next up previous
Next: About this document ... Up: EE381K Multidimensional Digital Signal Previous: Why Might This Be

Periodic Sequences

$\diamond$
A sequence is rectangularly periodic if

\begin{displaymath}\tilde{x}(n_1, n_2+N_2)=\tilde{x}(n_1, n_2) \end{displaymath}


\begin{displaymath}\tilde{x}(n_1+N_1, n_2)=\tilde{x}(n_1, n_2) \end{displaymath}

$N_1$: Horizontal Period
$N_2$: Vertical Period
$\diamond$
More generally, $\tilde{x}(n_1,n_2)$ is periodic with periodicity matrix $\bf N$ if

\begin{displaymath}
\tilde{x}({\bf n}) =
\tilde{x}({\bf n} + {\bf N}   {\bf r}),
\forall{\bf n} \in {\bf\cal I}, \forall{\bf r} \in {\bf\cal I}
\end{displaymath}

where ${\bf\cal I}$ is the set of all integer vectors of same dimension as ${\bf n}$.

  1. $\vert \det {\bf N} \vert \ne 0$ is the number of samples in one period of $\tilde{x}$.
  2. ${\bf N}$ is an integer matrix and $\vert \det {\bf N} \vert$ is a positive integer.
  3. The columns of ${\bf N}$ represent periodicity vectors.
  4. ${\bf N} \mbox{ diagonal } \Longrightarrow
\mbox{ rectangular periodicity}$.



Brian L. Evans