning.p @(&) and minys f(x). Then:
(i) the problemminycs f(x) has a minimum if and only if
mingcp @(&) has a minimum.
(ii) If either one of the problems in Ite(r) possesses a minimum (and
consequently, by Ite), each one possesses a minimum), then

gﬁeigcp(é) = minf(x),

argminf(x) = {T(E) ‘E earggrelliprxp(E)}.

XeS



Discussion

e To apply Theoren3.5, it is sometimes easiest to first define a function
7:R" — R"that is ontaR" and then defin® C R" by:

P={&cR"[1(§) €S}
e Then we consider theestriction of T to P.

3.2.2.2 Elimination of variables

e An important special case of Theor&drb occurs when we eliminate
variables.

e We first present an elementary theorem involving elimimatbvariables
for simultaneous equations and then a corollary of The@difor
optimization problems.



Simultaneous equations
Analysis

Theorem 3.6 Let g: R" — R™ n’ < n and collect the last’rentries of x

Xn—n'+1
together into a vecto€ = : eR". Suppose that functions

Xn
w R 5 Rfor¢=1,...,(n—r'), can be found that satisfy:

VI o | e{xeRNgx)=0}L,ve=1,....,(n—n'),x = wy(&).




Collect the functionsy,/ =1,...,(n—n'), into a vector function
w:R" — R Then, for xe {x € R"|g(x) = 0}, the vector function
w: RY — R expresses:

e the sub-vector of x consisting of the fifst— n") components of x,

e in terms of the sub-vectdrof x consisting of the last momponents of
X.

Suppose thag* R" solves < [w(;)] ) = 0. (Note that these

*
equations involve onl§.) Then X = [w(;* )] satisfies gx) = 0.
Conversely, suppose that & R" satisfies g<*) = 0. Let&* R" be the
sub-vector of X consisting of its last'components. Theit solves

(e



Discussion

e In Theorem3.6, we write the entries af in terms of the vecto€é and the
functionw by replacingx,, ¢ =1,...,(n—n) by wy(§),/=1,...,(n—n),
respectively.

e This eliminates¢, £ =1,...,(n—n/).

e The functionaw typically involve re-arranging some of the entries of
g(x) =0.

¢ In this case, we can delete the corresponding entrigsadfen solving

g ( [m(;)] ) = 0 since these entries are satisfied identically by

o [20]
e The variable< are called théendependent variables while the variables
X, =1,...,(n—n'), are called thelependent variables



Example

¥x € R2, g(x) = [(Xz))(% i 2] .

e The first entry ofg(x) = 0 can be re-arranged as= w;(X2), where
& =Xz andws : R — R is defined by:

VX € R, 001(X2) = X2.
e We can delete the first entgs from the equations to be solved since it is

satisfied identically b){wlz(z)] |

e \We need only solve the smaller systgg( [0012(5)]) —



Optimization

Analysis

Corollary 3.7 LetS CR", f : R"— R, and f < n and collect the last’'n
Xn—n'+1 ,
entries of x together into a vectgr= 5 € R". Consider the
Xn
special case of the optimization problenin,.s f(X) such that functions

w R 5 Rfor¢=1,...,(n—n'), can be found that satisfy:

X1
v o | esvi=1,....(n—n),x = w(&).

Xn_ n/

3

(Typically, these functions correspond(to— ') of the equality
constraints in the definition db. The condition means that these
equality constraints can be re-arranged to express eachefitst n—n/



entries of the decision vector in terms of the ldstmiries.) Collect the
functionswy,/ =1,...,(n—n'), into a vector functionw: R — R
LetP C R" be the projection ofS onto the last hcomponents dk".
Defineg: R" — R by:

VE € R, (&) = f <["°§)D .

Consider the problemsningp @(&) and minycs f(x). Then:

(i) the problemminycs f(x) has a minimum if and only if
mingcp @(&) has a minimum.

(ii) If either one of the problems in Ite() possesses a minimum (and
consequently, by Itef), each one possesses a minimum), then:

minf(x) = min@(¢),

XES ¢clP
argmin (x) = {[m(EE)] € R Eeargggipn{cp(z)}}.

