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Three introductory chapters
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1
Introduction

1.1 Road map

• In this course, we are going to:

– “formulate” various types of numerical problems, and
– develop techniques for solving them.

Title Page ◭◭ ◮◮ ◭ ◮ 3 of 219 Go Back Full Screen Close Quit



Road map, continued
• We will use a number of case studies to:

(i) illustrate the process offormulating a problem, that is, translating
from an intuitive idea of the problem by writing it down
mathematically,

(ii) motivate and developalgorithms to solve problems, that is,
descriptions of operations that can be implemented in software to
take a problem specification and return a solution, and

(iii) illustrate how to match the formulation of the problemto the
capabilities of available algorithms, involving, in some cases,
transformation of the problem from its initial formulation.
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Road map, continued
• We will consider five general problem classes:

(i) linear systems of equations,
(ii) non-linear systems of equations,

(iii) unconstrained optimization,
(iv) equality-constrained optimization, and
(v) inequality-constrained optimization.
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Road map, continued
• Mostly consider problems that are defined in terms ofsmooth functions

of continuousvariables.
• We will emphasize issues that have proved pivotal in algorithm

development and problem formulation:
(i) monotonicity,

(ii) convexity,
(iii) problem transformations,
(iv) symmetry, and
(v) sparsity.
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1.2 Goals
• At the end of the course, you should be able to:

(i) take a description of your problem,
(ii) translate it into a mathematical formulation,

(iii) evaluate if optimization techniques will be successful,
(iv) if the problem is tractable, solve small- to medium-scale versions

of it using commercial code, and
(v) use the solution of the problem to calculate sensitivities to

changes in problem specifications.
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1.3 Pre-requisites
• The course assumes familiarity with MATLAB and MATLAB M-files and

that you have access to the MATLAB Optimization Toolbox.
• In downloadable Appendix A there are notational conventions and a

number of results that we will use in the course.
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2
Problems, algorithms, and solutions

• In this chapter, we define the various types of problems that we will treat
in the rest of the course.
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Outline
• In Section2.1, we define thedecision vector.
• In Section2.2we define two problems involvingsolution of

simultaneous equations.
• In Section2.3we describe threeoptimization problems.
• We define analgorithm in Section2.4 in reference to two general

schemata:
– direct algorithms, which, in principle, obtain the exact solutionto the

problem in a finite number of operations, and
– iterative algorithms, which generate a sequence of approximate

solutions or “iterates” that, in principle, approach the exact solution to
the problem.
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2.1 Decision vector
• The problems will involve choices of a value of adecision vectorfrom

n-dimensional Euclidean spaceRn or from some subsetS of Rn, where:
– R is the set of real numbers, and
– Rn is the set ofn-tuples of real numbers.

• We will usually denote the decision vector byx.
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2.2 Simultaneous equations
2.2.1 Definition

• Consider a vector functiong that takes values of a decision vector in a
domainRn and returns values of the function that lie in arangeRm.

• We writeg : Rn → Rm to denote the domain and range of the function.
• Suppose we want to find a valuex⋆ of the argumentx that satisfies:

g(x) = 0. (2.1)

• A value,x⋆, that satisfies (2.1) is called a solution of thesimultaneous
equationsg(x) = 0.
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Example
• Figure2.1shows the case of a functiong : R2 → R2.
• There are two sets illustrated by the solid curves.
• These two sets intersect at two points,x⋆,x⋆⋆, illustrated as bullets•.
• The pointsx⋆ andx⋆⋆ are the two solutions of the simultaneous equations

g(x) = 0, so that{x∈ Rn|g(x) = 0}= {x⋆,x⋆⋆}.

✲

✻

x2

x1

✫ ✪
✬ ✩t
t

x⋆

x⋆⋆

{x∈ R2|g1(x) = 0}

{x∈ R2|g2(x) = 0}
Fig. 2.1. Example of
simultaneous equations
and their solution.
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Inconsistent and redundant equations
• If there are no solutions to the equations then{x∈ Rn|g(x) = 0}= /0,

where/0 is the empty set, and we say that the equations areinconsistent.
• If some linear combination of the entries ofg (with coefficients not all

zero) yields a function that is identically zero then we say that the
equations areredundant.

• For example, if two entries ofg are the same then the equations are
redundant.

✲

✻

x2

x1

✫ ✪

✬ ✩

{x∈ R2|g1(x) = 0}

{x∈ R2|g2(x) = 0}
Fig. 2.2. Example of
inconsistent simultane-
ous equations.
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2.2.2 Types of problems
2.2.2.1 Linear simultaneous equations

• Suppose thatg : Rn → Rm in (2.1) is affine, that is, of the form:

∀x∈ R
n,g(x) = Ax−b.

• Then we have a set oflinear simultaneous equations:

Ax−b= 0.

Examples

• For example, if:

A=

[

1 2
3 4

]

,b=

[

1
1

]

, (2.2)

• then:

x⋆ =

[

−1
1

]

• is a solution.
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Examples, continued

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

x⋆
{x∈ R

2|g1(x) = 0}

{x∈ R2|g2(x) = 0}

Fig. 2.3. Solution
of linear simulta-
neous equations
g(x) = Ax − b = 0
with A andb defined as
in (2.2).
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Examples, continued

• As another example, if:

A=

[

2 3 4
7 6 5
8 9 11

]

,b=

[

9
18
28

]

, (2.3)

• then:

x⋆ =

[

1
1
1

]

• is a solution.

Number of solutions

• There may be several values that satisfy the equations.

Case studies

• Nodal analysis of a direct current linear circuit (in Section 4.1), and
• Control of a discrete-time linear system (in Section4.2).
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2.2.2.2 Non-linear simultaneous equations
Examples

• For example, suppose that the functiong : R→ R is defined by:

∀x∈ R,g(x) = (x)2+2x−3. (2.4)

• The “quadratic equation” shows that the two solutions are:

x⋆ =−3,x⋆⋆ = 1.
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Examples, continued

• As another example, let:g : R2 → R
2 be defined by:

∀x∈ R
2,g(x) =

[

(x1)
2+(x2)

2+2x2−3
x1−x2

]

. (2.5)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

x⋆

x⋆⋆

{x∈ R2|g1(x) = 0}

{x∈ R2|g2(x) = 0}

Fig. 2.4. Solution of
non-linear simultaneous
equationsg(x) = 0 with
g defined as in (2.5).
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Examples, continued

• As a third example, letg : R→ R be defined by:

∀x∈ R,g(x) = (x−2)3+1. (2.6)

• By inspection,x⋆ = 1 is the unique solution tog(x) = 0.

Algorithms and number of solutions

• Larger problems may also possess multiple solutions or no solutions
under some circumstances.

Case studies

• Nodal analysis of a non-linear direct current electric circuit (in
Section6.1), and

• Analysis of an electric power system (in Section6.2).
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2.2.2.3 Eigenvalue problems
• LetK be the set of complex numbers.
• Then (not necessarily distinct) eigenvalues of a matrixA∈ Rn×n are

given by the (possibly complex) solutions of thecharacteristic equation
for A:

g(λ) = 0,

• whereg : K→K is thecharacteristic polynomial, defined by:

∀λ ∈K,g(λ) = det(A−λI ),

• Theeigenvectorsassociated with an eigenvalueλ are the solutions of:

(A−λI )x= 0.
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Example

A=

[

2 1
−5 −4

]

,

∀λ ∈K,g(λ) = det(A−λI ),

= det

[

2−λ 1
−5 −4−λ

]

,

= (2−λ)(−4−λ)− (1)(−5),

= (λ)2+2λ−3.

• From the previous example, we already know that the two solutions to
g(λ) = 0 are:

λ⋆ =−3,λ⋆⋆ = 1,

• so these are the eigenvalues ofA.
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Example, continued

• The eigenvectors associated withλ⋆ =−3 are the vectors in the set:

{x∈ R
2|(A+3I)x= 0}.

• The eigenvectors associated withλ⋆⋆ = 1 are the vectors in the set:

{x∈ R
2|(A− I)x= 0}.

Discussion

• There are special iterative algorithms for eigenvalue problems that are
somewhat different in flavor to the algorithms we will describe for
solving general linear and non-linear equations.

• We will not discuss general algorithms for eigenvalue calculation.
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2.3 Optimization
2.3.1 Definitions
2.3.1.1 Objective

• Consider a functionf : Rn → R that denominates the “cost” or lack of
desirability of solutions for a particular model or system.

• That is, f (x) is the cost of usingx as the solution.
• The function is called anobjective function.
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Example

• An example of aquadratic function f : R2 → R is given by:

∀x∈ R
2, f (x) = (x1)

2+(x2)
2+2x2−3. (2.7)
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0

5
−10

0
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30

40

50

60

x1x2

f (x)

Fig. 2.5. Graph of the
example objective func-
tion defined in (2.7).
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Discussion

• We can categorize objectives according to the highest powerof any entry
in the argument.

• We will categorize objectives in a different way in Section2.6.3.4once
we have discussed optimization in more detail.
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2.3.1.2 Feasible set
• Our problem might involve restrictions on the choices of values ofx.
• We can imagine afeasible setS⊆ Rn from which we must select a

solution.

2.3.1.3 Problem
• A minimization problem means to find the minimum value off (x) over

choices ofx that lie in the feasible setS.

Definition 2.1 Let S⊆ Rn, f : S→ R, and f ⋆ ∈ R. Then by:

f ⋆ = min
x∈S

f (x), (2.8)

we mean that:

∃x⋆ ∈ S such that:( f ⋆ = f (x⋆)) and((x∈ S)⇒ ( f (x⋆)≤ f (x))). (2.9)

✷
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2.3.1.4 Set of minimizers
• The set ofall the minimizers of minx∈S f (x) is denoted by:

argmin
x∈S

f (x).

• If the problem has no minimum (and, therefore, no minimizers) then we
define:

argmin
x∈S

f (x) = /0.

• To emphasize the role ofS, we also use the following notations:

min
x∈Rn

{ f (x)|x∈ S} and argmin
x∈Rn

{ f (x)|x∈ S}.

• We will often use a more explicit notation ifS is defined as the set of
points satisfying a criterion.

• For example, iff : Rn → R, g : Rn → Rm, h : Rn → Rr , and
S= {x∈ Rn|g(x) = 0,h(x)≤ 0} then we will write
minx∈Rn{ f (x)|g(x) = 0,h(x)≤ 0} for minx∈S f (x).
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Multiple minimizers

• For example, consider the functionf : R→ R defined by:

∀x∈ R, f (x) = |x+1|1.5(x−1)3+1.

−1.5 −1 −0.5 0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

x

f (x)

x⋆x⋆⋆

f ⋆ Fig. 2.6. Function
having multiple un-
constrained minimizers
indicated by the bullets
•.
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2.3.1.5 Lower bound

Definition 2.2 Let S⊆ R
n, f : S→ R, and f ∈ R. If f satisfies:

∀x∈ S, f ≤ f (x),

then we say thatf is a lower bound for the problem minx∈S f (x) or that the
problem minx∈S f (x) is bounded belowby f . If S 6= /0 but no suchf exists,
then we say that the problem minx∈S f (x) is unbounded below(or
unbounded if the “below” is clear from context.)✷

• Considerf : R2 → R defined in (2.7), which we repeat here:

∀x∈ R
2, f (x) = (x1)

2+(x2)
2+2x2−3.

• This function is illustrated in Figure2.5.
• For the feasible setS= R

2, the valuef =−10 is a lower bound for the
problem minx∈S f (x), as shown in Figure2.5.
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2.3.1.6 Level and contour sets

Definition 2.3 Let S⊆ R
n, f : S→ R, and f̃ ∈ R. Then thelevel setat

value f̃ of the functionf is the set:

L f ( f̃ ) = {x∈ S| f (x)≤ f̃}.

Thecontour setat value f̃ of the functionf is the set:

C f ( f̃ ) = {x∈ S| f (x) = f̃}.

For each possible functionf , we can think ofL f andC f themselves as
set-valued functionsfrom R to (2)(R

n), where(2)(R
n) denotes theset of all

subsets ofRn, sometimes called thepower setof Rn. ✷
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Example

• Consider the functionf : R2 → R defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2. (2.10)

−5

0

5

−5

0

5
0

20

40

60

80

100

x1x2

f (x)

Fig. 2.7. Graph of
function defined
in (2.10).
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Contour set for example

• The contour setsC f ( f̃ ) can be shown in a two-dimensional
representation.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

Fig. 2.8. Contour sets
C f ( f̃ ) of the function
defined in (2.10) for
values f̃ = 0,2,4,6, . . ..
The heights of the con-
tours decrease towards

the point

[

1
3

]

, which is

illustrated with a• and
is the contour of height
0.

Title Page ◭◭ ◮◮ ◭ ◮ 33 of 219 Go Back Full Screen Close Quit



2.3.2 Types of problems
• The three general forms ofS that we will consider are:

– unconstrainedoptimization,
– equality-constrainedoptimization, and
– inequality-constrainedoptimization.
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2.3.2.1 Unconstrained optimization
• If S= Rn then the problem is said to beunconstrained.

Example

• For example, consider the objectivef : R2 → R defined in (2.10):

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2.

• From Figure2.8, which shows the contour sets off , we can see that:

min
x∈R2

f (x) = f ⋆ = 0,

argmin
x∈R2

f (x) =

{[

1
3

]}

,

• so that there is a minimumf ⋆ = 0 and a unique minimizerx⋆ =

[

1
3

]

of

this problem.
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Another example

• Consider a linear systemAx−b= 0 that does not have a solution.
• We may try to seek a value of the decision vector that “most nearly”

satisfiesAx= b in the sense of minimizing a criterion.
• A natural criterion is to consider anorm ‖•‖ and then seekx that

minimizes‖Ax−b‖:

min
x∈Rn

‖Ax−b‖ . (2.11)

Case studies

• Multi-variate linear regression (in Section9.1), and
• Power system state estimation (in Section9.2).
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2.3.2.2 Equality-constrained optimization
• If g : Rn → Rm andS= {x∈ Rn|g(x) = 0} then the problem is said to be

equality-constrained.

