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Optimization

(i) Basic definitions,

(i) Duality,
(i) Continuous unconstrained problems,

(iv) Continuous equality-constrained problems,

(v) Continuous linear inequality-constrained problems,
(vi) Continuous non-linear inequality-constrained pesbk,
(vii) Integer problems,



(viii) Mixed-integer problems,
(ix) Uncertainty,
(xX) Homework exercises.



4.1 Basic definitions
4.1.1 Decision vector

e As with solution of simultaneous equations, the optimi@atroblems
we consider will involve choices of a value oflacision vector

e We will usually denote the decision vector Ryy, or z

e It will be chosen fromR" or from some subsét of R".

e As previously, entries of the decision vector will be indéXs subscripts.

e Example:

— the choice of dispatch for generatois xi, while
— the choices of dispatch for all generators.is



4.1.2 Objective

e Consider a functiorf : R" — R that denominates the “cost” or lack of
desirability of solutions for a particular model or system.

e That s, f(X) is the cost of using as the solution.

e The function is called anbjective function.

e Examples:

— the operating cost of a generator, and
— the sum of the operating costs of all generators in a system.



4.1.2.1 Example
e An example of ayuadratic function f : R — R is given by:

Vx e R? f(x) = (x1)%+ (%)% +2x2 — 3. (4.1)

Fig. 4.1. Graph of the
example objective func-
tion defined in 4.1).




4.1.2.2 Discussion

e \We can categorize objectives according to the highest pofamny entry
in the argument,

e \We will categorize objectives in a different way in Sectda.13once we
have discussed optimization in more detail.



4.1.3 Feasible set

e Our problems will typically involve restrictions on the dbes of values
of x.

e \We can imagine éeasible setS C R" from which we must select a
solution.

e Examples:

— the set representing the allowable range of operating tiondiof a
generator, and

— the set representing the allowable range of operating tondifor all
the generators in a system.



4.1.4 Problem

e A minimization problem means to find the minimum value &fx) over
choices ofx that lie in the feasible sét

Definition 4.1 LetSCR", f : S — R, andf* € R. Then by:
f*=minf(x), (4.2)

XES
we mean that:
Ix* € S such that(f*= f(x*)) and((x€ S) = (f(X) < f(x))). (4.3)

[

e We say thatf* is the minimum off (x) over values ok in the setS or that
f* is the minimum off (x) such thak € S.
e Example:
— find the choices of dispatohfor all generators that minimizes the sum
of the operating costs and such that the dispatch meets dieanans
within the allowable operating conditions for all generato



4.1.5 Set of minimizers
e The set ofall the minimizers of mig.s f(x) is denoted by:

arg)r(relignf (X).

e If the problem has no minimum (and, therefore, no minimigdren we
define:
argminf (x) = 0,
XES
e where0 is the empty set.
e To emphasize the role & we also use the following notations:
min{ f(x)|x € S} and argmid f(x)|x € S}.
XeRN XeRN
e We will often use a more explicit notationSfis defined as the set of
points satisfying a criterion.
e For example, iff :R"— R, g:R"— R™ h:R" — R, and
S = {x € R"|g(x) = 0,h(x) < 0} then we will write
mingern{ f(X)|g(x) = 0,h(x) < 0} for minycs f(X).



4.1.6 Lower bound

Definition 4.2LetS CR", f : S — R, andf € R. If f satisfies:
vxeSs, f < f(x),

then we say that is alower bound for the problem migs f(x) or that the
problem mincs f(X) is bounded belowby f. If S = 0 but no suchf exists,

then we say that the problem mig f (x) is unbounded below(or
unbounded if the “below” is clear from context)

e Considerf : R? — R defined in &.1), which we repeat here:
¥x e R2, f(X) = (x0)?+ (X2)%+ 2% — 3.

e This function is illustrated in Figuré.l
e For the feasible s&& = R?, the valuef = —10 is a lower bound for the

problem mincs f(x), as shown in Figurd.1



4.1.7 Level and contour sets

Definition 4.3LetS CR", f : S = R, andf € R. Then thdevel setat
value f of the functionf is the set:

L¢(f) = {x e S|f(x) < f}.
Thecontour setat valuef of the functionf is the set:

Ct(f) = {xes|f(x) = f}.

O

e Contour and level sets are useful for visualizing functions
o If f :R3— R, how many dimensions are needed to gréa@rHow many

are needed to show the contour set?



4.1.7.1 Example
e Consider the functiorf : R? — R defined by:

vx e R? f(x) = (x1—1)%+ (xo— 3)°. (4.4)
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Fig. 4.2. Graph of
function defined
in (4.4).



4.1.7.2 Contour set for example

~

e The contour set€¢(f) can be shown in a two-dimensional

representation.
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Fig. 4.3. Contour sets
C¢(f) of the function
defined in ¢.4) for
valuesf =0,2,4,6,....
The heights of the con-
tours decrease towards

the point H which is
illustrated with ae and

is the contour of height
0.



4.1.8 Unconstrained optimization
e If the feasible set i§ = R" then the problem is said to hmconstrained

4.1.8.1 Example
e For example, consider the objectife R? — R defined in 4.4):

¥x e R?, f(X) = (x1 — 1)%+ (x2 — 3)%.
e From Figure4.3, which shows the contour sets bfwe can see that:
minf(x) = f*=0,

XcR?2
argminf(x) = { [1] }
XeR?2 3| )"

e SO that there is a minimurfir = 0 and a unique minimizet = [%] of

this problem.



4.1.9 Equality-constrained optimization

e If g: R"— R™Mand the feasible set &= {x € R"|g(x) = 0} then the
problem is said to bequality-constrained.

e The power flow equations in Secti@x2.8is an example of equality
constraints.

4.1.9.1 Sub-types of equality-constrained optimizati@bliems
Linearly constrained
e If gis affine then the problem is calldidearly constrained.
e The DC power flow approximation to the power flow equations in
Section3.6is an example of linear equality constraints.
Example

YXER? f(X) = (xa—1)%+ (x2—3)%,

VXER%G(X) = X1—Xe,
m]g;{f(xﬂg(x) =0} = m]g;{f(xﬂxl — X2 = 0}. (4.5)



Example, continued

e The unique minimizer of Problend (5) is x* = [g] :

X2

4/ Fig. 4.4. Contour sets

Al ) C¢(f) of function re-
peated from Figuret.3

’ with feasible set from

1 Problem 4.5 super-

. imposed. The heights
of the contours de-

l\ crease towards the point

B [%] The minimizer
.21 ..

-4 / X = [2] is illustrated

B 3 2 a4 o0 1 2 s A4/5 X1 with ae.




Non-linearly constrained

e If there is no restriction og then the problem is calledon-linearly
constrained

e The AC power flow equations in Secti@2.8is an example of non-linear
equality constraints.

Example

e For example, consider the same objective as previo@isiR? — R
defined in §4.4):

vx e R?, f(X) = (x1 — 1)+ (xo— 3)°.
e However, letg : R? — R be defined by:
¥x € R?,g(X) = (x1)° + (X2)? + 2% — 3.
e Consider the equality-constrained problem:
min{ f (x)|g(x) = 0}. (4.6)

xeR



Example, continued

e The unique minimizer of Problen# (6) is X* ~ [

X2

0.5
0.9

Fig. 4.5. Contour sets
C¢(f) of function repeated
from Figure 4.3 with feasi-
ble set from Problem4(6)
superimposed. The heights
of the contours decrease

towards the poin % . The

minimizer x* is illustrated
as ae.



4.1.10 Inequality-constrained optimization
e If g:R"— R™M h:R"— R, and the feasible set is
S = {x € R"|g(x) = 0,h(x) < 0} then the problem is said to be
inequality-constrained.
e The line flow constraints in Sectidh7.2is an example of inequality
constraints.

4.1.10.1 Sub-types of inequality-constrained optimaragiroblems
Linear inequality constraints

e If his affine then the problem Isear inequality-constrained.
e The DC power flow approximation to line flow constraints in
Section3.7.3is an example of linear inequality constraints.



Linear program

e If the objective is linear and andh are affine then the problem is called a

linear program or alinear optimization problem.

e Minimizing a linear objective over:

— linearized power balance constraindsl(/), and
— linearized line flow constraints3(198),

Is an example of a linear optimization problem.
Example
YxeR2 f(X) = x1—Xo,
vxeR2,g(X) = X14+X—1,

2 X
vx e R h(x) = [_le,

xeR2

min{ f(x)|g(x) =0,h(x) <0} = mir;{xl—xz|x1+xz— 1=0,%x1 > 0,%x2 > 0}.
XeR

(4.7)



Example, continued

X2

i / Fig. 4.6. Contour sets

18 Ct¢(f) of objective func-
tion and feasible set for

Problem 4.7). The contour
sets are the parallel lines.

1.6

1.4

12 The feasible set is shown
i as the line joining the two
0 points [(1)] and [2] The

06 heights of the contours

decrease to the left and up.

02 % The minimizerx* = [(1)] IS

o 02 04 06 08 1 12 14 16 18 2 X1 illustrated as a.




Linear program, continued
e \We often emphasize the linear and affine functions by writing

min{c'x|Ax= b,Cx < d},
XER?

e wherec € R", Ac R™" be R™ C e R™" andd € R" and where' is
thetransposeof c.
e For Problem4.7), the appropriate vectors and matrices are:

c— [_ﬂ A=[1 1],b=[1],C= [_(1) _S] d— [8].

e \We can write this non-negatively constrained problem everem
concisely as:

min{c'x|Ax= b,x > 0}. (4.8)

XeR?



Linear program, continued

e There is a rich body of literature on linear programming drefé are
special purpose algorithms to solve linear programmindpleras.
e The best known are:

— thesimplex algorithm (and variants), and
— interior point algorithms .

e The reliability and capabilities of commercial linear praghnming
packages are two of several reasons why linearized appabxins to the
the power flow equality and inequality constraints are tgjbycused in
practice in implementation of electricity markets as otagion
problems.



Quadratic program

e If f is quadratic and andh are affine then the problem is called a
guadratic program or aquadratic optimization problem.

Example
YxeR% f(x) = (x¢—1)%+ (x2—3)?,
VXERZG(X) = X1—Xe,
vxeR2 h(x) = 3—xo. (4.9)



Example, continued

Fig. 4.7. Contour sets
C¢(f) of objective function
and feasible set for Prob-
lem @4.10. The heights
of the contours decrease

towards the poin % . The

feasible set is the “half-line”
starting at the point[%].

