
1

Wind variability and 

impact on markets

May 2020

Duehee Lee,

Konkuk University,

South Korea.

Ross Baldick,

Department of Electrical and 

Computer Engineering, 

University of Texas at Austin.



Outline
◼ Growth of wind in Texas,

◼ Challenges under high levels of wind, 

◼ Comparison of Texas wind penetration to rest of US, 

◼ Comparison of: West Texas/ERCOT; Denmark/EU; and, 

South Australia/Australia,

◼ Texas as microcosm of high wind challenges,

◼ Statistical modeling to understand challenges under high 

penetration,

◼ Generalized dynamic factor model and Kolmogorov 

spectrum,

◼ Scaling of wind power and wind power variability,

◼ Implications for electricity systems and organized wholesale 

markets,

◼ Conclusion. ◼2



Texas has experienced 

remarkable wind growth.

3Source: USDOE 2019.
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Challenges under high 

levels of wind integration.
◼ Typical time of daily peak of US inland

wind production coincides with daily 

minimum of electrical load and vice versa:

Difference between load and wind (“net load”) 

must be supplied by other resources.

◼ Variability of wind production:

Changes in supply-demand balance must be 

compensated by other resources.

◼ With higher wind penetrations, timing and 

variability become more critical. 4



Measurement of wind 

penetration.
◼ Important metrics of penetration are wind 

as a fraction of load energy or power in 

“balancing area” or in interconnection.

◼ Contiguous US has tens of balancing 

areas and three interconnections:

Western,

Eastern,

Electric Reliability Council of Texas (ERCOT), 

most of Texas, smallest of US 

interconnections, peak load around 75 GW. ◼5



Balancing Areas and 

Interconnections.
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Comparison of Texas 

and ERCOT to rest of US.

◼ Wind provided 7.2% of electricity by energy in 

2019 in US (AWEA, 2020).

◼ Wind provided 17.5% of electricity by energy 

in 2019 in Texas (AWEA, 2020). 

◼ Wind provided 20% of electricity by energy in 

2019 in ERCOT (ERCOT, 2020).

◼ ERCOT has, by far, the greatest wind 

penetration of the three US interconnections, 

and largest of any large balancing area.
7
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West Zone

Peak load 6 GW,

Generation 22 GW, 

Wind 16 GW

North Zone

Peak load 29 GW,

Generation 35 GW

Wind 1.5 GW

South Zone

Peak load 20 GW,

Generation 30 GW

Wind 5 GW 

Houston Zone

Peak load 19 GW,

Generation 18 GW

Most ERCOT wind is in 

West Texas zone.

Source: 

Potomac 

2019 

ERCOT (2018)

Peak load 74.5 GW,

Generation 106 GW, 

Wind 22.5 GW



Comparison of West 

Texas/ERCOT to Denmark/EU to 

South Australia/Australia
◼ The International Energy Agency 

highlights that Denmark and South 

Australia are in “Phase 4” of renewable 

integration, or even more advanced, (IEA, 

2018), requiring “advanced technologies to 

ensure reliability.”

◼ Australia and US are in “Phase 2,”

◼ European Union is in “Phase 3.”
9



Comparison to Denmark.
◼ Denmark noted for high wind penetration.

◼ Denmark has two AC electrical networks:

Eastern Danish power system is part of the 

Nordic interconnection (peak load around 63 

GW in 2015, NordREG, 2016),

Western Danish power system is part of the 

Continental Western European system (peak 

load around 530 GW, ENTSO-E, 2016).

600 MW HVDC link between them.

◼ Even the Eastern Danish system alone is 

integrated into a system with peak load 

nearly as high as ERCOT. ◼10



West Texas zone vs Denmark: 

Area and generation capacity.

◼ West Texas zone area about 2.5 times 

Denmark area.

◼ Total installed power generation capacity 

in West Texas zone around 22 GW, 

(compares to around 16 GW in Denmark, 

(ENTSO-E, 2019)),

◼ So total Danish generation capacity is 

somewhat smaller than the total West 

Texas zone generation capacity.
◼11



West Texas vs South Australia: 

Area and generation capacity.
◼ West Texas zone area about one tenth of 

South Australia area:

Stability issues more pressing in SA,

◼ Total installed power generation capacity 

in West Texas zone around 22 GW, 

(compares to around 6 GW in South 

Australia, (AEMO, 2018)),

◼ So South Australia generation capacity is 

significantly smaller than the total West 

Texas zone generation capacity. ◼12



West Texas vs Denmark vs 

South Australia: Wind capacity.
◼ Wind power generation capacity in West 

Texas zone around 16 GW, 72% of total 

installed generation capacity, compares to: 

9.5 GW of wind, 60% of installed generation 

capacity, in Denmark (ENTSO-E, 2019), and 

1.8 GW of wind, 1 GW of solar, under 50% of 

installed generation capacity in South Australia 

(AEMO, 2018),

◼ Total wind capacity higher in West Texas than 

Denmark or South Australia, and higher as %.
◼13



West Texas vs Denmark vs 

South Australia: Wind energy.