Sub-types of equality-constrained optimization problems

Linearly constrained

• If g is affine then the problem is calledlinearly constrained.

Example

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

∀x∈ R
2,g(x) = x1−x2, (2.12)

min
x∈R2

{ f (x)|g(x) = 0} = min
x∈R2

{ f (x)|x1−x2 = 0}. (2.13)
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Example, continued

• The unique minimizer of Problem (2.13) is x⋆ =

[

2
2

]

.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1
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3

4

5

x1

x2

Fig. 2.9. Contour sets
C f ( f̃ ) of function re-
peated from Figure2.8
with feasible set from
Problem (2.13) super-
imposed. The heights
of the contours de-
crease towards the point
[

1
3

]

. The minimizer

x⋆ =

[

2
2

]

is illustrated

with a•.
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Non-linearly constrained

• If there is no restriction ong then the problem is callednon-linearly
constrained.

Example

• For example, consider the same objective as previously,f : R2 → R

defined in (2.10):

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2.

• However, letg : R2 → R be defined by:

∀x∈ R
2,g(x) = (x1)

2+(x2)
2+2x2−3.

• Consider the equality-constrained problem:

min
x∈R2

{ f (x)|g(x) = 0}. (2.14)
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Example, continued

• The unique minimizer of Problem (2.14) is x⋆ ≈

[

0.5
0.9

]

.
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Fig. 2.10. Contour sets
C f ( f̃ ) of function repeated
from Figure2.8 with feasi-
ble set from Problem (2.14)
superimposed. The heights
of the contours decrease

towards the point

[

1
3

]

. The

minimizer x⋆ is illustrated
as a•.
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Case studies

• Least-cost production of a group of manufacturing facilities that must
collectively meet a demand constraint (in Section12.1), and

• Power system state estimation with zero injection buses (inSection12.2).
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2.3.2.3 Inequality-constrained optimization
• If g : Rn → Rm, h : Rn → Rr , andS= {x∈ Rn|g(x) = 0,h(x)≤ 0} then

the problem is said to beinequality-constrained.

Sub-types of inequality-constrained optimization problems

Non-negatively constrained

• If h is of the form:

∀x,h(x) =−x,

• so that the constraints are of the formx≥ 0 then the problem is
non-negatively constrained.

Linear inequality constraints

• If h is affine then the problem islinear inequality-constrained.
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Linear program

• If the objective is linear andg andh are affine then the problem is called a
linear program or a linear optimization problem .

Example

∀x∈ R
2, f (x) = x1−x2,

∀x∈ R
2,g(x) = x1+x2−1,

∀x∈ R
2,h(x) =

[

−x1
−x2

]

,

min
x∈R2

{ f (x)|g(x)=0,h(x)≤ 0}= min
x∈R2

{x1−x2|x1+x2−1=0,x1≥ 0,x2≥0}.

(2.15)
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Example, continued

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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1.2

1.4
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1.8

2

x1

x2

Fig. 2.11. Contour sets
C f ( f̃ ) of objective function
and feasible set for Prob-
lem (2.15). The contour
sets are the parallel lines.
The feasible set is shown
as the line joining the two

points

[

1
0

]

and

[

0
1

]

. The

heights of the contours
decrease to the left and up.

The minimizerx⋆ =

[

0
1

]

is

illustrated as a•.
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Linear program, continued

• We often emphasize the linear and affine functions by writing:

min
x∈R2

{c†x|Ax= b,Cx≤ d},

• wherec∈ Rn, A∈ Rm×n, b∈ Rm, C∈ Rr×n, andd ∈ Rr .
• For Problem (2.15), the appropriate vectors and matrices are:

c=

[

1
−1

]

,A= [1 1] ,b= [1],C=

[

−1 0
0 −1

]

,d =

[

0
0

]

.

• We can write this non-negatively constrained problem even more
concisely as:

min
x∈R2

{c†x|Ax= b,x≥ 0}. (2.16)
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Linear program, continued

• There is a rich body of literature on linear programming and there are
special purpose algorithms to solve linear programming problems.

• The best known are:
– thesimplex algorithm (and variants), and
– interior point algorithms .

Standard format

• If g is affine and the inequality constraints are non-negativityconstraints
then the problem is said to be in thestandard format.

• Problem (2.16) is a linear program in standard format.
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Quadratic program

• If f is quadratic andg andh are affine then the problem is called a
quadratic program or aquadratic optimization problem .

Example

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

∀x∈ R
2,g(x) = x1−x2,

∀x∈ R
2,h(x) = 3−x2. (2.17)
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Example, continued
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Fig. 2.12. Contour sets
C f ( f̃ ) of objective function
and feasible set for Prob-
lem (2.18). The heights
of the contours decrease

towards the point

[

1
3

]

. The

feasible set is the “half-line”

starting at the point

[

3
3

]

.

The minimizerx⋆ =

[

3
3

]

is

illustrated with a•.
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Example, continued

min
x∈R2

{ f (x)|g(x) = 0,h(x)≤ 0} = 4, (2.18)

argmin
x∈R2

{ f (x)|g(x) = 0,h(x)≤ 0} =

{[

3
3

]}

= {x⋆}.

Quadratic program, continued

• We can emphasize the quadratic and linear functions by writing:

min
x∈R2

{

1
2

x†Qx+c†x|Ax= b,Cx≤ d

}

,

• where we have omitted the constant term.
• For Problem (2.18), the appropriate vectors and matrices are:

Q=

[

2 0
0 2

]

,c=

[

−2
−6

]

,A= [1 −1] ,b= [0],C= [0 −1] ,d = [−3].
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Non-linear program

• If there are no restrictions onf , g, andh, then the problem is called a
non-linear program or anon-linear optimization problem.

Example

min
x∈R3

{ f (x)|g(x) = 0,h(x)≤ 0}, (2.19)

• where f : R3 → R, g : R3 → R2, andh : R3 → R are defined by:

∀x∈ R
3, f (x) = (x1)

2+2(x2)
2,

∀x∈ R
3,g(x) =

[

2−x2−sin(x3)
−x1+sin(x3)

]

,

∀x∈ R
3,h(x) = sin(x3)−0.5.

Convexity

• We will see in Section2.6.3that we can also classify problems on the
basis of the notion ofconvexity.
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Satisfaction of constraints

Definition 2.4 Let h : Rn → R
r . An inequality constrainthℓ(x)≤ 0 is

called abinding constraint or anactive constraintatx⋆ if hℓ(x⋆) = 0. It is
callednon-binding or inactive atx⋆ if hℓ(x⋆)< 0. The set:

A(x⋆) = {ℓ ∈ {1, . . . , r}|hℓ(x
⋆) = 0}

is called theset of active constraintsor theactive setfor h(x)≤ 0 atx⋆. ✷

Definition 2.5 Let h : Rn → Rr . The pointx⋆ is calledstrictly feasible for
the inequality constrainthℓ(x)≤ 0 if hℓ(x⋆)< 0. The pointx⋆ is called
strictly feasible for the inequality constraintsh(x)≤ 0 if h(x⋆)< 0. ✷

• If h : Rn → Rr is continuous and satisfies certain other conditions then:
– theboundary of S= {x∈ R

n|h(x)≤ 0} is the set
{x∈ Rn|h(x)≤ 0 and, for at least oneℓ, hℓ(x) = 0}, and

– its interior is the set{x∈ R
n|h(x)< 0}.

• That is, the set of strictly feasible points for the inequality constraints is
the interior ofS.
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Example ∀x∈ R
2,h(x) =

[

3−x2
x1+x2−10

]

.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x1

x2

x⋆⋆⋆

x⋆⋆

x⋆

Fig. 2.13. Points
x⋆,x⋆⋆, andx⋆⋆⋆ that are
feasible with respect to
inequality constraints.
The feasible set is the
shaded triangular region
for which x2 ≥ 3 and
x1+x2 ≤ 10.
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Example, continued

x⋆ =

[

5
4

]

• The constraintsh1(x)≤ 0 andh2(x)≤ 0 are non-binding so that the
active set isA(x⋆) = /0.

• This point is in the interior of the set{x∈ R
2|h(x)≤ 0}.

x⋆⋆ =

[

5
3

]

• The constrainth2(x)≤ 0 is non-binding while the constraint
h1(x)≤ 0 is binding so that the active set isA(x⋆⋆) = {1}.

• This point is on the boundary of the set{x∈ R
2|h(x)≤ 0}.

x⋆⋆⋆ =

[

7
3

]

• The constraintsh1(x)≤ 0 andh2(x)≤ 0 are both binding so that the
active set isA(x⋆⋆⋆) = {1,2}.

• This point is on the boundary of the set{x∈ R
2|h(x)≤ 0}.
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Example in higher dimension

• Consider Figure2.14, which shows adodecahedron, a twelve-sided
solid, inR3.

• The dodecahedron is an example of a set that can be described in the form
S= {x∈ R3|h(x)≤ 0} with h : R3 → R12 affine.

Fig. 2.14. Dodecahe-
dron inR3.
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Various cases for a point inS

x⋆ is in the interior of the dodecahedron.
• We haveh(x⋆)< 0 andA(x⋆) = /0.

x⋆⋆ is on a face of the dodecahedron but not on an edge or vertex.
• That is, exactly one constraintℓ is binding andA(x⋆⋆) = {ℓ}.
• x⋆⋆ is on the boundary.

x⋆⋆⋆ is on an edge but not a vertex of the dodecahedron.
• That is, exactly two constraintsℓ, ℓ′ are binding and
A(x⋆⋆⋆) = {ℓ, ℓ′}.

• x⋆⋆⋆ is on the boundary.
x⋆⋆⋆⋆ is a vertex of the dodecahedron.

• That is, exactly three constraintsℓ, ℓ′, andℓ′′ are binding and
A(x⋆⋆⋆⋆) = {ℓ, ℓ′, ℓ′′}.

• x⋆⋆⋆⋆ is on the boundary.
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Discussion

• The importance of the notion of binding constraints is that it is typical for
some but not all of the inequality constraints to be binding at the
optimum.

Representation of inequality constraints

• Most optimization software can deal directly with:
– double-sided functional inequalitiessuch ash≤ h(x)≤ h and
– double-sided inequalities on variablessuch asx≤ x≤ x,

• For notational simplicity, we will usually restrict ourselves to inequalities
of the formh(x)≤ 0, but recognize that problems may be easier to
express in terms of the more comprehensive formx≤ x≤ x,h≤ h(x)≤ h.

• It is almost always worthwhile to take advantage of the more
comprehensive form when the software has the capability.
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Case studies

• Least-cost production with capacity constraints (in Section 15.1),
• Optimal routing in a data communications network (in Section 15.2),
• Least absolute value data fitting (in Section15.3),
• Optimal margin pattern classification (in Section15.4),
• Sizing of gate interconnects in integrated circuits (in Section 15.5), and
• Optimal power flow (in Section15.6).
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2.3.2.4 Summary
• For small example problems, inspection of a carefully drawndiagram can

yield the minimum and minimizer.
• For larger problems where the dimension ofx increases significantly past

two, or the dimension ofg or h increases, the geometry becomes more
difficult to visualize and intuition becomes less reliable in predicting the
solution.
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2.3.3 Problems without minimum and the infimum
2.3.3.1 Analysis

• To discuss problems that do not have a minimum, we need a more general
definition.

Definition 2.6 Let S⊆ Rn, f : S→ R. Then, infx∈S f (x), theinfimum of
the corresponding minimization problem, minx∈S f (x), is defined by:

inf
x∈S

f (x)=











the greatest lower bound for
minx∈S f (x), if minx∈S f (x) is bounded below,

−∞, if minx∈S f (x) is unbounded below,
∞, if minx∈S f (x) is infeasible.

By definition, the infimum is equal to the minimum of the corresponding
minimization problem minx∈S f (x) if the minimum exists, but the infimum
exists even if the problem has no minimum. To emphasize the role of S, we
also use the notation infx∈Rn{ f (x)|x∈ S} and analogous notations for the
infimum.✷
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2.3.3.2 Examples
Unconstrained problem with unbounded objective

∀x∈ R, f (x) = x. (2.20)

• There is nof ⋆ ∈ R such that∀x∈ R, f ⋆ ≤ f (x).
• The problem minx∈R f (x) is unbounded below.
• The infimum is infx∈R f (x) =−∞.
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Unconstrained problem with objective that is bounded below

• f = 0 is a lower bound for minx∈R f (x), where∀x∈ R, f (x) = exp(x).
• The problem has no minimum but the infimum is infx∈R f (x) = 0.
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f (x)

Fig. 2.15. The function
exp is bounded below
on the feasible setR but
has no minimum.
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Strict inequalities

• Again consider the objectivef : R→ R defined in (2.20):

∀x∈ R, f (x) = x,

• but let the feasible set be:

S= {x∈ R|x> 0}.

• Figure2.16shows the objective on the feasible set.
• Note that∀x∈ S, f (x)≥ 0, so that the problem is bounded below by 0.
• However, there is nox⋆ ∈ S such thatf (x⋆) = 0.
• In this example, the problem is bounded, but does not have a minimum

nor a minimizer.
• For this problem, the infimum is infx∈R{ f (x)|x> 0}= 0.
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Strict inequalities, continued

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
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4

x

f (x) Fig. 2.16. Function that is
bounded below on feasible
set but where the problem
has no minimum because
the feasible set is defined
by a strict inequality. The
function is illustrated only
on the feasible set. The cir-
cle◦ atx= 0, f (x) = 0 indi-
cates that this point is not in-
cluded in the graph but that
points to the right ofx = 0
and arbitrarily close tox= 0
are included in the graph.
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Inconsistent constraints

• Consider any objectivef : R→ R and let:

S= {x∈ R|g(x) = 0},

• whereg : R→ R2 is defined by:

∀x∈ R,g(x) =

[

x+1
x−1

]

.