The minimizerx* = g] 1S

illustrated with ae.



Example, continued
min{ f(x)|g(x) = 0,h(x) <0} = 4, (4.10)
xcR2

argmin(f(9lax =0 <0} = { []1 e

Quadratic program, continued
e WWe can emphasize the quadratic and linear functions byngriti

. 1
min {EXTQX—I— c'x|Ax=b,Cx < d} ,

xeR?

e Where we have omitted the constant term in the objective.
e For Problem 4.10), the appropriate vectors and matrices are:

Q- [(2) g],c: [:é],A:[l _1],b=[0,C=[0 —1].d=[-3.



Non-linear program

e If there are no restrictions ofy g, andh, then the problem is called a
non-linear program or anon-linear optimization problem.

e This format can represent AC optimal power flow, which we will
formulate in Sectio®.1

Example
min{ f (x)|g(x) = 0,h(x) < 0}, (4.12)

X€R3
e wheref : R® - R, g: R® — R?, andh: R® — R are defined by:
YXeR3 F(X) = (x1)?+2(x2)?,

wergw = |22 e

vxe R3 h(x) = sin(xz)—0.5.



Convexity

e We will see in Sectiod.1.13that we can also classify problems on the
basis of the notion ofonvexity.

Piece-wise linearization

e Some electricity market formulations are most naturallgregsed with a
non-linear (possibly quadratic) objective:
— may actually be solved through a piece-wise linearized@ppration.

e See in Sectiok.6.



4.1.10.2 Satisfaction of constraints

Definition 4.4 Leth: R" — R". An inequality constrainiy,(x) < 0 is called
abinding constraint or anactive constraintatx* if hy(x*) = 0. Itis called
non-binding or inactive atx* if hy(x*) < 0. The set:

AX) ={le{L,....r}|h(x") =0}
is called theset of active constraintsor theactive setfor h(x) < 0 atx*. O



Example

2 - 3—X%
Vx e R h(X) = [x1+xz—1O]‘

Fig. 4.8. Pointsx*, x,
and x** that are fea-
sible with respect to

X* 1 inequality constraints.
X | The feasible set is the
i 1 shaded triangular region
il ] for which x, > 3 and
I T R S e e N I D] X1+ X < 10.




Example, continued

X = >
|4

e The constraintsi; (x) < 0 andhy(x) < 0 are non-binding so that the
active set isA(x*) = 0.

e This point is in the interior of the sdk € R?|h(x) < 0}.

o

e The constrainhy(x) < 0 is non-binding while the constraint
h1(x) < 0is binding so that the active setdgx**) = {1}.
e This point is on the boundary of the setc R?|h(x) < 0}.

]

e The constraint$i;(x) < 0 andhx(x) < 0 are both binding so that the
active set isA (x*) = {1, 2}.
e This point is on the boundary of the setc R?|h(x) < 0}.

*kk
X PR—




Discussion

e The importance of the notion of binding constraints is that typical for
some but not all of the inequality constraints to be bindintpa
optimum.



4.1.11 Summary
e For small example problems, inspection of a carefully draagram can
yield the minimum and minimizer.
e For larger problems where the dimensiorxkancreases significantly past
two, or the dimension af or h increases, the geometry becomes more

difficult to visualize and intuition becomes less relialsigoredicting the
solution.

e For larger problems we will use special-purpose softwafetbthe
minimum and minimizer:

— the PowerWorld optimal power flow solver is an example of

special-purpose software that is particularly tailoregaaer systems
optimization problems.

e A demonstration version of PowerWorld can be obtained from
www.powerworld.com/download-purchase/demo-software

e A tutorial on using PowerWorld is available at
www.ece.utexas.edu/ ~ baldick/classes/394V/PowerWorld.pdf


www.powerworld.com/download-purchase/demo-software
www.ece.utexas.edu/~baldick/classes/394V/PowerWorld.pdf

4.1.12 Solutions of optimization problems
4.1.12.1 Local and global minima
e Recall Problem4.2) and its minimumf*:

f*=minf(x).
XeS

e Sometimes, we call™ in Problem 4.2) theglobal minimum of the
problem to emphasize that there isxe S that has a smaller value of

f(x).

Definition 4.5 Let ||e|| be a norm oR", S C R", x* € §, andf : S — R. We
say thatx* is alocal minimizer of the problem migg f(X) if:

Je > O such that’x € S, (||[x—X*|| <€) = (f(xX*) < f(X)). (4.12)
The valuef* = f(x*) is called docal minimum of the problem O



4.1.12.2 Convex sets

Definition 4.6 LetS C R". We say thaF is aconvex sefor thatS is
convexif Vx, X' € S,vt € [0,1], (1 —t)x+tx' € S. O

¢ A line segment joining any two points in a convex Sas itself entirely
contained irfS.



Examples of convex sets
e Aline segment is a convex set.

Fig. 4.9. Convex sets
with pairs of points
joined by line segments.



Examples of non-convex sets

e The union of two non-overlapping line segments is non-cenve
e Non-convex sets can have “indentations.”

K & Fig. 4.10. Non-convex
sets.



4.1.12.3 Examples of local and global minimizers
Multiple local minimizers over a convex set

e f:R — R has two local minimizers at* = 3, x** = —3 oversS.

f(X)

3

f**z*
i+ local minimum
ol and minimizer ] Fig. 4.11. Local min-
B ima, f* and f**, with
- corresponding local
il not a local minimu minimizers x* and x*,
] over a convex seb =
fx | | {xe R|—4 < x< 4}
_local and global The point x* is the
= minimum and minimizer global minimizer and
B B ; - . - X f* the global minimum

X X X* oversS.



Multiple local minimizers over a non-convex set

e Over the non-convex s@t= {xe€ R| -4 <x<1or2<x<4}there are
three local minimizers¢ = 3, x** = —3, andx™* = 1.

f(X)

3

f**z*

i

- local minimum
f==*and minimizer

local minimum
and minimizer

f ] Fig. 4.12. Local and
x| | global minima and min-
~ local and global imizers of a problem
S minimum and minimizer over a non-convex set
e X P={xecRl-4<x<
X+ X* X lor2<x<4}.



Multiple local minimizers over a non-convex set in higher dmension

L | 24 o | 08
e The local minimizers arg* ~ [_0‘1] andx™ ~ [_0‘7].

Fig. 4.13. Contour sets
of the function defined
in (4.4 with feasible
set shaded. The two
local minimizers are in-
dicated by bullets. The
heights of the contours
decrease towards the

X1 point [%] :



4.1.12.4 Discussion

e |terative improvement algorithms, as typically used in imizing
problems defined in terms of continuous variables, invokeagating a
sequence of successively “better” points that provide ssgigely better
values of the objective or closer satisfaction of the camsts or both.

e With an iterative improvement algorithm, we can usuallyyogmlarantee,
at best, that we are moving towards a local minimum and memi

e For the problem illustrated in Figu#e13 if an iterative improvement

algorithm were started at the poixif) = [%] , what would you expect

as the result?



4.1.13 Convex functions
4.1.13.1 Definitions

Definition 4.7 Let S C R" be a convex set and Iét: S — R. Then,f is a
convex functiononS§ if:

vx,X € S,¥t € [0,1], f([L—t]x+tx) < [1—t]f(x) +tf(X).  (4.13)

If f:R"— Risconvex orR" then we say thaf is convex. A function
h:S — R"is convex orS if each of its componentsy is convex orS. If
h:R" — R" is convex orR" then we say that is convex. The sef is
called thetest set

Furthermore f is astrictly convex function ons if:
vx,X €S, (x#X) = (Vt € (0,1), f([1—-t]x+tx) < [1—t]f(x) +tf(X)).

If f:R"— Ris strictly convex orR" then we say that is strictly convex.
A functionh: S — R' is strictly convex orf if each of its components, is
strictly convex orfS. If h: R" — R is strictly convex orR" then we say
thath is strictly convex.O



Definitions, continued

e The condition in 4.13 means that linear interpolation of convéx
between points on the curve is never below the function galue

f(x)

10

Fig. 4.14. Linear in-
terpolation of a convex
function between points

°f ] never under-estimates
5t . 1 the function. (For clar-
Al ] ity, the line interpolating

f betweenx = 0 and
x = 1 is drawn slightly
above the solid curve:
it should be coincident
L 5 N 2 ; . X with the solid curve.)




Definitions, continued

Definition 4.8 Let S C R" be a convex set and lét: S — R. We say thatf
is aconcave functiononS if (—f) is a convex function of§. O

4.1.13.2 Examples
e A linear or affine function is convex and concave on any corsetx
e The functionf : R — R shown in Figuret.11is not convex on the convex
setS={xe R| -4 <x<4}.
e Qualitatively, convex functions are “bowl-shaped” andénwvel sets that
are convex sets.



4.1.13.3 Relationship to optimization problems

Theorem 4.1LetS C R" be a convex set and:fS — R. Then:

(i) If f is convex orb then it has at most one local minimum oger
(i) If f is convex orB and has a local minimum ové&rthen the local

minimum is the global minimum.
(ii) If f is strictly convex orf then it has at most one minimizer over

S.
O

Definition 4.9 If S C R"is a convex set anfl: R" — R is convex orS,
then mincs f(X) is called aconvex problem O

o If:
— the functionf : R" — R is convex,
— the functiong : R" — RMis affine, withvx € R",g(x) = Ax—b, and
— the functionh : R" — R' is convex,

e then mincrn{f(X)|g(x) = 0,h(x) < 0} is a convex problem.



4.1.13.4 Discussion

e Theoremd.1shows that a convex problem has at most one local
minimum.

e If we find a local minimum for a convex problem, it is in fact thebal
minimum.

e lterative improvement algorithms can find the global miniohaonvex
problems.

e Non-convex problems are generally much more difficult tesol

e \We will consider this in more detail in the context of integeoblems and
will bear this in mind when we formulate electricity markebplems as
optimization problems.



4.1.13.5 Characterizing convex functions
First derivative

Theorem 4.2LetS C R" be a convex set and suppose thatSf— R is
partially differentiable with continuous partial deriviaes onS. Then f

Is convex ord if and only if:
vx,X €8, f(x) > f(xX)+0f (x) (x—X). (4.14)

O

e Recall from Sectior2.5.2.1that the functionp: R" — R on the
right-hand side of4.14) defined by:

vx € RM, @(x) = f(X) + 0f (X)T(x—x),

e is called thdirst-order Taylor approximation of the functionf,
linearized aboux’.