O



Example
MiNy g2 { (X1 — 1)% + (X2 — 3)|x1 — X2 = O}. (3.7)

Fig. 3.18. Contour sets
I C¢(f) of the function
0 defined in R.10 for
values f = 2,4,6,...
with feasible set super-
imposed. The heights
-3 of the contours decrease

-4 towards the poin{%] :

25 4 -3 -2 -1 0 1 2 3 4 5 X1




Example, continued

e The equality constraint in this problem can be re-arranged & w;(X2),
where¢ = x; andw; : R — R is defined bywxs € R, w1 (X2) = Xo.

e The projection of = {x € R?|x; — x; = 0} onto the last component &
IsP=R.

(xeS) = (x1—1)2+(x—3)2 = (%) —1)2+ (xo—3)?,
(x2—1)°+ (x2—3)%,
= 2(x2)?— 8%+ 10.

e The transformed objective g: R — R defined by:

VX2 € R, @(X2) = f<_w(EE)D,

- ([e])

= 2(x2)? —8x2+10.




Example, continued

(%)

100

20
801
700
60
501
40t
30t

20

Fig. 3.19. The trans-
formed objective
% 4 s 2 1 o 1 2 5 4 5 X function .

10f




Example, continued
e Problem 8.7) is equivalent to:

min{2(x2)? — 8x, + 10}.
X2€R
e Inspection of Figure.19yieldsx; = 2.
e The corresponding optimal value xf can be found by substituting from
the eliminated constraint, according®p= w;(X5).
e Thatis,x; = 2.



Discussion

e We will use elimination of variables in several places tlyloout the
course beginning in Sectidn2

e It is possible to generalize the idea of elimination of vialés to the case
wherew is not known explicitly but can only be founchplicitly.



3.3 Constraints
e The five basic techniques we will discuss are:

(i) scalingandpre-conditioning,
(i) slack variables
(i) changing the functional form,
(iv) altering the feasible region and
(v) hierarchical decomposition



3.3.1 Scaling and pre-conditioning
e Pre-conditioning, involves multiplying both the coefficient matrix and
the right-hand side vector on the left by a suitably chosetrimi that:
— does not change the set of points satisfying the constrdiats
— makes it easier to find points satisfying the constraints.
e Itis sensible to scale the entries of the constraint funcéio that a
“significant” violation of any constraint from the perspeetof the

application involves roughly the same numerical value fmteof the
entries of the scaled constraint function.



3.3.2 Slack variables

Theorem 3.8 Let f: R" — R,g: R"— R™ h:R" — R". Consider the
problems:

;2]{{),{ f(x)|g(x) = 0,h(x) <0}, (3.8)
xeRrp\i/\r/]eRr{ f(x)|g(x) = 0,h(x) +w = 0,w > 0}. (3.9)

We have that:

(i) Problem @.8) has a minimum if and only if Probler3.0) has a
minimum.

(ii) If either one of the problems in Iter) possesses a minimum
(and consequently, by Ite), each one possesses a minimum),
then the minima are equal. Moreover, to each minimizesfx

2%
Problem 3.8) there corresponds a minimiz%@*] of
Problem @.9) and vice versa.



3.3.3 Changing the functional form

e A monotonically increasing transformation of an equalityreequality
constraint function (together with the corresponding sfarmation of its
right-hand side) does not change the feasible region, buttraasform
the function into being convex.

Theorem39Let f:R" =R, g:R"—=R™ be R™ h:R"— R", and
deR", Letrf:R%R,le,...,m, andof:R%R,le,...,r, each
be strictly monotonically increasing and continuousi®nDefine
V:R"-RM BeRM n:R"— R\, andd € R" by:

W=1,.. ,mYxeRYY(X) = 1/ (g(x),
Vi = 1,...,m,|3g = T{(bg),

VE=1,....,9xeR"N(X) = o (h(x)),
Vi = 1,...,r,6g = O'f(dg).

Consider the problemsaninyrn{ f (x)|g(x) = b,h(x) < d} and
minyern{ f(X)|y(X) = B,N(X) < &}. The second problem is obtained from



the first by transforming corresponding functions and esiof each
constraint. Then:

(i) minyegrn{ f(X)|g(X) = b,h(x) < d} has a minimum if and only if
the problemminycrn{ f (X)|y(X) = B,n(x) < 8} has a minimum.

(ii) If either one of the problems in Iter) possesses a minimum
(and consequently, by Ite), each one possesses a minimum),
then the minima are equal and they have the same minimizers.