• Then there are no feasible solutions, since the equality constraints are
inconsistentand soS= /0.

• In this example, there are no feasible values ofx and therefore no
minimum.

• The infimum is infx∈R{ f (x)|g(x) = 0}= ∞.
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Discontinuous objective

• Finally, let:

S= {x∈ R|x≥ 0},

• and definef : S→ R by:

∀x∈ S, f (x) =

{

1, if x= 0,
x, if x 6= 0. (2.21)
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Discontinuous objective, continued

• The problem minx∈S f (x) is bounded below by zero, but there is again no
minimum nor minimizer.

• The infimum is infx∈R{ f (x)|x≥ 0}= 0.
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Fig. 2.17. Function (2.21)
that is bounded below on
feasible set but where the
problem has no minimum
because the function is
discontinuous. The function
is illustrated only on the
feasible set. The bullet•
at x = 0, f (x) = 1 indicates
that this is the value of the
function atx= 0.
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2.3.3.3 Summary
• In all five cases, argminx∈R f (x) is the empty set/0.
• Careful formulation of a problem can avoid these issues.

2.3.4 Conditions for problems to possess a minimum and minimizer

Theorem 2.1 LetS⊆ R
n be non-empty, closed, and bounded and let

f : S→ R be continuous. Then the problemminx∈S f (x) possesses a
minimum and minimizer.✷
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2.3.5 Maximization problems and the supremum

max
x∈S

f (x) =−min
x∈S

(− f (x)). (2.22)

Definition 2.7 Let S⊆ R
n, f : S→ R. Then, supx∈S f (x), thesupremum

of the corresponding maximization problem maxx∈S f (x) is defined by:

sup
x∈S

f (x)=











the least upper boundfor
maxx∈S f (x), if maxx∈S f (x) is bounded above,

∞, if maxx∈S f (x) is unbounded above,
−∞, if maxx∈S f (x) is infeasible.

The supremum is equal to the maximum of the corresponding
maximization problem maxx∈S f (x) if the maximum exists.✷

Title Page ◭◭ ◮◮ ◭ ◮ 68 of 219 Go Back Full Screen Close Quit



2.3.6 Extended real functions

Definition 2.8 Let S⊆ R
n, f : S→ R∪{−∞,∞}, and f ⋆ ∈ R. Then by:

f ⋆ = min
x∈S

f (x),

we mean that:

∃x⋆ ∈ S such thatf ⋆ = f (x⋆) ∈ R and(x∈ S)⇒ ( f (x⋆)≤ f (x)).

✷

Title Page ◭◭ ◮◮ ◭ ◮ 69 of 219 Go Back Full Screen Close Quit



2.4 Algorithms
• Two basic types of algorithms:

– Direct, to be described in Section2.4.1, and
– Iterative, to be described in Section2.4.2.
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2.4.1 Direct
• A finite list of operations that calculates the solution of the problem.

2.4.1.1 Discussion
• Under the (usually unrealistic) assumptions that:

– all numbers in the problem specification are represented toinfinite
precision,

– all arithmetic operations are carried out to infinite precision, and
– the answers to each arithmetic operation are represented toinfinite

precision,
• then the answer obtained from a direct algorithm would be exact.

2.4.1.2 Applicability
• Some problemscannotbe solved by direct algorithms.
• Considerg : R→ R such thatg is apolynomial.
• For non-linear equations involving arbitrary fifth or higher degree

polynomials, there isprovablyno direct algorithm available to find the
solution.
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2.4.2 Iterative
2.4.2.1 Recursion to define iterates

• x(ν+1) = x(ν)+α(ν)∆x(ν),ν = 0,1,2, . . . , is the iteration counter,
• x(0) is theinitial guessof the solution,
• x(ν) is the value of the iterate at theν-th iteration,
• α(ν) ∈ R+ is thestep-size, with usually 0< α(ν) ≤ 1,
• ∆x(ν) ∈ R

n is thestep direction, and
• the productα(ν)∆x(ν) is theupdate to add to the current iteratex(ν).

✲

✻

x2

x1

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✼

✓
✓
✓
✓
✓✼

x(ν)

x(ν+1)

t
t

step direction∆x(ν)

updateα(ν)∆x(ν)

Fig. 2.18. Update of iterate
in R2. The bullets• indicate
the locations of the points
x(ν) andx(ν+1), while the ar-
rowsր indicate the magni-
tudes and directions of the
vectors∆x(ν) andα(ν)∆x(ν).
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2.4.2.2 Sequence of iterates and closeness to a solution

Definition 2.9 Let ‖•‖ be a norm onRn. Let {x(ν)}∞
ν=0 be a sequence of

vectors inRn. Then, the sequence{x(ν)}∞
ν=0 convergesto a limit x⋆ if:

∀ε > 0,∃Nε ∈ Z+ such that(ν ∈ Z+ andν ≥ Nε)⇒
(∥

∥

∥
x(ν)−x⋆

∥

∥

∥
≤ ε

)

.

The setZ+ is the set of non-negative integers.
If the sequence{x(ν)}∞

ν=0 converges tox⋆ then we write limν→∞ x(ν) = x⋆ or
lim
ν→∞

x(ν) = x⋆ and callx⋆ the limit of the sequence{x(ν)}∞
ν=0. ✷
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2.4.2.3 Rate of convergence
Analysis

Definition 2.10 Let ‖•‖ be a norm. A sequence{x(ν)}∞
ν=0 that converges to

x⋆ ∈ Rn is said to converge atrate R∈ R++ (whereR++ is the set of
strictly positive real numbers) and withrate constantC∈ R++ if:

lim
ν→∞

∥

∥

∥
x(ν+1)−x⋆

∥

∥

∥

∥

∥x(ν)−x⋆
∥

∥

R =C. (2.23)

If (2.23) is satisfied forR= 1 and some value ofC in the range 0<C < 1
then the rate is calledlinear. If (2.23) is satisfied forR= 2 and someC in
the range 0<C < ∞ then the rate is calledquadratic. If (2.23) is satisfied
for someR in the range 1< R< 2 and someC in the range 0<C< ∞ then
the rate is calledsuper-linear. ✷

Title Page ◭◭ ◮◮ ◭ ◮ 74 of 219 Go Back Full Screen Close Quit



Discussion

• Qualitatively, the larger the value ofR, the faster the iterates converge, at
least asymptotically.
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Fig. 2.19. Rates of con-
vergence for several se-
quences, with: R = 1
and C = 0.9 shown as
◦; R = 1 and C = 0.2
shown as×; R= 2 and
C= 0.9 shown as•; and
R = 1.5 and C = 0.9
shown as+.
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2.5 Solutions of simultaneous equations
2.5.1 Number of solutions

• Consider a linear equation in one variable,Ax= b, whereA,b∈ R.
• The possible cases are:

0x= 0, infinitely many solutions,
0x= b, b 6= 0, no solutions,
Ax= b, A 6= 0, one solution.

2.5.2 Uniqueness of solution for linear equations
• Necessary and sufficient conditions for there to be a unique solution to a

square system of equations is that the coefficient matrixA be
non-singular.
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Number of solutions, continued
• Consider a quadratic equation in one variable,Q(x)2+Ax= b. where

A,b,Q∈ R.
• The possible cases are:

0(x)2+0x= 0, infinitely many solutions,

0(x)2+0x= b, b 6= 0, no solutions,

0(x)2+Ax= b, A 6= 0, one solution,

Q(x)2+Ax= b, Q 6= 0,A2+4Qb< 0, no (real) solutions,

Q(x)2+Ax= b, Q 6= 0,A2+4Qb= 0, one solution,

Q(x)2+Ax= b, Q 6= 0,A2+4Qb> 0, two solutions.
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2.5.3 Uniqueness of solution for non-linear equations
• To study uniqueness, we will consider simultaneous equations where the

number of equations equals the number of variables.

2.5.3.1 Monotone functions

Definition 2.11 Let S⊆ Rn and letg : S→ Rn. We say thatg is monotone
onS if:

∀x,x′ ∈ S,
(

g(x′)−g(x)
)†
(x′−x)≥ 0. (2.24)

We say thatg is strictly monotone onS if:

∀x,x′ ∈ S,(x 6= x′)⇒
(

g(x′)−g(x)
)†
(x′−x)> 0.

If g is monotone onRn then we say thatg is monotone. Ifg is strictly
monotone onRn then we say thatg is strictly monotone.✷
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Monotone functions, continued
• Geometrically,g is monotone onS if, for all pairs of vectorsx andx′ in S,

the vectors(x′−x) and(g(x′)−g(x)) point in directions that are within
less than or equal to 90◦ of each other.

✲

✻

x2

x1

✓
✓
✓
✓
✓✼

x

x′

(x′−x)

t
t
✁
✁
✁
✁
✁
✁✕

t
g(x)

tg(x′)
(g(x′)−g(x))

Fig. 2.20. Illustration
of definition of mono-
tone. For allx andx′ in
S, the vectors(x′ − x)
and(g(x′)−g(x)) point
in directions that are
within less than or equal
to 90◦ of each other.
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Example

• Even if a function ˆg : Rn → Rn is not strictly monotone, by permuting the
entries of ˆg it may be possible to create a strictly monotone function.

• Consider the function:

∀x∈ R
2, ĝ(x) =

[

x2
x1

]

.

• This function is not strictly monotone since:
(

ĝ(x′)− ĝ(x)
)†
(x′−x) = 2(x′2−x2)(x

′
1−x1),

< 0, if x′2 > x2 andx′1 < x1.

• However, the functiong : R2 → R2 obtained by swapping the entries of ˆg
is strictly monotone, since:

(

g(x′)−g(x)
)†
(x′−x) =

∥

∥x′−x
∥

∥

2
2 ,

> 0, for x′ 6= x.
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Analysis

Theorem 2.2 LetS⊆ R
n and g: S→ R

n be strictly monotone onS. Then
there is at most one solution of the simultaneous equations g(x) = 0 that
is an element ofS.

Proof Suppose that there are two solutionsx⋆,x⋆⋆ ∈ S with x⋆ 6= x⋆⋆.
That is,g(x⋆) = g(x⋆⋆) = 0. Consequently,
(g(x⋆)−g(x⋆⋆))†(x⋆−x⋆⋆) = 0. But by definition of strictly monotone
applied tox⋆ andx⋆⋆, (g(x⋆)−g(x⋆⋆))†(x⋆−x⋆⋆)> 0. This is a
contradiction.✷

Discussion

• It is possible for a functiong to be not strictly monotone and yet there
may be a unique solution or no solution to the equationsg(x) = 0.
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Example

• Considerg : R→ R defined by∀x∈ R,g(x) = (x)3−x−6.
• This function is not strictly monotone, yet there is only onesolution to

g(x) = 0, namelyx⋆ = 2.
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Fig. 2.21. Function g
that is not strictly mono-
tone but for which there
is only one solution,
x⋆ = 2, tog(x) = 0. The
solution is illustrated
with the•.
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2.5.3.2 Characterizing monotone and strictly monotone functions
Jacobian

• The entries of theJacobianJ : Rn → Rm×n are defined by:

∀k= 1, . . . ,n,∀ℓ= 1, . . . ,m,Jℓk =
∂gℓ
∂xk

.

Positive definite and positive semi-definite

• A matrix Q∈ Rn×n is positive semi-definiteif:

∀x∈ R
n,x†Qx≥ 0.

• The matrix ispositive definite if:

∀x∈ R
n,(x 6= 0)⇒ (x†Qx> 0).
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Convex sets

Definition 2.12 Let S⊆ R
n. We say thatS is aconvex setor thatS is

convexif ∀x,x′ ∈ S,∀t ∈ [0,1],(1− t)x+ tx′ ∈ S. ✷

• The setsRn, Rn
+, andRn

++ are all convex.

Fig. 2.22. Convex sets
with pairs of points
joined by line segments.
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Examples of non-convex sets

• Non-convex sets can have “indentations.”

Fig. 2.23. Non-convex
sets.
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Conditions for strictly monotone

Theorem 2.3 LetS⊆ R
n be a convex set and g: S→ R

n. Suppose that g is
partially differentiable with continuous partial derivatives onS.
Moreover, suppose that the Jacobian J is positive semi-definite
throughoutS. Then g is monotone onS. If J is positive definite
throughoutS then g is strictly monotone onS.

Proof Suppose thatJ is positive semi-definite throughoutS. Let
x,x′ ∈ S. For 0≤ t ≤ 1 we have that(x+ t[x′−x]) ∈ S sinceS is a convex
set. Ast varies from 0 to 1,(x+ t[x′−x]) traces out the line segment
joining x andx′. Defineφ : [0,1]→ R by:

∀t ∈ [0,1],φ(t) = (x′−x)†g(x+ t[x′−x]),

= g(x+ t[x′−x])†
(x′−x).
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Proof, continued We have:

φ(1)−φ(0) = (x′−x)†
(g(x′)−g(x)),

= (g(x′)−g(x))†
(x′−x),

and so we must prove thatφ(1)−φ(0)≥ 0. Notice that:

dφ
dt (t) = (x′−x)†J(x+ t[x′−x])(x′−x), by the chain rule,

≥ 0, for 0≤ t ≤ 1, (2.25)

sinceJ(x+ t[x′−x]) is positive semi-definite. We have:

φ(1) = φ(0)+
∫ 1

t=0

dφ
dt (t)dt,

by the fundamental theorem of calculus applied toφ,
≥ φ(0), since the integrand is non-negative everywhere by (2.25).