First-order Taylor expansion

e The inequality in 4.14) shows that the first-order Taylor approximation
of a convex function never over-estimates the function.

F(x), @(x)

10

s 1 Fig. 4.15. First order
o . ] Taylor approximation

B : about x = —2 (shown
dashed) and about= 3
(shown dotted) of a
. convex function (shown
s a1 5 X solid).




Second derivative

e There are also tests of convexity involving positive seefirdteness of
the matrix of second derivatives, which is called Hessianand is
denoted]?f or Zf.

Theorem 4.3LetS C R" be convex and suppose that§ — R is twice
partially differentiable with continuous second partiardsatives orf.
Suppose that the second derivatiV# is positive semi-definite
throughoutS. Then f is convex of. If 0% is positive definite
throughoutS then f is strictly convex throughofit O

e Which of the following matrices are positive semi-definite?

11] .+[ 1 -05] 1 o0
0"’[1 1]—11’[0.5 1 ]’[o 1]'

e Which of the following matrices are positive definite?

OI11 1 -05| (1 O
11 1p0|-05 1 |’|0 -1



4.1.13.6 Quadratic functions

vx e R, f(x) = %eranL c'x, (4.15)
e whereQ € R™" andc € R" are constants an@ is symmetric.
e The Hessian of this function 19, which is constant and independentxof
e If Qis positive semi-definite then, by Theoreh®, f is convex.
e If Qis positive definite then, by Theoref3, f is strictly convex.
e If Q =0, so thatf is linear, what can you say about the convexityf @f



4.2 Duality

e Taking thedual of a constrained problem is a process whereby a new
problem is defined where the role of the variables and thet@ints is
either partially or completely exchanged.

e The constraints in the original problem are said talbalized.

e For reasons that will become clear as we discuss optimaiigitions,
duality has a close relationship with prices.

eletf:R"—>R,g:R"— R™ andh:R" — R",

e Consider the problem:

min{ f(x)|g(x) = 0, h(x) < 0}. (4.16)
XERN

e We define two functions associated withg, andh, called the

Lagrangian and thedual function:

— to define them, we will first need to consider generalizatoiithe
notion of minimum and maximum.

e We then consider the relationship between these functiods a
minimizing f.



4.2.1 Generalization of maximum and minimum
4.2.1.1 Infimum

e To discuss problems that potentially do not have a minimuenneed a
more general definition.

Definition 4.10LetS C R", f : S — R. Then, infs f(X), theinfimum of
the corresponding minimization problem, rgig f (X), is defined by:

thegreatest lower bound for
inf f(x) = Minyes f(X), if minyes f(x) is bounded below
x€S () = —oo, if minyes f(X) is unbounded below
oo, if minyes f(X) is infeasible.

By definition, the infimum is equal to the minimum of the copesding
minimization problem migs f(x) if the minimum exists, but the infimum
exists even if the problem has no minimum. To emphasize tleeof®, we
also use the notation igfrn{ f (x)|x € S} and analogous notations for the
infimum. O



4.2.1.2 Example
Unconstrained problem with unbounded objective

vx e R, f(X) =x (4.17)

e There is nof* € R such that'x € R, f* < f(x).
e The problem mig.r f(X) is unbounded below.
e The infimum is infcg f(X) = —oo.



4.2.1.3 Supremum

maxf (X) = —min(—f(x)). (4.18)
XES XES
Definition 4.11LetS C R", f : S — R. Then, sup_g f(x), thesupremum
of the corresponding maximization problem maxf (x) is defined by:

theleast upper boundfor
supf (x) = maxes f(X), if maxys f(X) is bounded above
p (x) = oo, if maxycs f(X) is unbounded above

XES T - .
—oo, if maxycg f(X) is infeasible

Y

The supremum is equal to the maximum of the corresponding
maximization problem maxs f (x) if the maximum existsd

e In some cases, we may need to consadended real functionsf in
Definitions4.10and4.11that themselves take on the valuwe®r —oo.
¢ In these cases, we make the natural definitions of inf and sup.



4.2.2 Lagrangian

Definition 4.12 Consider the functio : R" x R™ x R" — R defined by:
vx e R" VA € R™ Vue R", L(x, A, 1) = f(X) +ATg(x) +p'h(x). (4.19)

The function” is called theLagrangian and the variabled andu are
called thedual variables. If there are no equality constraints then
L:R"xR" — R is defined by omitting the term’g(x) from the definition,
while if there are no inequality constraints thén R" x R™ — R is defined
by omitting the termu'h(x) from the definition.CI

e Sometimes, the symbol for the dual variables is introduckdmthe
problem is defined by writing it in parenthesis after the ¢i@st, as in

the following:
min f(x) such thag(x) = 0, (A).

XeRN



4.2.3 Dual function
e Associated with the Lagrangian, we make:

Definition 4.13 Consider the functiorD : R™ x R" — RU {—} defined
by:

v [)\] cR™T D\ W) = inf L(X,A, ). (4.20)
M XeRN

The function? is called thedual function. If there are no equality
constraints or there are no inequality constraints, raés@dy then the dual
function?D : R" — RU{—0} or D : R™— RU{—oo} is defined in terms of
the corresponding Lagrangian. The set of points on whiclutia function
takes on real values is called tefective domainkE of the dual function:

E:{[t LD()\,u)>—oo}.

The restriction ofD to E is a real-valued functio®D : E — R. O




Discussion

e Recall Definition4.8 of a concave function.
e The usefulness of the dual function stems in part from thHevong:

Theorem 4.4Let f:R" - R, g: R"— R™ and h: R" — R". Consider
the corresponding Lagrangian defined #h19, the dual function
defined in 4.20), and the effective domaii of the dual function. The
effective domaiti of the dual function is a convex set. The dual
function is concave oR. [

e The convexity of the effective domain and the concavity efdual
function on the effective domain does not depend on any prppéthe
objective nor of the constraint functions.



4.2.4 Dual problem

Theorem4.5Let f:R" - R, g: R"— R™M and h: R" — R". LetA ¢ R™
and pe R, and suppose thate {x € R"|g(x) = 0,h(x) < 0}. That is,X
Is feasible for Problem4.16). Then:

f(R) > DO\ ), (4.21)
where?D : RMx R" — RU {—o} is the dual function defined i@ (20).
Proof By definition of D,

DA, W) = inf L(XA W),

XeRN

inf {f(x) +ATg(x) +p'h(x)}, by definition of £,
xeRN

< (%) +ATg(X) +u'h(X), by definition of inf,
< (%),

sinceg(X) =0, h(X) <0, andu > 0. O



Discussion

e Theorem4.5enables us to gauge whether we are close to a minimum of
Problem 4.16).

e For any value oh € R™andp e R',, we know that the minimum of
Problem 4.16) is no smaller tharD(A, 1), which is a lower bound for the
problem.

e We can also take theartial dual with respect to only some of the
constraints leaving the remaining constraints explicthi definition of
the dual function.



Corollary 4.6 Let f: R" - R,g: R"— R™ and h: R" — R". Then:
inf {f(x)|gx) =0,h(x) <0} > sup {D(\,W)p=> 0},
xeRN meRm—l—r
= sup{D(A,W)|n= 0},
AE:

wherekE is the effective domain @b. Moreover, if the problem on the
left-hand side has a minimum then:

min{f(x|g(x) =0.h(x) < 0} > Sup{DA.W[u>0}.  (4.22)
XeRE HE2

O

e Note thatD is an extended real function since it can take on the valkge
e We define the value of the right-hand side 4122 to be —co if E = 0.



Discussion

e This result is calledveak duality.

e The right-hand side of4(22) is called thedual problem and the
constraints in the original problem are said to have lmhealized.

e In this context, the original problem is sometimes callesighmal
problem.

e By Theoremd.4, maximizing the dual problem is equivalent to
minimizing a convex problem.

e The inequalities in4.21) and @.22) can be strict, in which case the
difference between the left and right-hand sides is calleditiality gap.

e If the left- and right-hand sides are the same, we say thed ikano
duality gap or that the duality gap is zero.

e Evaluating the right-hand side of.22 requires:

— evaluating the dependence of the infimum ofiti@er problem
infycrn £L(X,A, ) in the definition ofD as a function oA andy,
— finding the supremum of theuter problem sup[ﬁ]eE{Q)()\, W |u > 0}.



Discussion, continued

¢ In some circumstances, the inequality 9132 can be replaced by
equality and the sup and inf can be replaced by max and mihasaohte
right-hand side of4.22 equals the minimum of Problem.(L6 and the
right-hand side becomes:

max{ D(\, W)|u > 0} = max{ min{ f(x) +ATg(x) + uTh(x)}' n> 0} ,
(o] €E [f]eE LX<k 423

e having an inner minimization problem embedded in an outer
maximization problem.

e The requirements for these conditions to hold depend ondheexity of
the primal problem and on other technical conditions on timetions.

¢ In the next section, we will consider an example where suciditions
happen to hold, and we will discuss sufficient conditionsriat

¢ In the dual problem, the equality and inequality constsairdve been
transformed into terms in the Lagrangian, which is the dbjeof the
Inner minimization problem.



4.2.5 Example

e Consider the problem myar{ f (x)|g(x) = 0} wheref : R — R and
whereg: R — R are defined by:

vxeR, f(x) = (x)?
VxeR,g(Xx) = 3—x

e We take the dual with respect to the equality constraiix3= 0.
e Since there are no inequality constraints, we will omit trguanentu of
L and of D.
e \We consider the dual functio® : R — RU {—oo} defined by:
VAER, D) = inf L(X,A),

xelR

= inf{(X)>+A(3-X)},

xelR

- (-3 -8



Example, continued

e ThereforeE = R and sinceD is quadratic and strictly concave, the dual
problem has a maximum and:

max{D(A\)} = max{S)\—()\Tr)z}y

AcE AER

A 2
= max{— (——3) +9},
AeR 2
= 9, with maximizerA* = 6.

e The minimizer ofL(e,A*) isX* = % = 3, which is the minimizer of the
equality-constrained problem.

e \We have solved the primal equality-constrained problemdbyirsg the
dual problem.

e Since mipcrn{ f(X)|g(X) =0} = maxcg{D(A)}, there is no duality gap.

e The valueh* = 6 is called thd_.agrange multiplier for this problem:
— we will carefully define and generalize the notion of Lagrang

multipliers in Sectiot.4.1and subsequently.