[

e It is sometimes possible to transform a non-convex fundhtma convex
function.
e This applies in the case offpsynomial function:

Definition 3.1 LetAc R™"andB € RT, and definef : R} | — R by:
m
YXeRY,, f(X) = ZZ B(X1) 1 (X2)2 - - - (xn) m,
=1

The functionf is called gposynomial function. If m= 1 thenf is called
amonomial function. O



3.3.4 Altering the feasible region

Theorem 3.10LetS C SC S C R", f : R" — R and consider the problems:
min f(x), min f (x), min f(x),

XeS XeS xeS

and suppose that they all have minima and minimizers. Then:
(i)
min f(x) > min f(x) > min f(x).
XeS XES xeS
(i) Ifx* e argmir;(eg f( X) and X € S thenminycg f(x) = min, s f(x)
andargmins f(x) = (argmin g f(x)) NS.
(iii) Ifx* € argmlryeg f( X) and X € S thenminyes f(X) = Minyeg f(X)
andargmines f (x) = (argmines f () NS.



3.3.4.1 Enlarging or relaxing the feasible set
e The problem mip s f(x) is called arelaxation of or arelaxed version of
the original problem migs f ().
e If the minimizer of the relaxed problem min; f (x) happens to lie irS,
then a minimizer of the original problem mis; f (x) has been found.
e It is sometimes easier to optimize over a larger set than desnsat, if
the larger set has a more suitable structure.

(i) Sis convex whileS is not, and

(ii) S involves temporarily ignoring some of the constraints)djieg
an easier problem.

~ )
e argminf (x)
XeS S

S Fig. 3.20. lllustration
\ j of relaxing the feasible
X1 set.




3.3.4.2 Constricting the feasible set

e Item (iii) in Theorem3.10simply formalizes a way to usepriori
knowledge to narrow a search: if an optimizer is known toria isubset
S of S then we can confine our search to that subset.

e This can be useful if it is easier to search ofd¢han oversS.



3.3.4.3 Divide and conquer

e We can generalize the idea of constricting the feasibleosg¢velop a
divide and conquerapproach.

e Suppose thdd; C S, So C S, andS1US, = S.

e If the minimizer of the problem ove$ exists, then it must be contained in
eitherS; or So, (or both).

e We solve both migs, f(x) and mincs, f(x) and check for the smaller
minimum and corresponding minimizer.

e This yields the minimum and minimizer of mig; f(X).

X2
So

/
\ / Fig. 3.21. lllustration

. X1 of divide and conquer.




3.3.5 Hierarchical decomposition
e Consider a feasible sBtC R"S such that:

(e

e whereS; C R"andSy : S1 — (2)®) is a set-valued function.

X€Sy,y€ Sz(x)},

y

Fig. 3.22. lllustra-
tion of hierarchical
. X decomposition.




Theorem 3.11 Suppose thad C R"*Sis of the form:
X] c RS

S—{ y xeSl,yeSz(x)},

with S; C R" and, for each x S1, Sp(x) C RS. Let f: S — R and
suppose that, for each«S1, the minimization problem

minyesz(x) f ([;D has a minimum. Consider the problems:
min f <[XD andmin{ min f ([XD}
[]es y xeS1 | yeSa(x) y

Then:

1) Min as a minimum It and oniy |
(')H' f([;])h ini if and only if
y|€S

X
y
(ii) If either one of the problems in Ite(r) possesses a minimum (and

consequently, by Iteifn), each one possesses a minimum), then:

MiNyes, ¢ MiNyes,(x) f has a minimum.



mint ([3]) = min{ mn 1 ([3])}

. xeargmm{ min f<[XD}
argminf <[XD = [)f] e R™MS xS yeSat0 - \ LY
fles \LY y y € arg m|n f XD
yeSy (X
O

e Theorem3.11allows us to hold some of the decision veatonstant
temporarily while we optimize over the rest of the decisieator.

e We keepx € S; constantemporarilyor think of it as a parameter while
we optimize thenner problem overy € S»(X).

e If we can solve for the solution of the inner problem as a fiomcof x, or
can approximate its dependencexpthen we can use this functional
dependence in theuter problem.



Example
e Consider the feasible set:

s={ 3] <2+ 2 =1},

e Which is the set of points on the unit circle in the plane.
e \We can re-write this set in the form:

gz{m —1<x<lye {\/1—7002_\/1_70()2}}

e whereS; = {x € R| — 1 <x < 1} is the projection ofs onto the first
component oR?.

e In this case, for eacke Sy, the inner minimization problem in
Theorem3.11linvolves finding the minimum over a set with just two
elements, namel$(x) = {1/1— ()2, —/1— (x)2}.

e Even if the objective is non-convex, and despite the fadtS$h&) is not a
convex set, it may be easy to perform this minimization.