This is the result we were trying to prove. A similar analysisapplies for
J positive definite, noting that the integrand is then strictly positive and
continuous.✷
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2.6 Solutions of optimization problems
2.6.1 Local and global minima

2.6.1.1 Definitions
• Recall Problem (2.8) and its minimumf ⋆:

f ⋆ = min
x∈S

f (x).

• Sometimes, we callf ⋆ in Problem (2.8) theglobal minimum of the
problem to emphasize that there is nox∈ S that has a smaller value of
f (x).

Definition 2.13 Let ‖•‖ be a norm onRn, S⊆ Rn, x⋆ ∈ S, and f : S→ R.
We say thatx⋆ is a local minimizer of the problem minx∈S f (x) if:

∃ε > 0 such that∀x∈ S,(‖x−x⋆‖< ε)⇒ ( f (x⋆)≤ f (x)). (2.26)

The valuef ⋆ = f (x⋆) is called alocal minimum of the problem.✷
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Local minimizer and minimum

• A local minimum may or may not be a global minimum but if a problem
possesses a minimum then there is exactly one global minimum, by
definition.

• The global minimum is also a local minimum.
• Formally,x̂ is not a local minimizer if:

∀ε > 0,∃xε ∈ S such that(‖x̂−xε‖< ε) and( f (x̂)> f (xε)). (2.27)
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2.6.1.2 Examples
Multiple local minimizers over a convex set

• f : R→ R has two local minimizers atx⋆ = 3,x⋆⋆ =−3 overS.
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local and global
minimum and minimizer

f ⋆

f ⋆⋆

local minimum
and minimizer

not a local minimum

f (x)

x⋆⋆ x⋆x̂

Fig. 2.24. Local min-
ima, f ⋆ and f ⋆⋆, with
corresponding local
minimizers x⋆ and
x⋆⋆, over a setS. The
point x⋆ is the global
minimizer and f ⋆ the
global minimum overS.
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Illustration of definition of not a local minimizer

• For ε = 1 there is a point, namely ˆx+ ε
2 = 2 that is within a distanceε of

x̂= 1.5 and which has lower value of objective than the point ˆx= 1.5.
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x̂

Fig. 2.25. A point ˆx =
1.5, illustrated with a
◦, that is not a local
minimizer and another
point, x̂+ ε

2 = 2, illus-
trated with a•, that is
within a distanceε = 1
of x̂ and has a lower ob-
jective value.
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Illustration of definition of not a local minimizer, continu ed

• For ε = 0.5 there is a point, namely ˆx+ ε
2 = 1.75 that is within a distance

ε of x̂= 1.5 and which has lower value of objective than the point ˆx= 1.5.
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Fig. 2.26. A point ˆx =
1.5, illustrated with a◦,
that is not a local mini-
mizer and another point,
x̂+ ε

2 = 1.75, illustrated
with a •, that is within
a distanceε = 0.5 of x̂
and has a lower objec-
tive value.
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Multiple local minimizers over a non-convex set

• Over the non-convex setP= {x∈ R|−4≤ x≤ 1 or 2≤ x≤ 4} there are
three local minimizers,x⋆ = 3,x⋆⋆ =−3, andx⋆⋆⋆ = 1.
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f ⋆⋆

f ⋆⋆⋆

Fig. 2.27. Local
and global minima
and minimizers of a
problem over a set
P = {x ∈ R| − 4 ≤ x ≤
1 or 2≤ x≤ 4}.

Title Page ◭◭ ◮◮ ◭ ◮ 93 of 219 Go Back Full Screen Close Quit



Multiple local minimizers over a non-convex set in higher dimension

• The local minimizers arex⋆ ≈

[

2.4
−0.1

]

andx⋆⋆ ≈

[

0.8
−0.7

]

.
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Fig. 2.28. Contour sets
of the function defined
in (2.10) with feasi-
ble set shaded. The
two local minimizers
are indicated by bullets.
The heights of the con-
tours decrease towards

the point

[

1
3

]

.
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2.6.1.3 Discussion
• Iterative algorithms involve generating a sequence of successively

“better” points that provide successively better values ofthe objective or
closer satisfaction of the constraints or both.

• With an iterative improvement algorithm, we can usually only guarantee,
at best, that we are moving towards a local minimum and minimizer.
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2.6.2 Strict and non-strict minimizers
2.6.2.1 Definitions

• There can be more than one minimizer even if the minimum is global.
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Fig. 2.29. A function
with multiple global
minimizers. The set of
minimizers is indicated
by a thick line.

Title Page ◭◭ ◮◮ ◭ ◮ 96 of 219 Go Back Full Screen Close Quit



Definition 2.14 We say thatx⋆ ∈ S is astrict global minimizer of the
problem minx∈S f (x) if:

∀x∈ S,(x 6= x⋆)⇒ ( f (x⋆)< f (x)).

The valuef ⋆ = f (x⋆) is called astrict global minimum of the problem.✷

Definition 2.15 We say thatx⋆ ∈ S is astrict local minimizer of the
problem minx∈S f (x) if:

∃ε > 0 such that∀x∈ S,(0< ‖x−x⋆‖< ε)⇒ ( f (x⋆)< f (x)).

The valuef ⋆ = f (x⋆) is called astrict local minimum of the problem.✷

2.6.2.2 Examples
• The two local minimizers,x⋆ = 3 andx⋆⋆ =−3, in Figure2.24are strict

local minimizers.
• All three local minimizers,x⋆ = 3,x⋆⋆ =−3,x⋆⋆⋆ = 1, in Figure2.27are

strict local minimizers.
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2.6.3 Convex functions
2.6.3.1 Definitions

Definition 2.16 Let S⊆ Rn be a convex set and letf : S→ R. Then, f is a
convex functiononS if:

∀x,x′ ∈ S,∀t ∈ [0,1], f ([1− t]x+ tx′)≤ [1− t] f (x)+ t f (x′). (2.28)

If f : Rn → R is convex onRn then we say thatf is convex. A function
h : S→ Rr is convex onS if each of its componentshℓ is convex onS. If
h : Rn → R

r is convex onRn then we say thath is convex. The setS is
called thetest set.
Furthermore,f is astrictly convex function onS if:

∀x,x′ ∈ S,(x 6= x′)⇒
(

∀t ∈ (0,1), f ([1− t]x+ tx′)< [1− t] f (x)+ t f (x′)
)

.

If f : Rn → R is strictly convex onRn then we say thatf is strictly convex.
A function h : S→ Rr is strictly convex onS if each of its componentshℓ is
strictly convex onS. If h : Rn → Rr is strictly convex onRn then we say
thath is strictly convex.✷
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Discussion

• The condition in (2.28) means that linear interpolation of convexf
between points on the curve is never below the function values.
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Fig. 2.30. Linear in-
terpolation of a convex
function between points
never under-estimates
the function. (For clar-
ity, the line interpolating
f between x = 0 and
x = 1 is drawn slightly
above the solid curve:
it should be coincident
with the solid curve.)
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Definition 2.17 Let S⊆ R
n be a convex set and letf : S→ R. We say that

f is aconcave functiononS if (− f ) is a convex function onS. ✷

2.6.3.2 Examples
• A linear or affine function is convex and concave on any convexset.
• The functionf : R→ R shown in Figure2.24is not convex on the convex

setS= {x∈ R|−4≤ x≤ 4}.
• Qualitatively, convex functions are “bowl-shaped” and have level sets that

are convex sets as specified in:

Definition 2.18 Let S⊆ R
n and f : S→R. Then the functionf hasconvex

level setsonS if for all f̃ ∈ R we have thatL f ( f̃ ) is convex. If f : Rn → R

has convex level sets onRn then we say thatf has convex level sets.✷

• Note that a function with convex level sets need not itself bea convex
function.
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Convexity of level sets of convex function

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2−1.8(x1−1)(x2−3). (2.29)
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Fig. 2.31. Contour sets
C f ( f̃ ) of the function
defined in (2.29). The
heights of the contours
decrease towards the

point

[

1
3

]

.
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2.6.3.3 Relationship to optimization problems

Theorem 2.4 LetS⊆ Rn be a convex set and f: S→ R. Then:
(i) If f is convex onS then it has at most one local minimum overS.

(ii) If f is convex onS and has a local minimum overS then the local
minimum is the global minimum.

(iii) If f is strictly convex onS then it has at most one minimizer over
S.

Proof We prove all three items by contradiction.

(i) For the sake of a contradiction, suppose thatf is convex, yet that it
has two local minima overS; that is, there are two distinct valuesf ⋆ ∈ R

and f ⋆⋆ ∈ R, say, with f ⋆ 6= f ⋆⋆ that each satisfy Definition2.13.
For concreteness, suppose thatf ⋆ > f ⋆⋆ and letx⋆ ∈ S andx⋆⋆ ∈ S be
any two local minimizers associated withf ⋆ and f ⋆⋆, respectively. The
situation is illustrated in Figure2.32.
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Proof of (i), contd The solid line showsf (x) as a function ofx while the
dashed line shows the linear interpolation off betweenx⋆ andx⋆⋆.
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Fig. 2.32. Multiple
minima and minimizers
in proof of Theorem2.4,
Item(i).
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Proof of (i), continued We are going to show thatx⋆ satisfies the
condition (2.27) for x⋆ not to be a local minimizer, which we repeat here
for reference:

∀ε > 0,∃xε ∈ S such that(‖x⋆−xε‖< ε) and( f (x⋆)> f (xε)).

We have:

∀t ∈ [0,1], f (x⋆+ t[x⋆⋆−x⋆])
≤ f (x⋆)+ t[ f (x⋆⋆)− f (x⋆)], by convexity of f ,
= f ⋆+ t[ f ⋆⋆− f ⋆], by definition of f ⋆ and f ⋆⋆,
< f ⋆, for 0< t ≤ 1, sincef ⋆ > f ⋆⋆,
= f (x⋆). (2.30)
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Proof of (i), continued For 0≤ t ≤ 1, we havex⋆+ t(x⋆⋆−x⋆) ∈ S since
S is convex. But this means that there are feasible points arbitrarily close
to x⋆ that have a lower objective value. In particular, given any norm‖•‖
and any numberε > 0, we can definexε = x⋆+ t(x⋆⋆−x⋆) wheret is
specified by:

t = min

{

1,
ε

2‖x⋆⋆−x⋆‖

}

.
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Proof of (i), continued Note thatxε ∈ S since 0≤ t ≤ 1 and thatxε

satisfies:

‖x⋆−xε‖ = ‖x⋆− [x⋆+ t(x⋆⋆−x⋆)]‖ , by definition ofxε,
= ‖−t(x⋆⋆−x⋆)‖ ,
= |t|×‖x⋆⋆−x⋆‖ , by a property of norms,

≤
ε

2‖x⋆⋆−x⋆‖
‖x⋆⋆−x⋆‖ , by definition oft,

=
1
2

ε,
< ε.

Title Page ◭◭ ◮◮ ◭ ◮ 106 of 219 Go Back Full Screen Close Quit



Proof of (i), continued Furthermore 0< t ≤ 1 by construction, so
by (2.30):

f (x⋆)> f (xε).

That is,x⋆ satisfies (2.27) and is therefore not a local minimizer off ,
which is a contradiction. As suggested by the “hump” inf atx≈−1, the
situation illustrated in Figure2.32is inconsistent with the assumption
that f is convex. We conclude thatf has at most one local minimum.

(ii) Suppose that the local minimum isf ⋆ ∈ R with corresponding local
minimizerx⋆ ∈ S. Suppose that it is not a global minimum and
minimizer. That is, there existsx⋆⋆ ∈ S such thatf ⋆⋆ = f (x⋆⋆)< f (x⋆).
Then the same argument as in Item(i) shows thatf ⋆ is not a local
minimum.
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(iii) Suppose thatf is strictly convex, yet that it has two local
minimizers,x⋆ 6= x⋆⋆, say. Sincef is convex, then by Item(i), both
minimizers correspond to the unique minimum, sayf ⋆, of f overS. We
have:

∀t ∈ (0,1), f (x⋆+ t[x⋆⋆−x⋆]) < f (x⋆)+ t[ f (x⋆⋆)− f (x⋆)],
by strict convexity off ,

= f ⋆+ t[ f ⋆− f ⋆], by definition of f ⋆,
= f ⋆,

which means that neitherx⋆ nor x⋆⋆ were local minimizers off , since
feasible points of the formx⋆+ t(x⋆⋆−x⋆) have a lower objective value
for all t ∈ (0,1). That is, by a similar argument to that in Item(i), we can
construct a feasiblexε that is within a distanceε of x⋆ having a smaller
value of objective thanx⋆.
✷

Definition 2.19 If S⊆ Rn is a convex set andf : Rn → R is convex onS,
then minx∈S f (x) is called aconvex problem. ✷
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2.6.3.4 Discussion
Local versus global minimizers

• Theorem2.4shows that a convex problem has at most one local
minimum.

• If we find a local minimum for a convex problem, it is in fact theglobal
minimum.

Choice of step directions

• Convexity enables us to relate the two goals of:

(i) moving from the current iterate in a direction that decreases the
objective while still maintaining feasibility, and

(ii) moving from the current iterate towards the minimizer of the
problem.

• If we have a convex problem, then these goals are not inconsistent.
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Convex problems

• If:
– the functionf : Rn → R is convex,
– the functiong : Rn → Rm is affine, with∀x∈ Rn,g(x) = Ax−b, and
– the functionh : Rn → Rr is convex,

• then:

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0}

• is a convex problem.
• Some problems involving non-convex functions also specifyconvex

problems.
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Weakening the convexity assumption

• For example, a function with convex level sets has only one local
minimum.