4.2.6 Economic interpretation

e \We can interpret this example in an economic context rejafor
example, teeconomic dispatch

e Suppose that is the operating cost of a generator.

e Suppose that 3 x = 0 or, equivalently, the demand is 3 and we want to
meet the demand with production (or suppty)

e \We consider paying a pricefor productionx:

— revenueis 1 x x, and
— production costs aré(x).

e \WWe must model the decision-making process of the generateisponse
to the prices:

— revenue minus production costs is caltggkrating profit, I,

— we model the generator as aperating profit maximizer,

— that is, it seeks to maximize revenue minus production ¢osts
equivalently minimize production costs minus revenues,

— operating profit does not include the cost of equipment oradhgr
costs that are not affected by operating decisions.



Economic interpretation, continued

e \We claim that setting the priceequal to the Lagrange multipli@r
induces a generator trying to maximize its operating pfofib meet the
demand:

Operating profit=I1 = revenue- production cost,
= (A" xXx)—f(x).

e Note thatL(x,A*) = f(X) +A*(3—X) is minus the operating profii plus
a term that is independent rf

LX) = —M+ (M x 3).

e To maximize(A* x X) — f(x) = —L(X,A*) 4+ (A* x 3) over values ok, we
can equivalently minimize£(x, A*) over values ok.

e The minimizer ofL(x,A*) isx* = 3.

e The minimum (or infimum) of£(x,A) is D(A), SOD(A*) = L(X,\¥).

e In this case, the value @fthat maximize2D is also the price that induces
a profit-maximizing generator to suppty = 3, which meets the demand.

e Generalizations of this interpretation will be very imgort in our
discussion ofricing rules for electricity markets.



4.3 Continuous unconstrained problems

e We will analyze particular types of optimization problemdeetail with
the ultimate goal of treating all the significant types oflgesns that arise
in electricity markets, including problems with:

— equality and inequality constraints, and
— continuous and discrete variables.

e To build up to the problems we need to treat, we will first cdasi

continuous unconstrained optimization problems of thenfor
min f(x),

e wherexe R"andf : R" — R.

¢ In some cases, our objectives will only be piece-wise pértia
differentiable; however, for convenience here we will assuhat the
objective is partially differentiable with continuous pat derivatives.

e The extensions for objectives with “kinks” will be discudsas they arise.

e \We consideoptimality conditions that help us to characterize when we
have found a minimizer of a problem.



4.3.1 Optimality conditions

Theorem 4.7Let f: R" — R be partially differentiable with continuous
partial derivatives. If X is a local minimizer of f then!f (x*) =0. O

e A point that satisfie§lf (x*) = O s called acritical point .
e A critical point may be a minimizer, a maximizer, or an infieatpoint of

a function.
¢ With additional information, we can guarantee that a ailtfmoint is a

minimizer:
Theorem 4.8Let f: R" — R be convex and partially differentiable with

continuous partial derivatives oR" and let X € R". If Of (x*) = Othen
f(x*) is the global minimum and™s a global minimizer of [0



4.3.2 Example
e Consider the objective function defined #14) f : R? — R defined by:

vx e R?, f(X) = (x4 — 1)+ (xo— 3)°.
e and illustrated in Figure4.2and4.3.
e From Figure4.3, the minimizer off is x* = [%]



Example, continued
e Note that:

vx e R2,0f (x) = 382:21’3] :

5 20
vx e R, 0% (x) = 0 2],

e Which is positive definite.
e Note thatf (x*) = 0 and, by Theorerd.3, since* is positive definite,
f is convex.

e Therefore, by Theorem.8, x* = [:1,)] Is a global minimizer off.



4.4 Continuous equality-constrained problems

e Next, we will consider continuous equality-constrainedirzation
problems of the form:

min{ f (X)|Ax= b}, (4.24)

XeRN

e Wheref : R" = R, Ae R™" andb e R™M.



4.4.1 Optimality conditions

Theorem 4.9Suppose that fR" — R is partially differentiable with
continuous partial derivatives, AR™", and be R™. If x* e R"is a
local minimizer of the problem:

min{ f (X)|Ax= b},

XeRN

then:

I\* € R such thatdf (x*) + ATA\* = 0, (4.25)
AX" = b. (4.26)

O

e A vectorA* satisfying @.25, given anx* that also satisfiegl(26), is
called a vector oLagrange multipliers for the problem.

e The conditions4.25—(4.26) are called thdirst-order necessary
conditions (or FONC) for Problem 4.24).



4.4.2 Example
e Recall the example equality-constrained Probldib)(

mig{f(x)|Ax: b},

XeR
where:vx e R% f(x) = (x1—1)%+ (x2—3)?,
A= [1 -1],
b = [0].

e The (unique) local minimizer is at = [g] with minimum f* = 2.
¢ \We note that:
Of (x*) +AT[-2] = [3] + [ﬂ -2,
= 0,
e which is consistent with Theoret9for A* = [-2].



4.4.3 Economic interpretation

e Recall Definitiond4.12of the Lagrangian.
e For a problem with objectivé : R" — R and equality constraintdx = b,
with A€ R™"andb € R™the LagrangiarC : R" x R™ — R is defined

by:
¥vx e R" VA € R™ £(x,A) = f(X) +AT(Ax—b), (4.27)

whereA is called the vector oflual variables for the problem.
e \We also defi?e the gradients ﬂIWith respect toc andA by, respectively,
(L = [gXL andh L = [g)ﬂ :
e That is:

L (XA) = OF (X) +ATA,
[(hL(X,A) = Ax—Dh.

e We can interpret the first-order necessary conditidn23—(4.26) using
the Lagrangian_.



Economic interpretation, continued

e The first-order necessary conditions imply tkats a critical point of the
function L (e, A*) that also satisfies the constraids= b.
e A minimizer of the equality-constrained problem is also the
unconstrained minimizer of (e, A\*):
— If L(e,A*) is convex then a point* satisfyinglL(x*,A*) = 0 will be
an unconstrained minimizer af(e,A*).
— If we know A* then we can solve the equality-constrained problem
without explicitly considering the equality constraints!
— As in the example in Sectiofh 2.5

e The vector of Lagrange multiplieds™ “adjusts” the unconstrained
optimality conditions byA"™A* to “balance” the minimization of the
objective against satisfaction of the constraints.



Economic, interpretation, continued

e As in Sectiord.2.6 again interpreting_(e,A*) as minus the operating
profit (plus a constant) to a firm:

— finding the minimizer ofZ(e,A\*) is equivalent to finding the maximizer
of operating profit[T,

— the pricert= A* provides the compensation for operating costs incurred
by the firm so that unconstrained maximization of operatirgdits 1 is
consistent with minimizing the operating costs subjechwdquality
constraints.



4.4.4 Example

e Continuing with the previous equality-constrained Prabld.5), the
Lagrangians : R? x R — R is defined by:

YXERZVA E€R, L(XA) = (X1 —1)%+ (X2 — 3)° +A(X1 — X2).  (4.28)

e Setting the value of the dual variable in the Lagrangian Etquidne
Lagrange multiplierA* = [—2], we have:

VX € R? L(X,A*) = (X1 — 1)%+ (X2 — 3)% 4 (—2) (X1 — X2).

e The first-order necessary conditions for minimizingx, A*) with respect
to x is that:

o [20q-1)-2
LA = [2&;—3;+2]’

= 0,

e which yields a solution ok* = [g] :



Example, continued

Fig. 4.16. Contour sets
for Lagrangians(e,A\*)
evaluated at the La-
grange multipliers\* =
[—2].




Example, continued

e For other values of the dual variablesiot equal to the Lagrange
multipliersA*, the corresponding minimizer af(e,A) will differ from
the minimizer of Problem4.5). .

e For\ = [-5], the contour sets of (e, A) are illustrated in Figurd.17.

e The unconstrained minimizer of this function is&t'{g'Sl . illustrated

0.5
with ao in Figure4.17, which differs fromx*.

¢ In the context of our profit interpretation, note that the éwg” price7\
will induce the wrong behavior by a profit maximizing firm.

— the resulting valua is not feasible,
— it does not minimize the original equality-constrainedijeon.



Example, continued

5/ ——
C Fig. 4.17. Contour sets

for Lagrangian L(e,\)
evaluated at_value of
dual variables\ = [—5]
not equal to Lagrange
multiplers.

= N




4.4.5 Duality

e The discussion in Sectich4.3suggests that if we knew the vector of
Lagrange multipliera* we could avoid explicit consideration of the
equality constraints if was convex.

e Here we discuss how to characterize the Lagrange multglising
duality.



4.45.1 Dual function
Analysis

e As we discussed in Sectigh2, we can define a dual problem where the

role of variables and constraints is partly or fully swapped
e Recall Definitiond4.13of thedual function andeffective domain
e For Problem 4.24), the dual functionD : R™ — RU{—o} is defined by:

YA ER™ D(N) = inf L(x,\), (4.29)

XeRN
e While the effective domain is:
E={Ae€R"DA) > —oo},

e SO that the restriction ab to E is a function?D : E — R.



Example

YXERZYAER, L(XA) = (X1—1)2+ (Xo—3)2+ (X1 — X2),
VAER,D(A) = inf L(XA),

xeR?2

= inf {(xg —1)?+ (%2 —3)?+A(x1 —x2)}.

xeR?

e L(o \)is partially differentiable with continuous partial deatiwes and
Is strictly convex.

e By Corollary4.8the first-order necessary conditions are sufficient for
global optimality:

2(X1 —1)+A
LX) = lzgﬁi_ggt)\la

= 0.



Example, continued

e For any giverh € R, the unique solution is® = [%;%g] .

A 2 A 2 A A

- 9\ (4.30)



4.4.5.2 Dual problem
Analysis
e As we illustrated in Sectiod.2.5 under certain conditions, Lagrange
multipliersA* can be found as the maximizer, over the dual variab)ed
thedual problem:
max?D(A). 4.31
maxD(\) (4.31)
e Problem 4.3]) is called thedual problem to Problem 4.24).
e Problem 4.24) is called theprimal problem .
e Moreover, under certain conditions, the correspondingmier x*”) of
the inner problem migrn L(x,A*) satisfies the equality constraints.



Theorem 4.10Suppose that fR" — R is convex and partially

differentiable with continuous partial derivatives AR™", and
b € R™M. Consider primal problem, Problerd 24):

min{ f (X)|Ax= b}.