◼ Annual wind energy production in West 

Texas zone as a fraction of electric energy 

consumption in West Texas around 

100%, compares to:

under 60% in Denmark, (ENTSO-E, 2019), 

and

under 40% in South Australia, (AEMO, 

2018).

◼14



West Texas vs Denmark vs 

South Australia.

◼ But these are all misleading statistics, 

since West Texas, Denmark, and South 

Australia are each embedded in much 

larger interconnections!

◼ Relevant comparison statistics require 

comparison to total capacity in 

interconnection or total energy throughout 

year. 

◼15



ERCOT vs EU vs Australia.

◼ Annual wind energy production in ERCOT 

as a fraction of electric energy 

consumption in ERCOT around 20%

(ERCOT, 2020), compares to:

around 11% in EU, (ENTSO-E, 2019), and

around 7% in Australia, (CEC, 2019).

◼ Overall renewable penetration in EU (32%, 

(ENTSO-E, 2019)) and Australia (21%, 

(CEC, 2019)) higher than ERCOT:

Due to hydro and solar. ◼16



ERCOT is microcosm of 

high wind challenges.

◼ Large amount of wind capacity:

Largest capacity of any US state,

◼ Small interconnection:

Smallest of three US interconnections,

◼ Significant wind production off-peak:

Due to West Texas wind,

Coastal wind better correlated with demand.

◼17



ERCOT is microcosm of 

high wind challenges.

◼ West Texas wind resources far from load 

centers:

Most transmission constraints thermal 

contingency, but some related to voltage or 

steady-state or transient stability,

Australian system may have more significant 

stability constraints.

◼ Little flexible hydroelectric generation:

Unlike Eastern and Western US, Europe, and 

Australia. ◼18



Wind production modeling to 

better understand challenges.

◼ Big data flavor:

Roughly 100 wind farms in ERCOT,

Relevant issues at timescales from sub-minute to 

multi-year,

One year of 1-minute data from 100 farms is 

around 50 million measurements,

Understanding inter-year variability requires 

multi-year data sets.

◼19



Wind production modeling to 

better understand challenges.

◼ Use statistical techniques:

relationship between time/season of 

maximum wind production and time of 

maximum load,

variability of wind and scaling of variability,  

 implications for needed flexibility in “residual” 

thermal system that provides for net load. 

◼20



Wind production modeling to 

better understand challenges.

◼ Modeling issues:

 Intermittency of wind resource, 

Correlation between wind and load,

Power production from wind is affected by 

multiple issues, including:

◼ Curtailment,

◼ Cut-in and cut-out speeds,

◼ Turbine size compared to rated capacity,

◼ Turbine transfer function characteristics (Tobin et 

al., 2015). 
◼21



Intermittent wind 

power production.

22



Correlation of ERCOT wind and load.
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Statistical wind power model.

◼ Model wind power production and load as 

sum of (slowly varying) diurnal periodic

component plus stochastic component.

◼ Use “generalized dynamic factor model” 

(GDFM, Forni et al., 2005) for stochastic:

Decompose stochastic into sum of “common” 

component and “idiosyncratic” component.

Common component for wind and load powers 

expressed in terms of fewer underlying 

independent stochastic processes, the “factors,”

 Idiosyncratic component different for each farm.
24



Diurnal periodic component 

slowly varies over year.



Periodic plus common 

accounts for most variation.  
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Kolmogorov slope of 

wind power spectrum
◼ A. N. Kolmogorov mainly known to electrical 

engineers through contributions to 

understanding of stochastic processes.

◼ Related contributions in turbulent flow crossed 

over to electrical engineering community 

through Apt (2007).

◼ Kolmogorov used dimension analysis to predict 

that power spectral density of wind power 

would have characteristic roll-off of slope -5/3.

◼ Verified in Apt (2007). ◼27



28

1

2

4

8

16

32

64

Number 

of ERCOT

wind farms

aggregated

Wind power spectrum.

Source:

ERCOT 

data,

Analysis

based on

Apt (2007). 

n



Spectrum of common and 

idiosyncratic components.
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Common component 

dominates spectrum 

at lower frequencies
Idiosyncratic 

component 
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Scaling of wind power 

and wind variability. 
◼ Intuitive that aggregating of wind over large 

areas should reduce relative variability.

◼ However, variability of each component 

scales differently with aggregation:

Periodic:

◼ Scales approximately linearly with capacity,

Common stochastic:

◼ Effects of underlying (weather) factors tend to add,

 Idiosyncratic stochastic:

◼ Weakly correlated between farms, so grows slowly. 30
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Scaling of wind power 

and wind variability.

1 Farm

76 Farms
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Scaling of wind power 

and wind variability.
◼ Higher frequency components of stochastic 

components grow more slowly with 

aggregation than lower frequency 

components:

Because idiosyncratic component grows slowly,

Aggregation reduces high frequency 

components relative to low frequency.