−4 −3 −2 −1 0 1 2 3 4
1

1.5

2

2.5

3

3.5

4

4.5

5

x

f (x)

Fig. 2.33. A non-
convex function with
convex level sets.

Title Page ◭◭ ◮◮ ◭ ◮ 111 of 219 Go Back Full Screen Close Quit



Maximizing a convex function

Definition 2.20 Let S⊆ R
n andx∈ S. We say thatx is anextreme point

of S if:

∀x′,x′′ ∈ S,
(

(x′ 6= x) and(x′′ 6= x)
)

⇒

(

x 6=
1
2
(x′+x′′)

)

.

✷

• That is,x is an extreme point ofS if it cannot be expressed as the
“average” of two other points inS.

• In Figure2.22, there are three polygons:
– The extreme points of each polygon are its vertices.

• The extreme points of the dodecahedron in Figure2.14are its vertices.
• In Figure2.22, the extreme points of the filled ellipse are the points on the

ellipse.
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Theorem 2.5 LetS⊆ R
n be a convex set and f: S→ R be convex onS.

Consider the maximization problem:

max
x∈S

f (x),

Suppose this problem possesses a maximum. Then there is a maximizer
of this problem that is an extreme point ofS. ✷

• In principle, we can maximize a convex objective over a convex set by
searching over all the extreme points of the feasible set.

• There may be a very large number of extreme points of a set and this
approach is not practical in general.

• However, for affine objectives and affine constraints (and some other
cases), this approach leads to a practical method of optimization: the
simplex methodof linear programming.

We will discuss the simplex method in Chapter16.
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2.6.3.5 Characterizing convex functions
First partial derivatives

Theorem 2.6 LetS⊆ Rn be a convex set and suppose that f: S→ R is
partially differentiable with continuous partial derivatives onS. Then f
is convex onS if and only if:

∀x,x′ ∈ S, f (x)≥ f (x′)+∇f (x′)†
(x−x′). (2.31)

✷

• The functionφ : Rn → R on the right-hand side of (2.31) defined by:

∀x∈ R
n,φ(x) = f (x′)+∇f (x′)†(x−x′),

• is called thefirst-order Taylor approximation of the functionf ,
linearized aboutx′.

Title Page ◭◭ ◮◮ ◭ ◮ 114 of 219 Go Back Full Screen Close Quit



First-order Taylor expansion

• The inequality in (2.31) shows that the first-order Taylor approximation
of a convex function never over-estimates the function.
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Fig. 2.34. First-order
Taylor approximation
about x = −2 (shown
dashed) and aboutx= 3
(shown dotted) of a
convex function (shown
solid).
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Sandwiching of convex function
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Fig. 2.35. Sandwiching of
convex function between
two affine functions. The
first-order Taylor approx-
imation about x = −2
(shown dashed) is a lower
bound to the function.
The linear interpolation
of f betweenx = −3 and
x = −0.5 (shown dash-
dotted) is an upper bound to
the function on the interval
{x∈ R|−3≤ x≤−0.5}.
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Second partial derivatives

• There are also tests of convexity involving positive semi-definiteness of
the matrix of second partial derivatives, which is called the Hessianand
is denoted∇2f or ∇2

xxf .

Theorem 2.7 LetS⊆ Rn be convex and suppose that f: S→ R is twice
partially differentiable with continuous second partial derivatives onS.
Suppose that the second derivative∇2f is positive semi-definite
throughoutS. Then f is convex onS. If ∇2f is positive definite
throughoutS then f is strictly convex throughoutS. ✷
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2.6.3.6 Further examples of convex functions
Quadratic functions

∀x∈ R
n, f (x) =

1
2

x†Qx+c†x, (2.32)

• whereQ∈ R
n×n andc∈ R

n are constants andQ is symmetric.
• The Hessian of this function isQ, which is constant and independent ofx.
• If Q is positive semi-definite then, by Theorem2.7, f is convex.
• If Q is positive definite then, by Theorem2.7, f is strictly convex.
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Piece-wise functions may or may not be convex

∀x∈ R, f (x) =

{

(x+5)2, if x≤ 0,
(x−5)2, if x> 0.
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Fig. 2.36. Example of
a piece-wise quadratic
non-convex function.
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Point-wise maxima of convex functions are convex

∀x∈ R
n, f (x) = max

ℓ=1,...,r
fℓ(x). (2.33)

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

x

f1(x), f2(x)

Fig. 2.37. Functions
used to define point-
wise maximum.
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Point-wise maxima, continued

∀x∈ R, f (x) = max{ f1(x), f2(x)}=

{

(x+5)2, if x≥ 0,
(x−5)2, if x< 0.
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Fig. 2.38. Example of
a piece-wise quadratic
convex function.

Title Page ◭◭ ◮◮ ◭ ◮ 121 of 219 Go Back Full Screen Close Quit



2.7 Sensitivity and large change analysis
2.7.1 Motivation

• In many cases, the solution of a particular set of simultaneous equations
or a particular optimization problem forms only a part of a larger design
process in which the definition of the problem can be changed.

2.7.2 Parameterization
• Let us represent the change in the problem by supposing that the problem

is parameterizedby a vectorχ ∈ Rs.
• For example, for linear equations:

A(χ)x= b(χ).

• We solve the base-case equationsA(0)x= b(0) for a base-case solution
x⋆.

• We might then want to solve the equations for another value ofχ and we
consider solvingA(χ)x= b(χ) for the change-case solution.
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Parameterization, continued
• Non-linear equations:

g(x;χ) = 0.

• Optimization:

min
x∈Rn

{ f (x;χ)|g(x;χ) = 0,h(x;χ)≤ 0}.
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2.7.3 Sensitivity
• We calculate the partial derivatives of the minimum and minimizer with

respect to entries ofχ, evaluated at the base-case solution corresponding
to χ = 0, and estimate the change in the solution based on the partial
derivatives.

• Abusing notation, we will considerf ⋆ andx⋆ to befunctionsof χ and

write
∂ f ⋆

∂χ and
∂x⋆

∂χ for the sensitivities of the minimum and minimizer

with respect toχ.
• We will generally only evaluate these sensitivities forχ = 0.
• In general, we would prefer not to have to solve the change-case

explicitly in order to calculate the derivatives.

2.7.4 Large changes
• By “large change” we mean a change that is so large that analysis based

on the derivatives is or may be inaccurate.
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2.7.5 Examples
• In this section we consider examples of sensitivity analysis for each of the

five problem classes.

2.7.5.1 Linear simultaneous equations

∀χ ∈ R,A(χ) =
[

1 2+χ
3 4

]

,b(χ) =
[

1
1+χ

]

, (2.34)

2.7.5.2 Non-linear simultaneous equations

∀x∈ R,∀χ ∈ R,g(x;χ) = (x−2−sinχ)3+1.

2.7.5.3 Unconstrained minimization

∀x∈ R
2,∀χ ∈ R, f (x;χ) = (x1−exp(χ))2+(x2−3exp(χ))2+5χ.
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2.7.5.4 Equality-constrained minimization

min
x∈R2

{ f (x)|Ax= b(χ)},

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
∀χ ∈ R,b(χ) = [−χ].

2.7.5.5 Inequality-constrained minimization

min
x∈R2

{ f (x)|g(x) = 0,h(x;χ)≤ 0},

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

∀x∈ R
2,g(x) = x1−x2,

∀x∈ R
2,∀χ ∈ R,h(x;χ) = 3−x2−χ.
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2.7.6 Ill-conditioned problems
2.7.6.1 Motivation

Definition 2.21 A problem is said to beill-conditioned if a relatively
small change in the problem specification leads to a relatively large change
in the solution.✷

2.7.6.2 Simultaneous equations example
• Consider simultaneous equations that are redundant.
• For example, suppose that two entries,g1 andg2, of g : Rn → Rm are the

same.
• Suppose thatx⋆ is a solution ofg(x) = 0, so thatg1(x⋆) = g2(x⋆) = 0.
• An arbitrarily small change in the problem specification results in a large

qualitative change in the solution: the problem can change from having a
solution to having no solution.

• That is, redundant simultaneous equations are ill-conditioned.
• For this reason, we will generally try to avoid redundant equations in the

formulation of simultaneous equations problems and avoid redundancy in
formulating equality constraints in optimization problems.
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2.7.6.3 Optimization example
• Suppose that we wish to minimize a convex function and consider the

problem of finding a step direction that points towards the minimizer of
the problem based on “local” first derivative information about the
function at a particular iteratex(ν).

• The directionperpendicularto the surface of the contour set at a point is
particularly easy to find.

• This direction is the negative of the gradient off evaluated at the point.

Title Page ◭◭ ◮◮ ◭ ◮ 128 of 219 Go Back Full Screen Close Quit



Example

• For circular contour sets, the direction perpendicular to the surface of the
contour set points directly towards the unconstrained minimizer of f .
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Fig. 2.39. Directions
perpendicular to con-
tour sets.
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Example

• For elliptical contour sets, movement perpendicular to thecontour set will
not point directly towards the minimizer.
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Fig. 2.40. Directions
perpendicular to con-
tour sets.
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Eccentric contour sets

• If the contour sets are highly eccentric then the problem of using the
gradient to find the direction that points towards the minimizer is
ill-conditioned.

• Suppose that the function changes slightly, so that its minimizer is at

x⋆⋆ =

[

2
4

]

instead ofx⋆ =

[

1
3

]

.

• A contour plot of the changed function is shown in Figure2.41.
• The arrows in Figure2.41are in essentially the same direction as those

shown in Figure2.40.
• The change in minimizer has had negligible effect on the information

provided by the direction perpendicular to the contour sets.
• The problem of finding a direction that points towards the minimizer

using the information provided by the direction that is perpendicular to
the contour set is ill-conditioned.
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Eccentric contour sets, continued
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Fig. 2.41. Directions
perpendicular to con-
tour sets for changed
function.
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2.7.6.4 Discussion
• In both examples, small changes in the problem led to large changes in

the solution, in either a qualitative or quantitative sense.
• We will consider ill-conditioning in several contexts throughout

the course.
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2.8 Summary
• In this chapter we have defined two main classes of problems:

(i) simultaneous equations, and
(ii) optimization problems,

• illustrating particular types of problems with elementaryexamples.
• We defineddirect anditerative algorithms and characterized:

– conditions for uniqueness of solution of simultaneous equations using
the notion of a monotone function,

– local and global and strict and non-strict minima and minimizers of
optimization problems using the notion of convexity,

– conditions for uniqueness of a local minimum and minimizer.
• We also discussed sensitivity analysis and ill-conditioned problems.
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3
Transformation of problems

Outline

• Transformations of the objective in Section3.1;
• Transformations of the variables in Section3.2;
• Transformations of the constraints in Section3.3; and
• Transformation of the problem involving a notion called “duality” in

Section3.4.

Title Page ◭◭ ◮◮ ◭ ◮ 135 of 219 Go Back Full Screen Close Quit



3.1 Objective
• Basic techniques for transforming the objective that we will discuss are:

(i) monotonically increasing transformations,
(ii) adding terms,
(iii) moving the objective into the constraints, and
(iv) approximating the objective.
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3.1.1 Monotonically increasing transformations

Theorem 3.1 LetS⊆ Rn, let f : Rn → R, and letηր : R→ R be strictly
monotonically increasing onR. Defineφ : Rn → R by:

∀x∈ R
n,φ(x) = ηր( f (x)).

Consider the problems:minx∈Sφ(x) andminx∈S f (x). Then:
(i) minx∈S f (x) has a minimum if and only ifminx∈Sφ(x) has a

minimum.
(ii) If either one of the problems in Item(i) possesses a minimum (and

consequently, by Item(i), each one possesses a minimum), then:

ηր

(

min
x∈S

f (x)

)

= min
x∈S

φ(x),

argmin
x∈S

f (x) = argmin
x∈S

φ(x).

✷
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Discussion

• Two transformations of objective that will prove particularly useful in our
case studies involve the exponential function and (for strictly positive
objective) the logarithmic function.

• The squared function provides another example of a monotonically
increasing transformation for a functionf : Rn → R+.

3.1.2 Adding terms
• Consider adding terms that depend on the constraint function with a view

to incorporating the constraints into the objective so thateither:
– we do not have to consider the constraints explicitly, or
– the constraints are easier to deal with.
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3.1.2.1 Penalty function

Theorem 3.2 LetS⊆ Rn and f : Rn → R. Consider the optimization
problemminx∈S f (x). Let fp : Rn → R+ be such that
(x∈ S)⇒ ( fp(x) = 0) and letΠ ∈ R+. Then:

(i) minx∈S f (x) has a minimum if and only ifminx∈S( f (x)+Π fp(x))
has a minimum.

(ii) If either one of the problems in Item(i) possesses a minimum (and
consequently, by Item(i), each one possesses a minimum), then:

min
x∈S

f (x) = min
x∈S

( f (x)+Π fp(x)),

argmin
x∈S

f (x) = argmin
x∈S

( f (x)+Π fp(x)).