XeRN
Also, consider the dual problem, Probleth31). If the primal problem
possesses a minimum then the dual problem possesses a meainmdu
the optima are equal. That is:

)[2]1[{91{ f(X)|Ax= b} = T&X@(M' (4.32)

O

e Recall from Theorerd.4that the effective domaill of the dual function
Is a convex set and that the dual function is concavi.on

e This facilitates finding a solution of the dual problem.

e Exercised.2 however, shows cases where duality is not effective.



Example

e Continuing with the previous equality-constrained Prabld.5), the dual
function D was specified in4.30).

e The dual function is partially differentiable with contiows partial
derivatives on the whole dR.

e Moreover, since the dual function is concave, the first-orgeessary
conditions to maximizeD are also sufficient.

e Partially differentiating) we obtain:

ODA) = [-A— 2.

e Moreover,JJD(A) = [0] for A* = [—2].
e Also, D(A*) = 2, which is equal to the minimum of Probledh.§) and

xN) = [g] , which is the minimizer of Problen#(5).



4.4.5.3 Separable objective
Analysis

e Suppose thaf : R" — R is additively separable, so that:
n

VXeRMT(Xx) =% fi(x0),
=]

e Wherefy:R—-R,k=1,...,n.
e \We consider the dual.



Analysis, continued
VAEE,D(A) = inf L(XA),

XeRN

= mlerrl]L(x A), assuming that the minimum exists,
Xe

= min f(x) +AT(Ax—b), by definition of ,

XeRN

I S A —
- ma{g e (Fanr)}

whereA is thek-th column ofA,

= )@ﬁQ{ Z (fk(Xk) +)\TAka> } ~'b,

k=1

— zmln{fk %) +ATAxS —ATh. (4.33)

XkGR



Analysis, continued
e For each fixed € R™, the dual functionD(A) is the sum of:

a constant{—ATb), and
n one-dimensional optimization “sub-problems” that canheae
evaluated independently for eakb=1,...,n.

e \WWe havedecomposedhe problem by exploiting the separability of the
objective.

e We can think of each of the decomposed problems as corresptad
maximization of operating profiily for firm k given a price specified by
the value of the dual variables:

— again, as in Sections2.6and4.4.3 the pricert= A* provides the
compensation for operating costs incurred by each firm do tha
unconstrained maximization of operating profits for eaah fs
consistent with minimizing the overall operating costsjsabto the
equality constraints,

— typically, the equality constraints will be supply—demadradance
constraints.



Example

e Continuing with the previous equality-constrained Prabld.5), note
that the objective is separable.
e The dual function is:

VAR, D(A) = min L(X,A),

XcR?2
= min{(xe—1)%+Axe} + min{(x2 — 3)° — Axz}.
x1€R xo€R

(4.34)

e Each of the two convex sub-problems can be solved sepagatdlyhe
result is the same as obtained previously, with the same\adluagrange
multiplier A*.

e If the the sub-problems correspond to operating profit me&ation for

each firm:

— the pricert= A* provides the compensation for operating costs incurred
by each firm so that unconstrained maximization of operginodts for
each firm is consistent with minimizing the overall opergtaosts
subject to the equality constraints.



4.4.6 Sensitivity analysis

Theorem 4.11Consider Problem4.24), a perturbation vectoy € R™, and
a perturbed version of Problerd 24) defined by:

min{ f (X)|Ax=b—vy}. (4.35)
XeRN
Suppose that fR" — R is twice partially differentiable with continuous
second partial derivatives, AR™" and be R™, with the rows of A
linearly independent. Letx R" andA* € R™ satisfy:

Of (x*) + AT\ = 0,
AX* = D,
((ADX = 0) and (A #£ 0)) = (X' 0% (x")x > 0).

Consider Problem4.35). For values ofyin a neighborhood of the
base-case value of the parametges 0, there is a local minimum and
corresponding local minimizer and Lagrange multipliers fo
Problem @.35. Moreover, the local minimum, local minimizer, and
Lagrange multipliers are partially differentiable withspect toy and



have continuous partial derivatives in this neighborhodte sensitivity
of the local minimum tqg, evaluated at the base-cage- 0, is equal to

[)\*]T. If f is convex then the minimizers and minima are global.

4.4.7 Discussion
e The sufficient conditions for the sensitivity theorem aréalways
satisfied by the problems we study.
e Nevertheless, the sensitivity analysis can give us powedonomic
insights.



Discussion, continued

e |If we assume that the minimizer and minimum are well-defingatfions
of yand that they are partially differentiable with respecy,tthen the
following argument explains why the sensitivity is giventhg value of
the Lagrange multipliers.

e Consider Problem4(39), a perturbatiory, and the corresponding change
X in the minimizer of the perturbed problem.

e The change in the minimum is:

f(xX"+ ) — f(x) ~ Df(x*) ¢, with equality as* — 0,
= —[\*]"AAX, by the first-order
necessary conditiofif (x*) + ATA* = 0,
= Ty,
e SinCeA(X" + X)) = b—vy, so that—ANX* =Y.
e But this is true for any such perturbatignin the limit asy — 0, the
change in the minimum approacl'{éé]Ty.



Discussion, continued

e \We can interpret the Lagrange multipliers as the sensitofithe
minimum to changes iw.

¢ In many problems, the specification of constraints reptsssyme
judgment about the availability of resources.

e Then we can use the Lagrange multipliers to help in tradifithef
change in the optimal objective against the cost of the @selof
additional resources.

e In particular, if the equality constraint represents sypgémand balance
then the Lagrange multiplier provides information abowt tfarginal cost
of meeting additional demand.



4.4.8 Example
e Consider the equality-constrained Problehb) from Sectiord.1.9
mir;{f(x)|Ax: b},

xeR

YXeR2 f(X) = (x1—1)°+ (xo—3)?,
A = [1 _1] )
b = [0].
e Suppose that the equality constraints changed #am bto Ax=b—V.

e Then, ifyis small enough, the minimum of the perturbed problem dsffer
from the minimum of the original problem by approximately

Ny = (—2)y.



4.5 Continuous linear inequality-constrained problems

e Next, we consider inequality-constrained optimizatioalppems of the
form:

min{ f (x)|Ax=b,Cx < d}, (4.36)

XeRN

e whereA e R™" be R™M Ce R™", andd € R" are constants.
e We call the constraint€x < d linear inequality constraints.



4.5.1 Optimality conditions

Theorem 4.12Suppose that fR" — R is partially differentiable with
continuous partial derivatives, AR™ " be RM Ce R™".d e R".
Consider Problem4.36):

min{ f (x)|Ax=b,Cx < d},

XeRN

and a point X € R". If x* is a local minimizer of Problem4(36) then:
I\ € R™ Jp* € R such that:Of (x*) + ATV +CTur = 0;

M*(Cx* —d) = 0
AX° = b;
Cx" < d; and
> 0, (4.37)

where M = diag{|j } € R™".



The vectorad\* and [t satisfying the conditiong}(37) are called the
vectors of Lagrange multipliers for the constraints-Ad and Cx< d,
respectively. The conditions thatfCx" —d) = O are called the
complementary slackness conditionsThey say that, for each either
the /-th inequality constraint is binding or théth Lagrange multiplier is
equal to zero (or both)d



4.5.2 Example
e Recall the example quadratic program, Probldm.Q):

min{ f (x)|Ax=b,Cx < d}.

xeR?

Fig. 4.18. Contour sets
of objective function
and feasible set for
Problem 4.10. The
heights of the contours
decrease towards the

point % . The feasible

set is the *“half-line”
starting at the point

[g which is also

% the minimizer and is

B 0 1 2 3 4 s X1 illustrated with ae.




Example, continued
e The objective and constraints are specified by:

YxeR% f(X) = (x1—1)%+ (x2—3)?

A= [1 -1],
b = [0],
C = [0 _1]7
d = [-3].

e Figure4.18shows that the solution of this problemxs= [g] :

e \We claim thatx* = [g] together with\* = [—4] and* = [4]
satisfy @.37) for Problem 4.10.



Example, continued

(2 0] _2
eRLOF(X) = |5 - X*[—es]’

0f () + ATV 4-CTe

— g [§]+[:§]+[_ﬂ[ 4]+[_(1)] (4]
— 0
W(Cx —d) = [4 <[o 1] [g] _[_3]>
= 0;
!
= (0],
— b



Example, continued

Cx = [0 —1] [3] |

I IA
|
W,

AV
o N



4.5.3 Discussion

e The Lagrange multipliers again adjust the unconstraineitnagity
conditions to balance the constraints against the obgctiv

— since the inequality constraints only need to be “enfordedine
direction, the Lagrange multipliers on the inequality doaists are
restricted in sign.

e We will again refer to the equality and inequality consttsiim (4.37) as
thefirst-order necessary conditions, although we recogniatthie
first-order necessary conditions also include, strictgedqing, the other
items in the hypothesis of Theorefril2

e These conditions are called tkehn—Tucker (KT) or the
Karush—Kuhn—Tucker (KKT) conditions and a point satisfying the
conditions is called &KT point .



4.5.4 Lagrangian

e Recall Definitiond4.12of the Lagrangian.
e For Problem 4.36) the Lagrangiar® : R" x R™ x R" — R is defined by:

vx e R" VYA € R™ Ve R", L(x\, 1) = f(X) + AT (Ax—b) + uf (Cx—d).

e As in the equality-constrained case, define the gradientswith respect
T 1
to X, A, andp by, respectively[ L = [gTL] , [hL = [gTL] , and
T
0L

1= o] -

e Evaluating the gradients with respectdad, andy, we have:

(XA, W) = OF(x) +ATA+CTy,
D)\L(X7 )\7 U) = AX— b7
[IJL(X7)\7H) = Cx—d.

e Setting the first two of these expressions equal to zero dejges some of
the first-order necessary conditions for the problem.



Lagrangian, continued

e As with equality-constrained problems, the Lagrangiarvigles a
convenient way to remember the optimality conditions.

e However, unlike the equality-constrained case, in ordeetover the
first-order necessary conditions for Problef3g we have to:

— add the complementary slackness conditions; thati$Cx* —d) = 0,

— add the non-negativity constraints pnthat is,u> 0, and

— interpret the third expression on the previous slide asespoonding to
inequality constraints; that i€x < d.

e If the hypotheses of Theoreml2are satisfied and, additionallf,is
convex therx* is a global minimizer ofL (e, A*, "), whereA* andy* are
the Lagrange multipliers.