Discussion

e If Sis convex and is a convex function of§ then both the inner problem
and the outer problem are convex.

e Hierarchical decomposition is also useful when holdirg S, constant
yields an inner problem with a particular structure thatasyeto solve or
for which a convenient approximate solution is possible.

— This leads tdBender’s decomposition



3.4 Duality

e Taking thedual of a problem is a process whereby a new problem is
defined where the role of the variables and the constraieisher
partially or completely exchanged.

o letf:R" >R, g:R"— RM andh: R" — R",

e Consider the problem:

min1 F(x)|g(x) = 0,h(x) < 0}. (3.10)
X n

e We define two functions associated withy, andh, called the
Lagrangian and thedual function.

e We then consider the relationship between these functiods a
minimizing f.



3.4.1 Lagrangian

Definition 3.2 Consider the functior : R" x R™ x R" — R defined by:
vx e R" VA € R™ Vue R", L(x, A, 1) = f(x) +ATg(x) +p'h(x). (3.11)

The function” is called theLagrangian and the variabled andu are
called thedual variables. If there are no equality constraints then
L:R"xR" — R is defined by omitting the term’g(x) from the definition,
while if there are no inequality constraints thén R" x R™ — R is defined
by omitting the termu'h(x) from the definition.CI

e Sometimes, the symbol for the dual variables is introduckdmthe
problem is defined by writing it in parenthesis after the ¢i@st, as in

the following:
min f(x) such thag(x) = 0, (A).

xeRN



3.4.2 Dual function
e Associated with the Lagrangian, we make:

Definition 3.3 Consider the functioD : R™ x R" — RU{—} defined by:

v [)\] cR™T D\, W) = inf L(X,A, ). (3.12)
M xeRN

The function? is called thedual function. It is an extended real function.
If there are no equality constraints or there are no inetyuatinstraints,
respectively, then the dual functioh: R" — RU {—o} or

D :RM— RU{—} is defined in terms of the corresponding Lagrangian.
The set of points on which the dual function takes on reale&ls called

the effective domainkE of the dual function:

E:{[ﬁ Q)()\,u)>—oo}.

The restriction ofD to E is a real-valued functio®D : E — R. O

c RMT




Discussion

e Recall Definition2.17of a concave function.
e The usefulness of the dual function stems in part from thHevong:

Theorem 3.12 Let f: R" - R,g: R"— R™ and h: R" — R". Consider
the corresponding Lagrangian defined B111), the dual function
defined in 8.12), and the effective domaik of the dual function. The
effective domaiti of the dual function is a convex set. The dual
function is concave oR. [

e The convexity of the effective domain and the concavity efdual
function on the effective domain does not depend on any prppéthe
objective nor of the constraint functions.



3.4.3 Dual problem

Theorem 3.13 Let f:R" - R,g: R"— R™ and h: R" — R". LetA ¢ R™
and pe R, and suppose thate {x € R"|g(x) = 0,h(x) < 0}. That is,X
Is feasible for Problem3.10. Then:

f(R) > DO\ ), (3.13)
where?D : RMx R" — RU {—o} is the dual function defined ir3(12).
Proof By definition of D,

DA, W) = inf L(XA W),

XeRN

inf {f(x) +ATg(x) +p'h(x)}, by definition of £,
xeRN

< (%) +ATg(X) +u'h(X), by definition of inf,
< (%),

sinceg(X) =0, h(X) <0, andu > 0. O



Discussion

e Theorem3.13enables us to gauge whether we are close to a minimum of
Problem 8.10.

e For any value oh € R™andp e R',, we know that the minimum of
Problem 8.10 is no smaller tharD(A, ).

e This lower bound will be incorporated into a stopping cidarfor
iterative algorithms.