✷
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Discontinuous penalty function

Example

• Consider the objectivef : R→ R defined by:

∀x∈ R, f (x) = x. (3.1)

• The problem:

min
x∈R

{ f (x)|1≤ x≤ 3},

• has minimumf ⋆ = 1 and minimizerx⋆ = 1.
• Let Π = 1 and consider the penalty functionfp : R→ R defined by:

∀x∈ R, fp(x) =

{

0, if 1 ≤ x≤ 3,
10, otherwise. (3.2)
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Example, continued
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x

fp(x)

Fig. 3.1. The penalty
function fp(x) versus
x. In this figure and the
next, the circles◦ in-
dicate that the function
has a point of disconti-
nuity asx approaches 1
from below or 3 from
above.
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Example, continued

−4 −3 −2 −1 0 1 2 3 4
0
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x

f (x), f (x)+Π fp(x)
Fig. 3.2. The objective
function f (x) versus x
(shown solid) and the
penalized objective func-
tion f (x) + Π fp(x) versus
x (shown dashed). (For
clarity, for 1 ≤ x ≤ 3 the
penalized objective function
is drawn slightly above the
solid curve: it should be
coincident with the solid
curve.) One local minimizer
of f + Π fp in the region
{x ∈ R| − 4 ≤ x ≤ 4} is
indicated by the bullet•.

Title Page ◭◭ ◮◮ ◭ ◮ 142 of 219 Go Back Full Screen Close Quit



Example, continued

• The pointx⋆ = 1 is an unconstrained local minimizer off +Π fp in the
region{x∈ R|−4≤ x≤ 4} and is indicated in Figure3.2by a bullet•.

• The penalty function allows us to consider the effect of the constraints by
considering the penalized objective only.

Discussion

• The drawback of the penalty functionfp defined in (3.2) is that the
penalized objective functionf +Π fp is not continuous because of the
form of fp.

• Moreover, local information at a feasible point in the interior
S= {x∈ R|1< x< 3} of S does not inform about the boundary of the
feasible region.
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Continuous penalty function

Corollary 3.3 Suppose that f: Rn → R,g : Rn → Rm,Π ∈ R+, and that
‖•‖ is a norm onRm. Consider the optimization problems
minx∈Rn{ f (x)|g(x) = 0} andminx∈Rn{ f (x)+Π‖g(x)‖2 |g(x) = 0}.
Then:

(i) the problemminx∈Rn{ f (x)|g(x) = 0} has a minimum if and only
if the problemminx∈Rn{ f (x)+Π‖g(x)‖2 |g(x) = 0} has a
minimum.

(ii) If either one of the problems in Item(i) possesses a minimum (and
consequently, by Item(i), each one possesses a minimum), then

min
x∈Rn

{ f (x)|g(x) = 0} = min
x∈Rn

{ f (x)+Π‖g(x)‖2 |g(x) = 0},

argmin
x∈Rn

{ f (x)|g(x) = 0} = argmin
x∈Rn

{ f (x)+Π‖g(x)‖2 |g(x) = 0}.
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Proof In the hypothesis of Theorem3.2, letS= {x∈ Rn|g(x) = 0} and
define fp : Rn → R+ by fp(•) = ‖g(•)‖2. Then:

(x∈ S) ⇔ (g(x) = 0),
⇒ ( fp(x) = 0),

so that the hypothesis and therefore the conclusion of Theorem3.2holds.
✷
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Example
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Fig. 3.3. Contour sets
C f ( f̃ ) of objective func-
tion and the feasible set
from Problem (2.13).
The heights of the con-
tours decrease towards

the point

[

1
3

]

.
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Example, continued

• Figure3.3shows the contour sets of the objectivef : R2 → R of
Problem (2.13):

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

• and a line that represents the feasible set{x∈ R
2|g(x) = 0}, where

g : R2 → R is defined by:

∀x∈ R
2,g(x) = x1−x2.

• As discussed in Section2.2.2, the minimizer of minx∈R2{ f (x)|g(x) = 0}

is x⋆ =

[

2
2

]

.

• Figure3.4shows the contour sets of(g(•))2.
• The contours are parallel, sinceg is affine, and decrease towards the line

representing the feasible set.
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Example, continued
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Fig. 3.4. Contour sets
C(g)2( f̃ ) of (g(•))2. The
heights of the contours
decrease towards the
line x1 = x2.
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Example, continued
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Fig. 3.5. Contour sets
C f+1(g)2( f̃ ) of penalized
objective function and
the feasible set from
Problem (2.13). The
heights of the contours
decrease towards the

point

[

5/3
7/3

]

.
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Example, continued

• Figure3.5shows the contour sets of the corresponding penalized
objective f (•)+Π(g(•))2 for Π = 1, and again shows the line
representing the feasible set.

• Adding the penalty to the objective makes infeasible pointsless
“attractive” and does not change the objective values on thefeasible set.

• The unconstrained minimizer off (•)+Π(g(•))2 for Π = 1 is

[

5/3
7/3

]

,

which is closer to the minimizer of the equality-constrained problem than
is the unconstrained minimizer off .
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Example, continued
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Fig. 3.6. Contour sets
C f+10(g)2( f̃ ) of penal-
ized objective function
and the feasible set from
Problem (2.13). The
heights of the contours
decrease towards a
point that is near to
[

2
2

]

.
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Example, continued

• Larger values of the penalty coefficientΠ, such asΠ = 10 as shown in
Figure3.6, make infeasible points even less attractive.

• The unconstrained minimizer off (•)+Π(g(•))2 for Π = 10 is very close

to

[

2
2

]

, which is the minimizer of the equality-constrained problem.
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Sequence of problems

• Under certain conditions, the sequence of solutions ofunconstrained
problems approaches a solution of the constrained problem as Π → ∞.

Soft constraints

• A penalty approach can be a very effective means to approximately
satisfy “soft constraints.”

Ill-conditioning

• For very tight tolerances, the required value ofΠ will be large.
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Ill-conditioning, continued

• As Π becomes large the unconstrained problem becomes difficult to solve.
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Fig. 3.7. The contour
sets from Figure 3.6
shifted up and to the
right. The feasible set
from Problem (2.13) is
also shown. The heights
of the contours decrease
towards a point that is

near to

[

4
4

]

.
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Ill-conditioning, continued

• Figure3.7shows the case where the center of the ellipses are shifted up
by two units and to the right by two units.

• As in the example in Section2.7.6.3, the effect on local appearance of the

level sets at a point such asx=

[

0
−5

]

is only small.

• If x(ν) =

[

0
−5

]

were the current iterate, for example, then it would be

difficult to accurately determine the direction of the minimizer from local
first derivative information at this point.
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3.1.2.2 Barrier function
• Another approach to enforcing inequality constraints involves adding a

function that grows large as weapproachthe boundary of the feasible
region from the interior.

• Consider again the feasible setS= {x∈ R|1≤ x≤ 3} and its interior,
S= {x∈ R|1< x< 3}.
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Barrier function, continued
• Figure3.8shows a functionfb : S→ R that is designed to penalize values

of x that are close to the boundary of the feasible region.

−4 −3 −2 −1 0 1 2 3 4

0

5

10

15

x

fb(x)

Fig. 3.8. The barrier
function fb(x) versus
x on the interior of the
feasible set.
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Barrier function
• Consider again the objective functionf : R→ R defined in (3.1) and

illustrated in Figure3.2.
• Figure3.9shows this objective together withf (x)+ fb(x) for values ofx

that are in the interior of the feasible set{x∈ R|1≤ x≤ 3}.
• A local minimizer of f + fb is illustrated with a•.
• This point is nearby to the minimizer of the original constrained problem

minx∈R{ f (x)|x∈ S}.
• We solve asequenceof problems where the added term is gradually

reduced towards zero.
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Barrier function

−4 −3 −2 −1 0 1 2 3 4
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x

f (x), f (x)+ fb(x)

Fig. 3.9. The objective
function f (x) versus x
(shown solid) and the
objective plus barrier
function f (x) + fb(x)
versus x on the inte-
rior of the feasible set
(shown dashed). The
local minimizer of the
objective plus barrier
function is indicated by
the bullet•.
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3.1.3 Moving the objective into the constraints

∀x∈ R, f (x) = max{(x+5)2,(x−5)2}.
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Fig. 3.10. Function de-
fined as point-wise max-
imum.

Title Page ◭◭ ◮◮ ◭ ◮ 160 of 219 Go Back Full Screen Close Quit



Theorem 3.4 LetS⊆ R
n and let fℓ : Rn → R for ℓ= 1, . . . , r. Define

f : Rn → R by:

∀x∈ R
n, f (x) = max

ℓ=1,...,r
fℓ(x).

Consider the problemsminx∈S f (x) and

min
x∈S,z∈R

{z| fℓ(x)−z≤ 0,∀ℓ= 1, . . . , r}. (3.3)

Then:
(i) the problemminx∈S f (x) has a minimum if and only if

minx∈S,z∈R{z| fℓ(x)−z≤ 0,∀ℓ= 1, . . . , r} has a minimum.
(ii) If either one of the problems in Item(i) possesses a minimum (and

consequently, by Item(i), each one possesses a minimum), then

min
x∈S

f (x) = min
x∈S,z∈R

{z| fℓ(x)−z≤ 0,∀ℓ= 1, . . . , r},

argmin
x∈S

f (x) =

{

x∈ R
n

∣

∣

∣

∣

[

x
z

]

∈ arg min
x∈S,z∈R

{

z

∣

∣

∣

∣

fℓ(x)−z≤ 0,
∀ℓ= 1, . . . , r

}}

.

✷
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Discussion

• Figure3.11repeats Figure2.37and shows the functionsf1 and f2 that
were point-wise maximized to form the objective shown in Figure3.10.
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f1(x), f2(x)

Fig. 3.11. The func-
tions used to define
point-wise maximum,
repeated from Fig-
ure2.37.
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Discussion, continued
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z⋆ = f ⋆

Fig. 3.12. Feasible re-
gion, shown shaded, and
contour sets of objective
for transformed prob-
lem. The feasible region

is the set of points

[

x
z

]

that lies “above” both of
the curves. The contour
sets of the objective de-
crease towardsz= 0.
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Discussion, continued

• Figure3.12re-interprets Figure3.11in terms of Problem (3.3).
• It shows the feasible region, shown shaded, and the contour sets of the

objective, which are lines of constant value ofz.
• Problem (3.3) tries to find the minimum feasible value ofz; that is, it

seeks the “lowest” feasible line.
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3.1.4 Approximating the objective
• The four basic techniques we will discuss are:

(i) linear approximation ,
(ii) quadratic approximation ,
(iii) piece-wise linearization, and
(iv) smoothing.
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3.1.4.1 Linear approximation

• We linearize an objective about a current estimatex(ν).
• A linear programming algorithm is then used to solve for the optimal

x(ν+1) that minimizes the linearized objective while satisfying the
(linearized) constraints.

• Extra constraints are added to ensure that linear approximation is valid at
the updated point:

∀k= 1, . . . ,n, |x(ν+1)
k −x(ν)k | ≤ ∆xk.

3.1.4.2 Quadratic approximation
• Instead of a linear approximation, a quadratic approximation can be made

to the objective at each iterationν.
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3.1.4.3 Piece-wise linearization
• For a functionf : [0,1]→ R we might:

– define subsidiary variablesξ1, . . . ,ξ5,
– include constraints:

x =
5

∑
j=1

ξ j ,

0 ≤ ξ j ≤ 0.2,

– define parameters:

d = f (0),

c j =
1

0.2
[ f (0.2× j)− f (0.2× ( j −1))] , j = 1, . . . ,5,

and
– replace the objectivef by the piece-wise linearized objective

φ : R5 → R defined by:

∀ξ ∈ R
5,φ(ξ) = c†ξ+d.

Title Page ◭◭ ◮◮ ◭ ◮ 167 of 219 Go Back Full Screen Close Quit



Quadratic example function

∀x∈ [0,1], f (x) = (x)2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f (x),φ(ξ)

Fig. 3.13. Piece-wise
linearization (shown
dashed) of a function
(shown solid).
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Quadratic example function, continued

• For the functionf illustrated in Figure3.13:

d = f (0),
= 0,

c j =
1

0.2
( f (0.2× j)− f (0.2× ( j −1))) ,

= (0.4× j)−0.2, j = 1, . . . ,5.

• To piece-wise linearizef in an optimization problem, we useφ as the
objective instead off , augment the decision vector to includeξ, and
include the constraints that linkξ andx.

• Similarly, non-linear constraints can also be piece-wise linearized.
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3.1.4.4 Smoothing
• Consider the absolute value function|•| defined by:

∀x∈ R, |x|=

{

x, if x≥ 0,
−x, if x< 0.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

|x| ,φ(x)

Fig. 3.14. Smoothed
version for ε = 0.1
(shown dashed) and
ε = 0.01 (shown dot-
ted) of absolute value
function (shown solid).
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Smoothing
• This function is continuous but not differentiable.
• Consider the functionφ : R→ R defined by:

∀x∈ R,φ(x) =
√

(|x|2+ ε). (3.4)

• We callφ asmoothed versionof |•|.
• It can be verified that for allε > 0, the functionφ is differentiable.
• Moreover, the error betweenφ and|•| decreases with decreasingε.
• The smoothed function can be used as an approximation to|•|, with a

controllable approximation error determined by the choiceof ε.
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3.2 Variables
• The two basic techniques that we will discuss are:

(i) scaling, and
(ii) onto transformations.

3.2.1 Scaling
• This simplest way to transform variables is to “scale” them.
• As a practical matter, optimization software often makes the implicit

assumption that the variables have similar magnitudes at the optimum.
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Example
∀x∈ R

2, f (x) = (1000x1)
2+(x2/1000)2. (3.5)
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1000
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3000

4000

5000

x1

x2

Fig. 3.15. Contour sets
of function f defined
in (3.5).
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Example, continued

• If we want to obtain an solution that yields an objective thatis within one
unit of the minimum then we need to obtain a value ofx such that
(approximately):

|x⋆1−x1| < 0.001,
|x⋆2−x2| < 1000.

• To appropriately weight the importance of errors inx1 andx2, suppose
that we define scaled variablesξ ∈ R2 by:

ξ1 = 1000x1,

ξ2 = x2/1000.