Lagrangian, continued

e Paralleling earlier discussion, interpretiiige, A*, i) as minus the profit

(plus a constant) to a firm:

— finding the minimizer ofZ (e, A*, ") is equivalent to finding the
maximizer of profit,

— the prices\* andpu* provide the compensation for operating costs
incurred by the firm so that unconstrained maximization ofifs is
consistent with minimizing the operating costs subjechwdquality
and inequality constraints.



4.5.5 Convex problems

Theorem 4.13Suppose that fR" — R is partially differentiable with
continuous partial derivatives, AR™ " be RM Ce R™".d e R".
Consider Problem4.36):

min{ f (x)|Ax=b,Cx < d},
xeRN
and points x € R", A* e R™, and i € R". Let M* = diag{|y }. Suppose
that:
(i) fisconvexox e R"|Ax=Db,Cx<d},
(i) Of (x*) + ATA*+CTpr =0,
(iii) M*(Cx*—d) =0,
(iv) AX =band Cx <d, and
(V) i > 0.
Then X is a global minimizer of Problen¥(36). O

¢ In addition to the first-order necessary conditions, thé-@rder sufficient
conditions require that is convex on the feasible set.



4.5.6 Example

e Again consider Problem?(10 from Sectionst.1.10and4.5.2

e In Sectiond.5.2 we observed that = g , A" = [—4], andy* = [4]
satisfy the first-order necessary conditions for this pgobl

e Moreover,f is twice continuously differentiable with continuous pairt
derivatives and the Hessian is positive definite.

e Therefore,f is convex and* is the global minimizer of the problem.



4.5.7 Duality

e As we discussed in Sectigh2and as in the discussion of linear equality
constraints in SectioA.4.5 we can define a dual problem where the role
of variables and constraints is partly or fully swapped.

e \We again recall some of the discussion in Sectidhin the following
sections.



4.5.7.1 Dual function

e \We have observed in Sectidnb.4that if f is convex therx* is a global
minimizer of L(e A*, "),

e Recall Definitiond.130of thedual function andeffective domain

e For Problem 4.36), the dual functionD : R™ x R" — RU {—o} is
defined by:

\ [)\] cR™T D\, W) = inf L(XA, ). (4.38)
M xeRN

e The effective domain of) is:
E= { [ﬁ] c R™T | D\, ) > —oo}.

e Recall that by Theorem.4, [E is convex andD is concave ofit.




Example

e \We continue with Problen¥(10).
e The problem is:

min{ f(x)|Ax=b,Cx < d},

XeR?

e Where:

<
X
Mm
7
N
—
N
I

1
0]
0 -1J,
3].

e The LagrangiarL : R? x R x R — R for this problem is defined by:
Vx € R? VA € R,VueE R,
LX) = f(X)+AT(Ax—b)+pf(Cx—d),
= (x1—1)2+ (% —3)2+A[1 —1]x+pu([0 —1]x+3).

(
[
[
[
[-

o O o >
I



Example, continued

e For any giver\ andy, the Lagrangiar_(e, A, ) is strictly convex.

e By Corollary4.8, the first-order necessary conditiong’(x,A, i) = 0 are
sufficient for minimizingL (e, A, ).

e Moreover, a minimizer exists, so that the inf in the defimtaf D can be
replaced by min.

e Furthermore, there is a unique minimizét¥ corresponding to each
value ofA andp:

VxeR2 VA € R,VUER,
(XA, W) = OF(x) +ATA+CT,

- e[ (e[ Y
ncamenon - (39" e[ 2

- H - [‘gzg] A+ [8'5] " (4.39)



Example, continued

e Consequently, the effective domainis= R x R and the dual function
D:R xR — Ris given by:

vm eR2, D\, = XienﬂgnL(x,)\,u),
= L(xXM X, ), sincex®H minimizesL(e,\, 1),
_ (x(l)"”) _ 1)2+ (X(ZA,H) _3)2
FAL —1]x<M*>+p([o —1]x<M*>+3),
o - e =T

e on substituting from4.39) for xM¥,



4.5.7.2 Dual problem
Analysis

e As in the equality-constrained case, if the objective isvearonR" then
the minimum of Problem4.36) is equal toD(A*, "), whereA* andp*
are the Lagrange multipliers that satisfy the necessarglitons for

Problem 4.36).
¢ As in the equality-constrained case, under certain candfithe

Lagrange multipliers can be found as the maximizer ofdihal problem:

Hax{@(k,u)luz 0}, (4.40)
N EE

e where?D : E — R is the dual function defined i(38).
e Again, Problem4.36) is called theprimal problem to distinguish it from

Problem 4.40).



Example

e Continuing with the dual of Problend (10, the effective domain is
E =R x R and the dual functio®: R xR — R is:

A 2 ol Lo o 1

v M € B2 DA = —5 (V)2 (17— 2~ S\,

e With unique minimizer of the Lagrangian specified dy39).

e The dual function is twice partially differentiable withminuous second
partial derivatives.

e In particular,

A 5 [ 2-A—p/2
R*, OD(A =
V[u] € y ( 7“) ] _)\/2_u/2]7
N _[-1 -05
V[u € R? 0*D(\, 1) = 05 _0.5].
. A" —4 . .
e We claim that[u* = [ 4] maximizes the dual function over> [0].




Example, continued
e In particularOD(A\*,u¥) = 0, u* > [0], andd?D is negative definite.
*

° Consequently{ﬁ*] Is the unique maximizer of dual Probledh.40).



4.5.8 Sensitivity analysis
Theorem 4.14Consider perturbationg € R™ andn € R" and the problem:
m]%grgl{f( X)|Ax=b—y,Cx<d—n}. (4.41)
Xe
Suppose that the function: R" — R is twice partially differentiable
with continuous second partial derivatives. Suppose thatR" is a
local minimizer of Problem4.41) for the base-case valugs= 0 and

n = 0, with associated Lagrange multiplieks and . Moreover,
suppose that the matrik has linearly independent rows, whekds the

matrix with rows consisting of:

e the m rows of A, and

e those rows ¢of C for which? € A(x").

Furthermore, suppose that there are no inequality constsaihat are
binding at the base-case solution with corresponding v&ahfd_agrange
multipliers zero and that:

((Ax = 0) and (A # 0)) = (AXTO% (x*) % > 0).
Then, for values of andn in a neighborhood of the base-case value of



the parametery = 0 andn = O, there is a local minimum and
corresponding local minimizer and Lagrange multipliers fo
Problem @.41). Moreover, the local minimum, local minimizer, and
Lagrange multipliers are partially differentiable withspect toy andn
and have continuous partial derivatives. The sensitigitiEthe local
minimum toy andn, evaluated at the base-cage- 0 andn =0, are

equal to[)\*]Jr and [u*]T, respectivelyd



4.5.9 Discussion

e The Lagrange multipliers yield the sensitivity of the oltjee to the
right-hand side of the equality constraints and inequaliystraints.

e Again, the sufficient conditions for the sensitivity themrare not always
satisfied by the problems we study.

e Theoremd.l4does not apply directly to linear programming problems;
however, sensitivity analysis can also be applied to lipeagramming
and, as with linear programming in general, the linearitpath objective
and constraints leads to various special cases.

e Again, the Lagrange multipliers associated with the camsts can give
us powerful economic insights.

e Suppose that there are some inequality constraints thairalang at the
base-case solution having corresponding values of Lagrandtipliers
zero. Why is the value of the Lagrange multiplier not a rd&abdicator
of the sensitivity of the minimum to changes in the corresjiog
right-hand side?



4.5.10 Example

e Consider Problem4(10 from Sectionst.1.10and4.5.2 which has
objectivef : R? — R and constraintéx = b andCx < d defined by:

YxeR% f(X) = (x1—1)%+ (x2—3)?

A = [1 _1]7
b = [0]7

C = [0 _1]7
d = [-3].

e Note that the binding constraint at the base-case soluasmbn-zero

Lagrange multiplier.
~ A 1 -1
A= le]=1s )

e The matrix:
e has linearly independent rows afdf is positive definite, so that
(DX # 0) = (XD (x)x > 0).



Example, continued

e Suppose that the inequality constraint was changé€ikte d —n).

e If n is small enough, then by Theorefrii4the minimum of the perturbed
problem differs from the minimum of the original problem by
approximatelyrn.



4.6 Continuous non-linear inequality-constrained problens
e The final type of continuous problem we will consider is:

min{(x)/g(x) = 0,h(x) < O}, (4.42)

e whereg: R" — RMandh: R" — R" are non-linear.
e Generally, the optimality conditions available for nondar problems are
local and not as strong as those for linear problems:

— motivates the practical emphasis on linear programmingddetions of
electricity market designs.

e For example, to guarantee the existence of Lagrange metspl
associated with the constraints of non-linear problemsyillggenerally
need to make additional assumptions on the functions dgfthia
constraints:

— no additional assumptions are needed to guarantee thermasof
Lagrange multipliers for feasible linear programs.

e We will consider one sucbonstraint qualification for non-linear
problems in the next section.



4.6.1 Regular point

Definition 4.14 Letg:R" — RMandh:R" — R". Then we say that* is a
regular point of the constraintg(x) = 0 andh(x) < Oif:

(i) g(x*) =0andh(x*) <0,
(i) gandh are both partially differentiable with continuous partial
derivatives, and

(iii) the matrix A has linearly independent rows, whekés the matrix
with rows consisting of:

e themrows of the Jacobiad(x*) of g evaluated ax*, and

e those row,(x*) of the Jacobiai of h evaluated ax* for which
¢ e A(X).

The matrixA consists of the rows af(x*) together with those rows
of K(x*) that correspond to the active constraints. If there are no
equality constraints then the matéxconsists of the rows df (x*)
corresponding to active constraints. If there are no bigdin
inequality constraints theA = J(x*). If there are no equality



constraints and no binding inequality constraints themtagix A
has no rows and, by definition, it has linearly independewsro

[

e Requiring that a candidate minimizer be a regular point isxample of a
constraint qualification for non-linear optimization.



4.6.2 Optimality conditions

Theorem 4.15Suppose that the functions R" — R, g: R" — R™, and
h:R" — R" are partially differentiable with continuous partial
derivatives. Let JR" — R™Mand K: R" — R"*" be the Jacobians of g
and h, respectively. Consider Problet42):

min{ f (x)|g(x) = 0,h(x) < 0}.
xeR"N

Suppose that'xe R" is a regular point of the constraintgg) = 0 and
h(x) <O0.