◼ Aggregation does not solve variability:

Diurnal periodic component,

Common stochastic component. 32



Scaling of wind power 

and wind variability.
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Scaling of wind power 

and wind variability
◼ Echoes observations in Katzenstein, 

Fertig, and Apt (2010):

Most reduction of variability is obtained by 

aggregating relatively few farms,

Still expect significant intermittency in total 

wind, even aggregating many farms in a 

region,

 Intermittency only reduced further by 

aggregating over geographical scales that 

span different wind regimes:

◼ Inland and coastal Texas wind. 34



Intermittent wind 

power production.

35



Intermittent wind 

power production.
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Implications for 

electricity systems.
◼ Electricity supply must match load 

continuously (first law of thermodynamics),

◼ In short-term, variation between mechanical 

power and electrical load is compensated by 

inertia of electrical machines:

About 8 seconds of supply in inertia.

◼ Over longer time-frames, generators are 

instructed (“dispatched”) to adjust mechanical 

power to balance generation and load.

◼ Wind variability complicates balancing. 37



“Organized” wholesale 

markets.

◼ About 60% of US electric power supply is 

sold through “organized” markets 

administered by Regional Transmission 

Organizations (RTOs) (USEIA, 2016). 

◼ RTOs include Midcontinent, California, 

New England, New York, PJM, Southwest 

Power Pool, Electrical Reliability Council 

of Texas (ERCOT). 

◼ Will focus on organized markets.
◼38



Organized wholesale 

markets in North America.

39Source: www.ferc.gov

National Centre for 

the Control of Electricity 

(CENACE)



Organized wholesale markets.
◼ Dispatchable generation typically receives 

a target generation level every 5 minutes:

Ramp to this level over next 5 minute interval,

◼ Target generation level based on forecast 

of the load minus renewable production for 

the end of the 5 minute interval.

◼ Fluctuations from linear ramps within 5 

minute intervals and error in forecast:

 compensated by generation that responds to 

faster signals, “regulation ancillary service,”

 more variability requires more regulation. 
40



Organized wholesale markets.

◼ Scaling analysis implies that wind variability in 

5 minute interval grows slowly with total wind:

Required amount of regulation ancillary service 

grows slowly with total wind capacity,

Needed regulation capacity in ERCOT still mostly 

driven by load variability,

Various changes to market design have enabled 

better utilization of regulation capacity.

◼ Variability over tens of minutes to hours to 

days:

Growing with wind.
41



Day-ahead market.
◼ Short-term forward market based on 

anticipation of tomorrow’s conditions,

◼ Provides advance warning for “slow start” 

generators that require hours to become 

operational, “committed,”

◼ Wind forecasts can be poor day-ahead:

 Implications if generator fleet is mostly slow 

start,

Necessitates commitment of significant 

capacity “just in case,” with implications for 

lower efficiency, increased emissions. 42



Real-time market. 
◼ Arranges for 5 minute dispatch signals,

◼ Increasingly also represents commitment 

of “fast-start” generators through 

“lookahead dispatch” (not, yet, in ERCOT).

◼ Increasing availability of fast-start 

generators avoids commitment except 

when they are very likely to be needed.

◼ Large wind ramps and high off-peak wind 

can still be problematic if not enough 

installed and available flexible capacity to 

compensate for wind variability. 
43



Must-take resources.

◼ In some markets, wind is “must take,” 

necessitating that other resources 

compensate for almost all wind variability.

◼ In ERCOT, Midcontinent, and some other 

areas, wind farms participate by offering into 

market and being dispatched within limits:

Just like all other generators,

Provides flexibility to RTO to curtail 

“economically,” with prices falling low, to zero, or 

even negative,

Arguably facilitated high level of wind in ERCOT. 44



Diurnal periodic variation, 

intermittency, and markets.

◼ West Texas wind has peak production 

when load is low.

◼ When stochastic wind component adds to 

periodic peak but load is low, total wind 

production requires thermal generation to 

dispatch down or switch off.

◼ In market-based approach to integrating 

wind, this results in low, zero, or even 

negative prices.
45



ERCOT price-duration 

curve in 2018.

Source: 

Potomac 

(2019), 

Figure 9.



Conclusion.
◼ Periodic component plus GDFM for 

stochastic component provides good match 

to statistics of empirical wind power 

production data:

Periodic, common stochastic, and idiosyncratic 

stochastic components.

◼ Explains characteristics of aggregated wind 

production and scope for reduction of 

variability by aggregation.

◼ Markets with wind will experience times of 

low, zero, or negative prices.
47



Ongoing and future work.

◼ Development of Matlab GDFM toolbox.

◼ Analyze multi-year data sets:

Year-on-year changes in diurnal periodic and 

stochastic components,

Assess year-on-year variability in resource, 

changes in wind turbine fleet characteristics, 

and changes in levels of curtailment,

◼ Analyze solar production data:

Effect of intermittent cloud cover.
48
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