• Consider the objectiveφ : R2 → R defined by:

∀ξ ∈ R
2,φ(ξ) = (ξ1)

2+(ξ2)
2. (3.6)
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Example, continued

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

ξ1

ξ2

Fig. 3.16. Contour sets
of function φ defined
in (3.6) with scaled vari-
ables.
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3.2.2 Onto transformations
3.2.2.1 Analysis

• We can re-write the problem in terms of new variables so long as
“exploring” over the new variables also “covers” the whole of the original
feasible setS.

• This idea is embodied in the definition of anonto function.

✬

✫

✩

✪

✬

✫

✩

✪
✲τ

✲φ

✲f

P

S

R

Fig. 3.17. Sets and
transformations in
Theorem3.5.
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Theorem 3.5 LetS⊆ Rn,P⊆ Rn′, f : S→ R, let τ : P→ S beonto S, and
defineφ : P→ R by:

∀ξ ∈ P,φ(ξ) = f (τ(ξ)).

Consider the problems:minξ∈Pφ(ξ) andminx∈S f (x). Then:

(i) the problemminx∈S f (x) has a minimum if and only if
minξ∈Pφ(ξ) has a minimum.

(ii) If either one of the problems in Item(i) possesses a minimum (and
consequently, by Item(i), each one possesses a minimum), then

min
ξ∈P

φ(ξ) = min
x∈S

f (x),

argmin
x∈S

f (x) =

{

τ(ξ)
∣

∣

∣

∣

ξ ∈ argmin
ξ∈P

φ(ξ)
}

.

✷
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Discussion

• To apply Theorem3.5, it is sometimes easiest to first define a function
τ : Rn′ → Rn that is ontoRn and then defineP⊆ Rn′ by:

P= {ξ ∈ R
n′|τ(ξ) ∈ S}.

• Then we consider therestriction of τ to P.

3.2.2.2 Elimination of variables
• An important special case of Theorem3.5occurs when we eliminate

variables.
• We first present an elementary theorem involving elimination of variables

for simultaneous equations and then a corollary of Theorem3.5for
optimization problems.

Title Page ◭◭ ◮◮ ◭ ◮ 178 of 219 Go Back Full Screen Close Quit



Simultaneous equations

Analysis

Theorem 3.6 Let g: Rn → Rm, n′ ≤ n and collect the last n′ entries of x

together into a vectorξ =





xn−n′+1
...

xn



 ∈ Rn′. Suppose that functions

ωℓ : Rn′ → R for ℓ= 1, . . . ,(n−n′), can be found that satisfy:

∀









x1
...

xn−n′

ξ









∈ {x∈ R
n|g(x) = 0},∀ℓ= 1, . . . ,(n−n′),xℓ = ωℓ(ξ).
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Collect the functionsωℓ, ℓ= 1, . . . ,(n−n′), into a vector function
ω : Rn′ → Rn−n′. Then, for x∈ {x∈ Rn|g(x) = 0}, the vector function
ω : Rn′ → Rn−n′ expresses:
• the sub-vector of x consisting of the first(n−n′) components of x,
• in terms of the sub-vectorξ of x consisting of the last n′ components of

x.

Suppose thatξ⋆ ∈ Rn′ solves g

([

ω(ξ)
ξ

])

= 0. (Note that these

equations involve onlyξ.) Then x⋆ =

[

ω(ξ⋆)
ξ⋆

]

satisfies g(x) = 0.

Conversely, suppose that x⋆ ∈ Rn satisfies g(x⋆) = 0. Letξ⋆ ∈ Rn′ be the
sub-vector of x⋆ consisting of its last n′ components. Thenξ⋆ solves

g

([

ω(ξ)
ξ

])

= 0. ✷
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Discussion

• In Theorem3.6, we write the entries ofg in terms of the vectorξ and the
functionω by replacingxℓ, ℓ= 1, . . . ,(n−n′) by ωℓ(ξ), ℓ= 1, . . . ,(n−n′),
respectively.

• This eliminatesxℓ, ℓ= 1, . . . ,(n−n′).
• The functionsω typically involve re-arranging some of the entries of

g(x) = 0.
• In this case, we can delete the corresponding entries ofg when solving

g

([

ω(ξ)
ξ

])

= 0 since these entries are satisfied identically by

x=

[

ω(ξ)
ξ

]

.

• The variablesξ are called theindependent variables, while the variables
xℓ, ℓ= 1, . . . ,(n−n′), are called thedependent variables.
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Example

∀x∈ R
2,g(x) =

[

x1−x2
(x2)

2−x2

]

.

• The first entry ofg(x) = 0 can be re-arranged asx1 = ω1(x2), where
ξ = x2 andω1 : R→ R is defined by:

∀x2 ∈ R,ω1(x2) = x2.

• We can delete the first entryg1 from the equations to be solved since it is

satisfied identically by

[

ω1(ξ)
ξ

]

.

• We need only solve the smaller systemg2

([

ω1(ξ)
ξ

])

= 0.
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Optimization

Analysis

Corollary 3.7 LetS⊆ Rn, f : Rn → R, and n′ ≤ n and collect the last n′

entries of x together into a vectorξ =





xn−n′+1
...

xn



 ∈ Rn′. Consider the

special case of the optimization problemminx∈S f (x) such that functions
ωℓ : Rn′ → R for ℓ= 1, . . . ,(n−n′), can be found that satisfy:

∀









x1
...

xn−n′

ξ









∈ S,∀ℓ= 1, . . . ,(n−n′),xℓ = ωℓ(ξ).

(Typically, these functions correspond to(n−n′) of the equality
constraints in the definition ofS. The condition means that these
equality constraints can be re-arranged to express each of the first n−n′
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entries of the decision vector in terms of the last n′ entries.) Collect the
functionsωℓ, ℓ= 1, . . . ,(n−n′), into a vector functionω : Rn′ → Rn−n′.
LetP⊆ R

n′ be the projection ofS onto the last n′ components ofRn.
Defineφ : Rn′ → R by:

∀ξ ∈ R
n′,φ(ξ) = f

([

ω(ξ)
ξ

])

.

Consider the problems:minξ∈Pφ(ξ) andminx∈S f (x). Then:

(i) the problemminx∈S f (x) has a minimum if and only if
minξ∈Pφ(ξ) has a minimum.

(ii) If either one of the problems in Item(i) possesses a minimum (and
consequently, by Item(i), each one possesses a minimum), then:

min
x∈S

f (x) = min
ξ∈P

φ(ξ),

argmin
x∈S

f (x) =

{[

ω(ξ)
ξ

]

∈ R
n

∣

∣

∣

∣

ξ ∈ argmin
ξ∈P

{φ(ξ)}
}

.

✷
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Example

minx∈R2{(x1−1)2+(x2−3)2|x1−x2 = 0}. (3.7)
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Fig. 3.18. Contour sets
C f ( f̃ ) of the function
defined in (2.10) for
values f̃ = 2,4,6, . . .
with feasible set super-
imposed. The heights
of the contours decrease

towards the point

[

1
3

]

.
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Example, continued

• The equality constraint in this problem can be re-arranged asx1 = ω1(x2),
whereξ = x2 andω1 : R→ R is defined by∀x2 ∈ R,ω1(x2) = x2.

• The projection ofS= {x∈R2|x1−x2 = 0} onto the last component ofR2

is P= R.

(x∈ S)⇒ (x1−1)2+(x2−3)2 = (ω1(x2)−1)2+(x2−3)2,

= (x2−1)2+(x2−3)2,

= 2(x2)
2−8x2+10.

• The transformed objective isφ : R→ R defined by:

∀x2 ∈R,φ(x2) = f

([

ω(ξ)
ξ

])

,

= f

([

x2
x2

])

,

= 2(x2)
2−8x2+10.
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Example, continued
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Fig. 3.19. The trans-
formed objective
functionφ.
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Example, continued

• Problem (3.7) is equivalent to:

min
x2∈R

{2(x2)
2−8x2+10}.

• Inspection of Figure3.19yieldsx⋆2 = 2.
• The corresponding optimal value ofx⋆1 can be found by substituting from

the eliminated constraint, according tox⋆1 = ω1(x⋆2).
• That is,x⋆1 = 2.
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Discussion

• We will use elimination of variables in several places throughout the
course beginning in Section5.2.

• It is possible to generalize the idea of elimination of variables to the case
whereω is not known explicitly but can only be foundimplicitly.
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3.3 Constraints
• The five basic techniques we will discuss are:

(i) scalingandpre-conditioning,
(ii) slack variables,
(iii) changing the functional form,
(iv) altering the feasible region, and
(v) hierarchical decomposition.
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3.3.1 Scaling and pre-conditioning
• Pre-conditioning, involves multiplying both the coefficient matrix and

the right-hand side vector on the left by a suitably chosen matrix M that:
– does not change the set of points satisfying the constraints, but
– makes it easier to find points satisfying the constraints.

• It is sensible to scale the entries of the constraint function so that a
“significant” violation of any constraint from the perspective of the
application involves roughly the same numerical value for each of the
entries of the scaled constraint function.
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3.3.2 Slack variables

Theorem 3.8 Let f : Rn → R,g : Rn → R
m,h : Rn → R

r . Consider the
problems:

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0}, (3.8)

min
x∈Rn,w∈Rr

{ f (x)|g(x) = 0,h(x)+w= 0,w≥ 0}. (3.9)

We have that:
(i) Problem (3.8) has a minimum if and only if Problem (3.9) has a

minimum.
(ii) If either one of the problems in Item(i) possesses a minimum

(and consequently, by Item(i), each one possesses a minimum),
then the minima are equal. Moreover, to each minimizer x⋆ of

Problem (3.8) there corresponds a minimizer

[

x⋆

w⋆

]

of

Problem (3.9) and vice versa.
✷
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3.3.3 Changing the functional form

• A monotonically increasing transformation of an equality or inequality
constraint function (together with the corresponding transformation of its
right-hand side) does not change the feasible region, but may transform
the function into being convex.

Theorem 3.9 Let f : Rn → R, g : Rn → Rm, b∈ Rm, h : Rn → Rr , and
d ∈Rr . Letτրℓ : R→ R, ℓ= 1, . . . ,m, andσր

ℓ : R→ R, ℓ= 1, . . . , r, each
be strictly monotonically increasing and continuous onR. Define
γ : Rn → Rm, β ∈ Rm, η : Rn → Rr , andδ ∈ Rr by:

∀ℓ= 1, . . . ,m,∀x∈ R
n,γℓ(x) = τրℓ (gℓ(x)),

∀ℓ= 1, . . . ,m,βℓ = τրℓ (bℓ),

∀ℓ= 1, . . . , r,∀x∈ R
n,ηℓ(x) = σր

ℓ (hℓ(x)),

∀ℓ= 1, . . . , r,δℓ = σր
ℓ (dℓ).

Consider the problems:minx∈Rn{ f (x)|g(x) = b,h(x)≤ d} and
minx∈Rn{ f (x)|γ(x) = β,η(x)≤ δ}. The second problem is obtained from
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the first by transforming corresponding functions and entries of each
constraint. Then:

(i) minx∈Rn{ f (x)|g(x) = b,h(x)≤ d} has a minimum if and only if
the problemminx∈Rn{ f (x)|γ(x) = β,η(x)≤ δ} has a minimum.

(ii) If either one of the problems in Item(i) possesses a minimum
(and consequently, by Item(i), each one possesses a minimum),
then the minima are equal and they have the same minimizers.

✷

• It is sometimes possible to transform a non-convex functioninto a convex
function.

• This applies in the case of aposynomial function:

Definition 3.1 Let A∈ Rm×n andB∈ Rm
++ and definef : Rn

++ → R by:

∀x∈ R
n
++, f (x) =

m

∑
ℓ=1

Bℓ(x1)
Aℓ1(x2)

Aℓ2 · · ·(xn)
Aℓn.

The functionf is called aposynomial function. If m= 1 then f is called
amonomial function. ✷
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3.3.4 Altering the feasible region

Theorem 3.10 LetS⊆ S⊆ S⊆R
n, f : Rn →R and consider the problems:

min
x∈S

f (x),min
x∈S

f (x),min
x∈S

f (x),

and suppose that they all have minima and minimizers. Then:
(i)

min
x∈S

f (x)≥ min
x∈S

f (x)≥ min
x∈S

f (x).

(ii) If x⋆ ∈ argminx∈S f (x) and x⋆ ∈ S thenminx∈S f (x) = minx∈S f (x)
andargminx∈S f (x) =

(

argminx∈S f (x)
)

∩S.
(iii) If x⋆ ∈ argminx∈S f (x) and x⋆ ∈ S thenminx∈S f (x) = minx∈S f (x)

andargminx∈S f (x) = (argminx∈S f (x))∩S.
✷
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3.3.4.1 Enlarging or relaxing the feasible set
• The problem minx∈S f (x) is called arelaxation of or arelaxedversion of

the original problem minx∈S f (x).
• If the minimizer of the relaxed problem minx∈S f (x) happens to lie inS,

then a minimizer of the original problem minx∈S f (x) has been found.
• It is sometimes easier to optimize over a larger set than a smaller set, if

the larger set has a more suitable structure.

(i) S is convex whileS is not, and
(ii) S involves temporarily ignoring some of the constraints, yielding

an easier problem.

✲

✻

x2

x1

✬

✫

✩

✪

✬

✫

✩

✪
•argmin

x∈S
f (x)

S

S

Fig. 3.20. Illustration
of relaxing the feasible
set.
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3.3.4.2 Constricting the feasible set
• Item(iii) in Theorem3.10simply formalizes a way to usea priori

knowledge to narrow a search: if an optimizer is known to lie in a subset
S of S then we can confine our search to that subset.