If x* is a local minimizer of Problem4(42) then:

IV € R™, 3+ € R such that:Of (x°) +I(¢) A +K(x) T = 0,
M*h(x*) = O;
g(x) = 0
h(x*) < 0; and
> 0,
(4.43)

where M = diag{|y } € R™". The vectora* and |t satisfying the
conditions 4.43 are called the vectors of Lagrange multipliers for the
constraints gx) = 0 and h(x) < 0O, respectively. The conditions that
M*h(x*) = 0 are called thecomplementary slackness conditionsThey
say that, for eachHd, either the/-th inequality constraint is binding or the
¢-th Lagrange multiplier is equal to zero (or both)l

e As previously, we refer to the equality and inequality coasts in @.43
as thefirst-order necessary conditiongor FONC) or the
Karush—Kuhn—Tucker conditions.



4.6.3 Lagrangian

e Recall Definitiond.12of the Lagrangian.
e Analogously to the discussion in Sectidrb.4 by defining the
Lagrangians : R" x R™x R" — R by:

vxe R" VYA e R™ Ve R", L(x,\, 1) = f(x) +ATg(x) +p'h(x),
e We can again reproduce some of the first-order necessarytionsds:

DX‘L(X*7 A*7 l‘l*) — 07
D)\L(X*a )\*a H*) = 0,
CLL(X A p) < 0.



4.6.4 Example

e Recall the example non-linear program, Probldmi ), from
Section4.1.10

min{f(x)[g(x) = 0,h(x) < 0},

XER3

e wheref : R3 - R, g: R% — R?, andh: R? — R are defined by:
YXeR3 F(X) = (x1)?+2(x2)?,

RS = [222 ]

¥x e R3 h(x) = [sin(xs) —0.5].

0.5
e We claim thatx* = 1.5] A= [6] , andp” = [5] satisfy the first-order

/6 1
necessary conditions in Theorehis




Example, continued

e First, x* is feasible.

vx e R3,0f(x) =

¥x € R3,J(x)

J(X*) =

vx € R3,K(x)

K(x*) =

~ *
e Note thatA = J(X)

regular point of the constraints.

[ 2X1
4X2] )
| 0

0 -1 —cos(x3)]
-1 0 cogxs) |’
0 -1 —cos(n/6)]
-1 0 cosm/6) |’
[0 0 cogx3)],
[0 O cosT/6)].

K (x") has linearly independent rows so thais a



Example, continued

OF (X°) + I(¢) A+ K () Tpr

1 0 -1

6 -1 0
—cogqT1/6) cogTT/6)

_I_

t>(>

o0 Q =0
~—~ ~—~
><>(- ><>(-
~— ~—

il

SN

- - »

o

AV B VAN

e That is,x*,A*, andy* satisfy the first-order necessary conditions.



4.6.5 Senditivity

e \We can also develop sensitivity analysis.
e Again, the Lagrange multipliers provide information absensitivity to
changes in the constraints.



4.7 Integer problems

e In some formulations, the entries of the decision vectortrhas
integer-valued

— the decision to have a generator on or oftimt commitment is
binary-valued,

— combined-cycle generating units typically have severstdite
operating modes, such as: off; one gas turbine operatiregggas
turbine and one steam turbine operating; two gas turbinesatipg;
two gas turbines and one steam turbine operating.

e We writeZ = {0,4+1,+2,...} for the set of integers.

e An integer programming problem orinteger optimization problem
seeks the minimum and minimizer over choices of a decisioabig that
lies in some subset &".

e To emphasize that the variables are no longer continuousiilvaese the
symbolz for decision vectors with entries that are integer-valued.



4.7.1 Example

e Suppose that C Z? is the set of pointg such thatz; € {0,1} and
7o € {0,1}.
e Why is this set non-convex?

Z
1 1 °
Fig. 4.19. Example
Oe . y4) feasible sef for integer
0 1 program.



4.7.2 Non-convexity of feasible set
e Integer programming problems have non-convex feasibk set

— The feasible set in the example is non-convex since a lingrdra
between any two points in the feasible set does not entiein khe set.

e Because of the non-convexity of the feasible set, iteratygovement
algorithms are usually insufficient to solve integer progmang
problems:

— General-purpose algorithms for solving integer prograngmroblems
can be extremely computationally intensive.

— Some particular integer programming problems can be solved
efficiently.



4.7.3 Types of problems

e As with optimization problems involving continuous varies, we can
consider integer problems with feasible sets that are dikfieerms of:

— equality constraints and
— inequality constraints.

e Commercial software for integer programming is availablariteger
linear programs:

mln{c zZ|Az=Db,Cz< d},

zeZn
e andinteger quadratic programs:

ze7Zn

_ 1
min { X'Qx+c'z

zZlAz=D0b,Cz< d}



4.7.4 Duality and Lagrangian relaxation

e \We can consider dualizing constraints, such as the supgpigadd
balance constraint, and solving the dual:

— maximizing a dual of a problem with integer variables is alabed
Lagrangian relaxation.

e Because of the non-convex feasible set, there is usuallaktylgap
between primal and dual formulations of integer progranghproblems:
— In our profit maximization interpretation, this typicallyaans that

pricesmtassociated with the dual variables arsufficientto induce a
profit maximizer to behave consistently with minimizing tusts

subject to the constraints.

— In the context of electricity markets that include unit cortment, such
as USday-ahead markets this means that we need more than prices on
energy supply—demand balance to induce generators to baitiech
consistent with minimizing the costs.

— Side paymentsare typically used in such electricity markets to induce
behavior that is consistent with minimizing overall costs.

— See in SectiondO.



4.8 Mixed-integer problems

e In many problems, only some of the entries of the decisiomoranust be
integer-valued, while the others are continuous:

— the decision to have a generator on or oftimt commitment is
binary-valued,
— the production level of the generator is continuous-valued

e A mixed-integer programming (MIP) problem omixed-integer
optimization problem seeks the minimum and minimizer over choices of
decision variables such that some entries have integeevalod some
have continuous values.



4.8.1 Example

e Suppose thdP C R? is the set of points{)z(] such tharz € {0,1} and

22<x <4z
e Why is this set non-convex?

X
4 A
2
Fig. 4.20. Example
Oe ya feasible set P for
0 1

mixed-integer program.



4.8.2 Discussion

e The feasible seP in Figure4.20illustrates typical generator production
constraints including generatonit commitment:

z=1 corresponds to the generator being off, while
z=1 corresponding to the generator being on and able to promiterea
continuous range betwean= 2 andx = 4 units of output.

e Again, because of the non-convexity of the feasible setegdpurpose
algorithms are very computationally intensive.

e Commercial software for mixed-integer programming is ke for
mixed-integer linear programs (MILP or simply MIP):

: t|Z Z| _ Z -
A0 2 R [E] sbe i <af. @

for mixed-integer quadratic programs, and for some other types of
problems with integer and continuous variables.

e As with integer programming problems, there is usually ditdugap
with mixed-integer programming problems.




4.8.3 Example of duality gap

e Consider the problem mﬂ)ﬂlep{ f ([)Z(D g ( [i]) = 0}, where

P CR? f:R?— R, andg: R? — R are defined by:

- {[]ex

so thatP is the example feasible set in Figute£0,
0, ifz=0andx=0,
B (with the generator “off”),
o 4+x, ifz=1and2<x<4,
(with the generator “on” and producing,

VX e R,g( )f ) = 3—X, soifg < [)Z(D = 0 then supplyk equals demand

AS {0,1},22§x§4z},

1
N
]

VXEIP’,f(

e Note that the generator has two variables associated withp#ration:

— a “unit commitment” variable, and
— a “production” variablex.



Example of duality gap, continued

e The setP specifies the feasible operating points for the generator
e We can write this problem as a mixed-integer linear prograriobows:

min {4z+x —x=-3,0<z<1,2z<x<4z}. (4.45)

ZeZ . XER

e \We can solve this simple problem by inspection:

— To meed demand of 3, the generator must be on, sazthatl, and the
generator must have productigh= 3.

— That is, the only feasible point, and therefore the minimddhis
problem, isz = 1 andx* = 3.

— The minimum isf ([;] ) =4+ X" =T7.

e General MILPs arenuchharder to solve than this example.



Example of duality gap, continued

e \We consider the dual functio® : R — RU {—o0} with respect to the
equality constraint, defined by:

YAER,D(\) = inf L ([)Z(] ,A) ,

HEs
- (o)

e TOo minimize the Lagrangian ove{r)z(] € P, we will need to consider the

values of\.
e First note that:

Z 3\, if z=0andx=0,
f([x]>+7‘(3_x) = {3)\+4+(1—)\)x, if z— 1 and 2< x < 4,
_ 3\, if z=0andx=0,
o AAN+4—(A—-1)x, ifz=1land2<x<4.



Example of duality gap, continued

e TO minimize L <[§] ,A) = f <[§D +A(3—X), we must compareX3
to values of 3 +4— (A — 1)x with 2 < x < 4.
e \We consider various cases for
ifA<l1
3N < 3A+4,
< 3N +44(1-A)x, for2<x<4.

e S0, the Lagrangian is minimized far = 0,x* = 0.
e D(A) =3\,
ifl<A<?2
e Then(A—1)x<4for2<x<4.
AN<3A+4—(A—-1)x, for2<x< 4.

e S0, the Lagrangian is again minimized or = 0,x™* = 0.
e D(A) =3A.



Example of duality gap, continued
ifA=2
e Then A <3A+4— (A—1)xfor2<x<4.
e Also, A =3A+4— (A —1)xfor x=4.
o So the Lagrangian has two minimizers:
=0,x* =0, and
=1 X" =4,
° @(7\) = 3\.
if A >2
3\ >3A+4—(A—1)x, for x=4.
e Moreover, the right-hand side decreases with increasisg it is
minimized over < x < 4 byx=4.

e S0, the Lagrangian is minimized far = 1,x* = 4.
e DIA)=3A+4—-(A—-1)4=8-—A.



Example of duality gap, continued

e The figure shows that the maximum of the dual occups at 2 with
D(N*) = 6.
e However, the corresponding valuexdf does not meet demand.

Fig. 4.21. Dual func-
il ] tion D(N) (shown solid)
ot ] and the corresponding
value of x* (shown
dotted) versusA for
0 . : : . : A example mixed-integer

0 0.5 1 15 2 25 3

A* problem.