Corollary 3.14 Let f:R"—= R,g:R"— R™M and h: R" — R". Then:
inf {f(x)|9(x) =0,h(x) <0} > sup {D(A,p)u= 0},

XeRN m cRMHT

= sup{DA,W[n= 0},
[i]<E

wherekE is the effective domain @b. Moreover, if Problem3.10) has a
minimum then:

min{f(9]g(x) = 0.h(x) < 0} > SUp{D(AWIN=0}. (3.1
< e

If Problem (3.10 is unbounded below then:
VA € RMVue R, DA ) = —oo,

so thatE, = ﬁ] € E'uz O} = 0.
If the problem sup {D(A,l)|u> 0} is unbounded above then
[o] R

Problem 3.10) is infeasible.C



Discussion

e This result is calledveak duality.

e The right-hand side of3(14) is called thedual problem.

e If E. = 0 we say that the dual problem is infeasible.

e The inequality in 8.14) can be strict, in which case the difference
between the left and right-hand sides is calleddbality gap.

e If the left and right sides are the same, we say that there cauabty gap
or that the duality gap is zero.

e Evaluating the right-hand side d3.04) requires:

— evaluating the dependence of the infimum ofiti@er problem
infycrn £L(X,A, 1) in the definition ofD as a function oA andy,
— finding the supremum of theuter problem suqﬁ]eE{QD(A, W |u > 0}.



Discussion, continued

¢ In some circumstances, the inequality §11(4) can be replaced by
equality and the sup and inf can be replaced by max and mihasaohte
right-hand side of3.14) equals the minimum of Problen3.(LO and the
right-hand side becomes:

max{ D(\, W)|u > 0} = max{ min{ f(x) +ATg(x) + uTh(x)}' n> 0} ,
(o] €E [f]eE LX<k 515

e having an inner minimization problem embedded in an outer
maximization problem.

e By Theorem3.12 D is concave or1i, so that, by Theorer.4, it has at
most one local maximum.



Discussion, continued

e The dual formulation provides a useful transformation if:

— the dual problem has maximum equal to the minimum of the grima
problem, and

— the minimizer of the inner problem in the definition of the biuaction
sheds light on the minimizer of the primal problem,

e The requirements for these conditions to hold depend ondheexity of
the primal problem and on other technical conditions on timetions,
which we will discuss in detail in Party¥ andV.

¢ In the next section, we will consider an example where sudilitions
happen to hold.



3.4.4 Example
e Consider the problem myar{ f (x)|g(x) = 0} wheref : R — R and
whereg: R — R are defined by:
vxeR, f(x) = (x)?
VxeR,g(Xx) = 3—x
e Since there are no inequality constraints, we will omit tlguanentu of

L and of D.
¢ \We consider the dual functio® : R — RU {—c} defined by:

VAeR,D(A) = inf L(X, )\)

xeR
— )I(QI]:R{ (B_X)}v
af(y)

)\



Example, continued

e ThereforeE = R and sinceD is quadratic and strictly concave, the dual
problem has a maximum and:

max{DA\)} = max{S)\—()\Tf)z},

AcE AR

A 2
= max{—(——?:) +9},
AR 2
= 9,

e With maximizerA* = 6.

e The value of the minimizer of (e,A*) isX* = A—Z* = 3, which is the
minimizer of the equality-constrained problem.

e \We have solved the primal equality-constrained problemdbyirsg the
dual problem.

e There is no duality gap.



3.4.5 Discussion
e To understand the Lagrangian, consifler R" — R, U {co} defined by:

YxeRM fo(x) =  sup  {ATg(x)+u'h(x)}.
AERM peR’,

e fyis a discontinuous penalty function for the constragitg = 0 and
h(x) <0, since:
— if g(x) = 0 andh(x) < 0, thenp > 0 impliesATg(x) + pu'h(x) < 0, but
0'g(x) +0'h(x) = 0, so fy(x) = 0, whereas
— if g¢(x) # 0 orhy(x) > 0 then we can makk'g(x) 4+ u'h(x) arbitrarily
large by choosin@, andp, appropriately, sdp(X) = .



Discussion, continued
e Now note that:

VXERM F(X)+ fox) = F()+ sup {ATg(q)+pthx)}.
AERM peR’,

= sup  {f()+Ag)+u'h(x)},
AeRM peR’,

= sup {L(XA W},
AERM peR’,

e SO that the terms in the Lagrangian provide a penalty fundtothe
constraints whei andu > 0 are chosen appropriately.



Discussion, continued

e For each equality constraigi(x) = 0 in the primal problem we have
created a new variabkg in the dual problem.

e For each inequality constraihi(x) < 0 in the primal problem we have
created a new variab|® and a new constrainpt, > 0O in the dual problem.

¢ In some circumstances, such as the example in Se8tbn

— the minimization ovex € R" in the inner problem in3.15 can be
performed analytically or particularly easily numerigalbr
— each entry can be eliminated,

e making the inner problem easy to solve.



3.5 Summary
e These transformations involved:
(i) the objective,
(ii) the variables,

(i) the constraints, and
(iv) duality.
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