• This can be useful if it is easier to search overS than overS.
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3.3.4.3 Divide and conquer
• We can generalize the idea of constricting the feasible set to develop a

divide and conquerapproach.
• Suppose thatS1 ⊆ S, S2 ⊆ S, andS1∪S2 = S.
• If the minimizer of the problem overS exists, then it must be contained in

eitherS1 or S2, (or both).
• We solve both minx∈S1 f (x) and minx∈S2 f (x) and check for the smaller

minimum and corresponding minimizer.
• This yields the minimum and minimizer of minx∈S f (x).

✲

✻

x2

x1

✬

✫

✩

✪

✬

✫

✩

✪
S1

S2

Fig. 3.21. Illustration
of divide and conquer.
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3.3.5 Hierarchical decomposition
• Consider a feasible setS⊆ Rn+s such that:

S=

{[

x
y

]

∈ R
n+s

∣

∣

∣

∣

x∈ S1,y∈ S2(x)

}

,

• whereS1 ⊆ Rn andS2 : S1 → (2)(R
s) is a set-valued function.

✲

✻

y

x

Fig. 3.22. Illustra-
tion of hierarchical
decomposition.
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Theorem 3.11 Suppose thatS⊆ Rn+s is of the form:

S=

{[

x
y

]

∈ R
n+s

∣

∣

∣

∣

x∈ S1,y∈ S2(x)

}

,

with S1 ⊆ Rn and, for each x∈ S1, S2(x)⊆ Rs. Let f : S→ R and
suppose that, for each x∈ S1, the minimization problem

miny∈S2(x) f

([

x
y

])

has a minimum. Consider the problems:

min
[xy]∈S

f

([

x
y

])

and min
x∈S1

{

min
y∈S2(x)

f

([

x
y

])}

.

Then:

(i) min
[xy]∈S

f

([

x
y

])

has a minimum if and only if

minx∈S1

{

miny∈S2(x) f

([

x
y

])}

has a minimum.

(ii) If either one of the problems in Item(i) possesses a minimum (and
consequently, by Item(i), each one possesses a minimum), then:
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min
[xy]∈S

f

([

x
y

])

= min
x∈S1

{

min
y∈S2(x)

f

([

x
y

])}

,

argmin
[xy]∈S

f

([

x
y

])

=















[

x̂
ŷ

]

∈ R
n+s

∣

∣

∣

∣

∣

∣

∣

∣

x̂∈ argmin
x∈S1

{

min
y∈S2(x)

f

([

x
y

])}

,

ŷ∈ arg min
y∈S2(x̂)

f

([

x̂
y

])















.

✷

• Theorem3.11allows us to hold some of the decision vectorconstant
temporarily while we optimize over the rest of the decision vector.

• We keepx∈ S1 constanttemporarilyor think of it as a parameter while
we optimize theinner problem overy∈ S2(x).

• If we can solve for the solution of the inner problem as a function of x, or
can approximate its dependence onx, then we can use this functional
dependence in theouter problem.
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Example

• Consider the feasible set:

S=

{[

x
y

]

∈ R
2
∣

∣

∣

∣

(x)2+(y)2 = 1

}

,

• which is the set of points on the unit circle in the plane.
• We can re-write this set in the form:

S=

{[

x
y

]
∣

∣

∣

∣

−1≤ x≤ 1,y∈

{

√

1− (x)2,−
√

1− (x)2

}}

,

• whereS1 = {x∈ R|−1≤ x≤ 1} is the projection ofS onto the first
component ofR2.

• In this case, for eachx∈ S1, the inner minimization problem in
Theorem3.11involves finding the minimum over a set with just two
elements, namelyS2(x) = {

√

1− (x)2,−
√

1− (x)2}.
• Even if the objective is non-convex, and despite the fact that S2(x) is not a

convex set, it may be easy to perform this minimization.
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Discussion

• If S is convex andf is a convex function onS then both the inner problem
and the outer problem are convex.

• Hierarchical decomposition is also useful when holdingx∈ S1 constant
yields an inner problem with a particular structure that is easy to solve or
for which a convenient approximate solution is possible.
– This leads toBender’s decomposition.
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3.4 Duality
• Taking thedual of a problem is a process whereby a new problem is

defined where the role of the variables and the constraints iseither
partially or completely exchanged.

• Let f : Rn → R,g : Rn → Rm, andh : Rn → Rr .
• Consider the problem:

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0}. (3.10)

• We define two functions associated withf ,g, andh, called the
Lagrangian and thedual function.

• We then consider the relationship between these functions and
minimizing f .
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3.4.1 Lagrangian

Definition 3.2 Consider the functionL : Rn×Rm×Rr → R defined by:

∀x∈ R
n,∀λ ∈ R

m,∀µ∈ R
r ,L(x,λ,µ) = f (x)+λ†g(x)+µ†h(x). (3.11)

The functionL is called theLagrangian and the variablesλ andµ are
called thedual variables. If there are no equality constraints then
L : Rn×Rr →R is defined by omitting the termλ†g(x) from the definition,
while if there are no inequality constraints thenL : Rn×Rm→ R is defined
by omitting the termµ†h(x) from the definition.✷

• Sometimes, the symbol for the dual variables is introduced when the
problem is defined by writing it in parenthesis after the constraint, as in
the following:

min
x∈Rn

f (x) such thatg(x) = 0, (λ).
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3.4.2 Dual function
• Associated with the Lagrangian, we make:

Definition 3.3 Consider the functionD : Rm×Rr →R∪{−∞} defined by:

∀

[

λ
µ

]

∈ R
m+r ,D(λ,µ) = inf

x∈Rn
L(x,λ,µ). (3.12)

The functionD is called thedual function. It is an extended real function.
If there are no equality constraints or there are no inequality constraints,
respectively, then the dual functionD : Rr → R∪{−∞} or
D : Rm→ R∪{−∞} is defined in terms of the corresponding Lagrangian.
The set of points on which the dual function takes on real values is called
theeffective domainE of the dual function:

E=

{[

λ
µ

]

∈ R
m+r

∣

∣

∣

∣

D(λ,µ)>−∞
}

.

The restriction ofD toE is a real-valued functionD : E→ R. ✷
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Discussion

• Recall Definition2.17of a concave function.
• The usefulness of the dual function stems in part from the following:

Theorem 3.12 Let f : Rn → R,g : Rn → R
m, and h: Rn → R

r . Consider
the corresponding Lagrangian defined in (3.11), the dual function
defined in (3.12), and the effective domainE of the dual function. The
effective domainE of the dual function is a convex set. The dual
function is concave onE. ✷

• The convexity of the effective domain and the concavity of the dual
function on the effective domain does not depend on any property of the
objective nor of the constraint functions.
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3.4.3 Dual problem

Theorem 3.13 Let f : Rn → R,g : Rn → R
m, and h: Rn → R

r . Letλ ∈ R
m

and µ∈ Rr
+ and suppose that̂x∈ {x∈ Rn|g(x) = 0,h(x)≤ 0}. That is,x̂

is feasible for Problem (3.10). Then:

f (x̂)≥ D(λ,µ), (3.13)

whereD : Rm×Rr → R∪{−∞} is the dual function defined in (3.12).

Proof By definition ofD,

D(λ,µ) = inf
x∈Rn

L(x,λ,µ),

= inf
x∈Rn

{ f (x)+λ†g(x)+µ†h(x)}, by definition ofL ,

≤ f (x̂)+λ†g(x̂)+µ†h(x̂),by definition of inf,
≤ f (x̂),

sinceg(x̂) = 0, h(x̂)≤ 0, andµ≥ 0. ✷
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Discussion

• Theorem3.13enables us to gauge whether we are close to a minimum of
Problem (3.10).

• For any value ofλ ∈ Rm andµ∈ Rr
+, we know that the minimum of

Problem (3.10) is no smaller thanD(λ,µ).
• This lower bound will be incorporated into a stopping criterion for

iterative algorithms.
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Corollary 3.14 Let f : Rn → R,g : Rn → R
m, and h: Rn → R

r . Then:

inf
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0} ≥ sup
[λµ]∈Rm+r

{D(λ,µ)|µ≥ 0},

= sup
[λµ]∈E

{D(λ,µ)|µ≥ 0},

whereE is the effective domain ofD. Moreover, if Problem (3.10) has a
minimum then:

min
x∈Rn

{ f (x)|g(x) = 0,h(x)≤ 0} ≥ sup
[λµ]∈E

{D(λ,µ)|µ≥ 0}. (3.14)

If Problem (3.10) is unbounded below then:

∀λ ∈ R
m,∀µ∈ R

r
+,D(λ,µ) =−∞,

so thatE+ =

{[

λ
µ

]

∈ E

∣

∣

∣

∣

µ≥ 0
}

= /0.

If the problem sup
[λµ]∈Rm+r

{D(λ,µ)|µ≥ 0} is unbounded above then

Problem (3.10) is infeasible.✷
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Discussion

• This result is calledweak duality.
• The right-hand side of (3.14) is called thedual problem.
• If E+ = /0 we say that the dual problem is infeasible.
• The inequality in (3.14) can be strict, in which case the difference

between the left and right-hand sides is called theduality gap.
• If the left and right sides are the same, we say that there is noduality gap

or that the duality gap is zero.
• Evaluating the right-hand side of (3.14) requires:

– evaluating the dependence of the infimum of theinner problem
infx∈Rn L(x,λ,µ) in the definition ofD as a function ofλ andµ,

– finding the supremum of theouter problem sup[λµ]∈E{D(λ,µ)|µ≥ 0}.
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Discussion, continued

• In some circumstances, the inequality in (3.14) can be replaced by
equality and the sup and inf can be replaced by max and min, so that the
right-hand side of (3.14) equals the minimum of Problem (3.10) and the
right-hand side becomes:

max
[λµ]∈E

{D(λ,µ)|µ≥ 0}= max
[λµ]∈E

{

min
x∈Rn

{ f (x)+λ†g(x)+µ†h(x)}

∣

∣

∣

∣

µ≥ 0
}

,

(3.15)
• having an inner minimization problem embedded in an outer

maximization problem.
• By Theorem3.12, D is concave onE, so that, by Theorem2.4, it has at

most one local maximum.
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Discussion, continued

• The dual formulation provides a useful transformation if:
– the dual problem has maximum equal to the minimum of the primal

problem, and
– the minimizer of the inner problem in the definition of the dual function

sheds light on the minimizer of the primal problem,
• The requirements for these conditions to hold depend on the convexity of

the primal problem and on other technical conditions on the functions,
which we will discuss in detail in PartsIV andV.

• In the next section, we will consider an example where such conditions
happen to hold.
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3.4.4 Example
• Consider the problem minx∈R{ f (x)|g(x) = 0} where f : R→ R and

whereg : R→ R are defined by:

∀x∈ R, f (x) = (x)2,

∀x∈ R,g(x) = 3−x.

• Since there are no inequality constraints, we will omit the argumentµ of
L and ofD.

• We consider the dual functionD : R→ R∪{−∞} defined by:

∀λ ∈ R,D(λ) = inf
x∈R

L(x,λ),

= inf
x∈R

{(x)2+λ(3−x)},

= inf
x∈R

{

(

x−
λ
2

)2

+3λ−
(λ)2

4

}

,

= 3λ−
(λ)2

4
.
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Example, continued
• Therefore,E= R and sinceD is quadratic and strictly concave, the dual

problem has a maximum and:

max
λ∈E

{D(λ)} = max
λ∈R

{

3λ−
(λ)2

4

}

,

= max
λ∈R

{

−

(

λ
2
−3

)2

+9

}

,

= 9,

• with maximizerλ⋆ = 6.
• The value of the minimizer ofL(•,λ⋆) is x⋆ = λ⋆

2 = 3, which is the
minimizer of the equality-constrained problem.

• We have solved the primal equality-constrained problem by solving the
dual problem.

• There is no duality gap.
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3.4.5 Discussion
• To understand the Lagrangian, considerfp : Rn → R+∪{∞} defined by:

∀x∈ R
n, fp(x) = sup

λ∈Rm,µ∈Rr
+

{λ†g(x)+µ†h(x)}.

• fp is a discontinuous penalty function for the constraintsg(x) = 0 and
h(x)≤ 0, since:
– if g(x) = 0 andh(x)≤ 0, thenµ≥ 0 impliesλ†g(x)+µ†h(x)≤ 0, but

0†g(x)+0†h(x) = 0, so fp(x) = 0, whereas
– if gℓ(x) 6= 0 or hℓ(x)> 0 then we can makeλ†g(x)+µ†h(x) arbitrarily

large by choosingλℓ andµℓ appropriately, sofp(x) = ∞.
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Discussion, continued
• Now note that:

∀x∈ R
n, f (x)+ fp(x) = f (x)+ sup

λ∈Rm,µ∈Rr
+

{λ†g(x)+µ†h(x)},

= sup
λ∈Rm,µ∈Rr

+

{ f (x)+λ†g(x)+µ†h(x)},

= sup
λ∈Rm,µ∈Rr

+

{L(x,λ,µ)},

• so that the terms in the Lagrangian provide a penalty function for the
constraints whenλ andµ≥ 0 are chosen appropriately.
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Discussion, continued
• For each equality constraintgℓ(x) = 0 in the primal problem we have

created a new variableλℓ in the dual problem.
• For each inequality constrainthℓ(x)≤ 0 in the primal problem we have

created a new variableµℓ and a new constraintµℓ ≥ 0 in the dual problem.
• In some circumstances, such as the example in Section3.4.4:

– the minimization overx∈ Rn in the inner problem in (3.15) can be
performed analytically or particularly easily numerically, or

– each entryxk can be eliminated,
• making the inner problem easy to solve.
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3.5 Summary
• These transformations involved:

(i) the objective,
(ii) the variables,
(iii) the constraints, and
(iv) duality.
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