Example of duality gap, continued
¢ In this problem there is a duality gap, since:

f <[§:D —7>6=D(\).

e Calculation of the dual maximizer was laborious in this case is
challenging in general for mixed-integer problems.

e For future reference in the discussion of unit commitmergaactionl10,
note that the calculation can be simplified in cases whereljective is
linear and theeonvex hull of the generator production constraint set can
be evaluated conveniently:

— the convex hull of a sét is the smallest convex set that contaih)s

— for some specific formulations, the convex hull can be oletziny
relaxing the integer variables to being continuous,

— see Exercisd4.9.



4.8.4 Economic interpretation of duality gap

¢ In an economic context, consider paying the generator & prior its
energy.
e No pricettfor production will equate supply to the demand of 3:

— Formt< 2, a profit maximizing firm will produce nothing.

— Formt= 2, a profit maximizing firm is indifferent between producing
nothing and producing 4 units. It prefers these alternatiggoroducing
at any other level.

— Formt> 2, a profit maximizing firm will want to produce 4 units,
exceeding demand.

e As mentioned in SectioA.7.4 whenever there is a duality gap, there are
no prices on the corresponding dualized constraints tHainguce profit
maximizing firms to satisfy the constraints:

— side paymentghat are separate from the prices on the dualized
constraints will be used as part of the pricing rule to indoebavior
that is consistent with minimizing overall costs (see S®tii0).



4.9 Uncertainty
¢ In many practical problems thereuscertatinty :

— generators may fail randomly,
— renewable resources vary in production, and
— demand levels differ from forecasts.

e Stochastic optimizationis a formal approach to optimizing the expected
value of the objective of a optimization problem that is gabfo
uncertainty:

— typically requires explicit representation of probalilitistributions of
random events,

— has large computational effort when there are multiple dsrens of
uncertainty.

e Robust optimization is a formal approach to optimizing the worst case
of the objective of an optimization problem that is subjectihcertainty:

— worst case focus can result in pessimistic results comparégpical
case” conditions.



Uncertainty, continued

e Although there are proposals for inclusion of stochastimbust
formulations in electricity markets, they are typicallytiiged currently.
e Electricity market formulations usually focus on optinmgi

— an objective that represents the typical case conditions,
— but include constraints that set aside generation capasityeserves”
to cope with variations from typical conditions.

e Seein Sectio®.12.1



4.10 Summary

¢ In this chapter we have defined optimization problems.

e We illustrated particular types of problems with elemep@&tamples.

e \We defined the notion of convexity.

e We defined local and global and strict and non-strict minima a
minimizers of optimization problems.

e Continuous, integer and mixed-integer problems were define

e Duality and optimality conditions for continuous problemere
presented.

e Integer and mixed-integer problems were defined.

e Implications of dualizing non-convex problems was expdore

e Uncertainty was briefly discussed.
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Homework exercises

4.1 Consider the functiorf : R? — R defined by:
vx € R?, f(X) = (x1)% 4 ()% + 2%z — 3.

(i) Sketch the contour se@; (f) for f =0,1,2,3.

(i) Sketch on the same graph the set of points satisfgiixy = 0 where

g:R? — R is defined by:
VX € Rz, g(X) = X1+ 2% — 3.

(i) Use your sketch to find the minimurfi* and the minimizex* of
min{f(x)|a(x) = 0}.

(iv) Find a value of the Lagrange multipliar that satisfies the first-order
necessary conditions in Theoreh®. (Hint: Theorem4.9only considers

the case of linear constraints, but the constraints in ttablpm are
actually linear.)



4.2 In this exercise we consider the left- and right-hand sid¢d.@2) for the
case where the feasible set of the primal problef4s{x € R"|g(x) = 0}. That
is, we only have equality constraints and we can neglectubédiriablesu
corresponding to the inequality constraints.

(i) Consider the primal problem mjgg2{ f (X)|g(x) = 0} where the
functionsf : R> — R andg : R? — R are defined as:

VXER? f(X) = —2(Xg —X2)? 4 (X1 + X2)?,
VxeR%,g(X) = X1 —X,

Evaluate the left- and right-hand sides 4132 for this f andg. That is,

evaluate mig.g2{ f (X)|g(x) = 0} and sup_ D(A). Be careful that you

actually find an infimum of the inner problem. Is there a dyajap?
(i) Repeat the previous part but re-defih¢o be:

Vx € R?, f(X) = (X1 4 X2)°.
(iif) Repeat the previous part but re-defiheéo be:
¥x € R? f(X) = (X +%2)2 + (X1 — %)



4.3 Consider the functiorf : R — R defined by:
vx € R, f(x) = exp(—x).

() Calculatel]f.
(i) Calculate?f.
(iif) Show thatf is convex.
(iv) Show that nax exists satisfying]f (x) = 0.
(v) Show that there is no minimizer of mitk f(X).



4.41n this exercise we use GAMS or MLAB to minimize two functions.

() Use GAMS or use the MTLAB functionfminunc to minimize
f : R? — R defined by

VX ER?, f(X) = (xg —1)%+ (X — 3)% — 1.8(xg — 1) (% — 3).
If you use MATLAB, you should write a MTLAB M-file to evaluate both

f andJf. Specify that you are supplying the gradiért by setting the
GradObj option toon. Set theLargeScale option tooff . Use

initial guessx(©) = [_g] . Report the number of iterations required.
(i) Repeat the first part, but minimize the functién R* — R defined by:
VX € R f(X) = (%1 — 1)2+2(% — 3)2+2(xa — 1)2+ (x4 — 3)?
—18(x1—1)(xx—3)—1.8(xx—3)(x3—1) — 1.8(x3 —1)(x4 — 3),
3

using initial guess(© = _g . Report the number of iterations

-5
required.



4.5 Consider the problem mjpg-{ f (X)|Ax = b} wheref : R? — R is defined
by:

1
Vx € R? f(x) = EXTQX+ c'x,

e[ 2+

and the coefficient matrix and right-hand side of the cogsas specified by:
A=[1 —-1],b=0].

() Solve the problem by solving the first-order necessandamns.
(i) Use GAMS or use the MTLAB functionquadprog to solve the

problem. Use initial guesg® = [_g] .

with:



4.6 Consider Problem4(5) from Sectior4.1.9
min{ f (X)|Ax= b},
XER?2

wheref : R — R, A€ R*2 andb € R! were defined by:

VXxeR? f(X) = (x¢—1)°4 (%2 —3)%,
A = [1 _1]7
b = [0].

Suppose that the equality constraints changed #om bto Ax=b—Vv.

(i) Calculate the sensitivity of the minimum pevaluated ay = [Q].
(i) Solve the changed problem explicitly fgr= [0.1] and compare to the
estimate provided by the sensitivity analysis.
(iii) Repeat the previous part for= [1].



4.7 Consider Problem4(10):
min{ f (X)|Ax=b,Cx < d},

where
YxeRZ f(x) = (x¢—1)2+ (x—3)%,
A = [l _1]7
b = [0],
C = [0 —1],
d = [-3].

() Use GAMS or use the MTLAB functionquadprog to find the
minimizer and minimum of the problem. Use as initial guess
X(10) =5, x<20> = 9.
(i) Form the dual of the problem.
(i) Use GAMS or use the MTLAB functionquadprog to find the
maximum of the dual problem. Use as initial guess
W = [0.25,A = [0].



4.8 Consider Problem4(10), which has objectivd : R? — R and equality
constraintAx = b defined by:

YXeRZ f(X) = (x—1)%+ (%—3)%
A = [l _1]7
b = [0].

However, suppose that the inequality constraint was cliait@@x < d — n, with
C € R™? andd € R* defined by:

C = [0 _1] )
d = [-3].
Letn = [0.1].
() Use Theoren#.14to estimate the change in the minimum due to the
change in the inequality constraint.

(i) Solve the change-case problem explicitly and complaeerésult to that
obtained by sensitivity analysis.



4.9 Consider the example mixed-integer linear progrdm%) from
Section4.8.3

min {4z+x —x=-3,0<z<1,2z2<x<4z}.
zeZ,XeR

(i) Solve this problem. (Hint: What is the value xfto satisfy the equality
constraint? What is the value Bfto be consistent with this value &f?)
Report the minimizing valuez andx".

(i) Solve the following continuous problem that is obtairfeom the
mixed-integer linear program by setting the integer vdeaugual toz*
obtained in the previous part:

min{4z° + x| —x= —3,2Z" < x < 47"},

XeR
Report the minimizing valug* and Lagrange multipliex* on the
constraint—x = —3.

(i) Sketch the convex hull of the generator productionstoaint sefP that is
illustrated in Figuret.20. That is, sketch the convex hull of:

{[i] EZxR‘OSzg 1,22§x§4z}.



(iv) Compare the convex hull in the previous part to the sédioled by
relaxing the integer variable to being continuous:

(1o

(v) Solve the continuous relaxation of the mixed-integeedr program.
That is, solve the following problem:

min {4z+x —x=-3,0<z<12z2<x<4z}.
zeR xeR

0<z< 1,22§x§4z}.

Report the Lagrange multipliér- on the constraint-x = —3. Compare
to the value of the dual maximizer obtained in SecdoB. 3



4.101In this exercise, we will solve a mixed-integer linear p@ogrusing
MATLAB andyalmip , which is a modeling and optimization toolbox. To get
started, you need to haveAVILAB andyalmip installed. For a tutorial on how
to obtain, install, and use them, see:
www.ece.utexas.edu/ ~ baldick/classes/394V/Matlab_mip.pdf
The problem is still small enough that you could solve it bymerating cases;
however, we will need to solve larger problems in Secfibithat cannot be
reasonably solved by enumeration, so we will usetMaB andyalmip for
this exercise to gain experience for the later exercises.
We will consider the following mixed-integer linear probie

X1—X=-D,0<27 <1,2z <x <4z, }
9

min {421+X1+22+2XZ 0<2<1052%<x<4z

2e72 xcR?
for varying values oD. This problem is similar to the problem solved in
Exercise4.9, but now has two binary and two continuous variables,
corresponding to the commitment and dispatch variables@benerating units.

(i) Suppose thab = 1. Solve the problem. Explain why the solution
obtained is the only feasible solution.

(i) Suppose thab = 2. Solve the problem. Explain why the solution
obtained is qualitatively different to that obtained in Eciee4.9.


www.ece.utexas.edu/~baldick/classes/394V/Matlab_mip.pdf

(iii) Suppose thaD = 3. Solve the problem. Are there any alternative
solutions?

(iv) Suppose thab = 4. Solve the problem. Why has the solution changed
qualitatively compared to the case tiat= 2?
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