
Converting Graphical DSP Programs into Memory-
Constrained Software Prototypes

Shuvra S. Bhattacharyya, Hitachi America, Ltd.
Praveen K. Murthy, University of California, Berkeley

Edward A. Lee, University of California, Berkeley

International Workshop on Rapid Systems Prototyping,
Chapel Hill, North Carolina, June 7-9, 1995.

Application Specific Software Environments

• Providesyntax that is natural for the application
domain

• Incorporate appropriate computational models
• may be streamlined to enable powerful optimization

• Optimize for appropriate implementation
constraints

Embedded DSP systems

• Computational characteristics
• Infinitely iterated

• Possibly multirate

• Mostly deterministic control flow

• Implementation objectives
• Target throughput

• Memory

• Latency

• Power

Computational Models for DSP Software

• Synchronous dataflow
— Lee/Messerschmitt, 1987

• Well behaved stream flow graphs
— Gao/Govindarajan/Panangaden, 1992

• The token flow model
— Buck/Lee 1992

• Multidimensional synchronous dataflow
— Lee 1992

• Scalable synchronous dataflow
— Ritz/Pankert/Meyr, 1993

• Cyclo-static dataflow
— Bilsen/Engels/Lauwereins/Peperstraete, 1994

All are closely related to the synchronous dataflow model

Problem overview

• Minimization of memory requirement (program
anddata) when synthesizing software from a
synchronous dataflow program
• Target throughput

• Memory

• Latency

• Power

• May be critical to all other objectives
• On-chip vs. off-chip memory

• Limited on-chip memory on programmable DSPs

Synchronous dataflow

• The number of tokens produced and consumed by each
actor is fixed.

• Periodic schedules.

• Unique repetitions vectorq.

X Y Z
2 1 1 1

YXZYZ, XYZYZ, X(2 YZ)

D

qX = 1, qY = 2, qZ = 2

Periodic schedule example

X Y Z
2 1 1 1

X Y Z
2 1 1 1

X Y Z
2 1 1 1

X Y Z
2 1 1 1

X Y Z
2 1 1 1

X Y Z
2 1 1 1

Y

X

Z

Y

Z

Code synthesis model

SDF
Graph Scheduler Code Generator

Storage
Allocation

Actor Library

periodic

schedule

• Static Schedules

• In-line Code Target
Code

Looped schedules

A B C
3 2 3 2

Schedules

(2 ABC)CBCAB(2 C)A(2 BC)C

(4 A)(6 B)(9 C)

(4 A)(3 (2B)(3 C))

qA = 4, qB = 6, qC = 9

Single Appearance
Schedules

Buffering model

• Buffer on every arc in the graph.

• Size of a buffer is given by the maximum number of tokens
queued on the arc in the schedule.

• Total buffering cost is sum of individual buffer sizes.

X Y Z2 1 1 1

X Y Z2 1 1 1

X Y Z2 1 1 1

X Y Z2 1 1 1

X Y Z2 1 1 1

X Y Z2 1 1 1

Y

X

Z

Y

Z

buffering cost = 2 + 1 = 3

Advantages over alternative buffering models

Alternative #1 : Flat single appearance schedules with
shared buffers.

• Buffering requirement can be very bad for some graphs.
• Does not handle delays well.
• Latency is maximized.
Alternative #2: Use nested schedules with buffer sharing.

• More awkward to implement.
• Cost function is more complicated.

A B DC
50 1 100 50 1 25

A (50 B) (100 C) (4 D): Cost = 5000

A (2 (25 (B (2 C))) (2 D)): Cost = 200

Code size vs. buffer memory trade-offs

X Y Z
10 1 1 1

5D

X (10 Y) (10 Z)(5 YZ) X (5 YZ)

buffering cost:
10 + 1 = 11

buffering cost:
15 + 10= 25

X (10 Y Z)

buffering cost:
15 + 1 = 16

code size:
S(X) + 2S(Y) + 2S(Z)

code size:
S(X) + S(Y) + S(Z)

code size:
S(X) + S(Y) + S(Z)

single appearance schedules

Code Data

Minimum buffer schedule, no looping 13735 32

Minimum buffer schedule, with looping 9400 32

Worst minimum code size schedule 170 1021

Best minimum code size schedule 170 264

Minimum buffer single appearance schedules

A B C D
4 3 1 1 2 3

Schedule Buffering Cost

(9 A)(12 B)(12 C)(8 D) 36 + 12 + 24 = 72

(3 (3 A)(4 B C))(8 D) 12 + 1 + 24 = 37

(3 (3 A)(4 B))(4 (3 C)(2 D)) 12 + 12 + 6 = 30

• Finding buffer-minimal single appearance schedules isNP-complete,
even foracyclic, homogenous SDF graphs [Murthy, PhD thesis 1996].

• Thus, need to use heuristics.

Minimum buffer single appearance schedules

single appearance schedule⇔ aparenthesization of alexical ordering

5

2

3

2
A

B C

• (3 (5 A) (2 B)) (10 C) buff. cost = 40

• (15 A) (2 (3 B) (5 C)) buff. cost = 60

• (15 A) (6 B) (10 C) buff. cost = 60

• (5 (3 A) (2 C)) (6 B) buff. cost = 36

• (15 A) (2 (5 C) (3 B)) buff. cost = 60

q = (15, 6, 10)

Dynamic programming post optimization (DPPO)

• Given a lexical ordering, computes an optimal
parenthesization.

• Time complexity .O n3()

… xi xi 1+ …xk() xk 1+ …xj 1– xj()()…

b i j,[] MINi k j<≤ b i k,[] b k 1 j,+[] cij k[]+ +{ }=

left subchain cost
split cost

right subchain cost

Lexical orderings that are not topological sorts

5

2

3

2
A

B C

10D

• (5 (3 A) (2 C)) (6 B) buff. cost = 46

• (5 (2 C) (3A)) (6 B) buff. cost = 40

Two heuristics for constructing lexical orderings

• Pairwise grouping of adjacent nodes (PGAN)
• Bottom-up algorithm

• Effective for regular topologies

• Optimal for a class of graphs

• Recursive partitioning by minimum cuts (RPMC)
• Top-down algorithm

• Effective for irregular topologies

Complementary:
often, when one does poorly, the other does well

Recursive partitioning by minimum cuts

• Idea: Find acut of the graph such that
a) All arcs cross the cut in the forward direction.
b) The cut results in fairly even-sized sets.
c) Amount of data crossing the cut is minimized.

Recursively schedule the nodes on the left side of the cut before
nodes on the right side of the cut.

A
C

F

E1

11

10
10

11

1

D
10

B1

VR

VL

RPMC continued

• Splitting the graph where the minimum amount of data is
transferred is agreedy approach and is not optimal in
general.

• Finding the minimum cut such that all of the conditionsa, b,
and c are satisfied is itself a difficult problem:
• Methods based on max-flow-min-cut theorem do not work.
• Graph partitioning when the size of the partition has to be bounded is NP-

complete.

• Therefore, a heuristic solution is needed.

A heuristic for legal minimum cuts

• Let be the set of nodes consisting of and its
descendents. Let .

• This forms a cut satisfying condition (a).

• Perform a local optimization by moving those nodes from
that reduce the cost into .

• Do this for all nodes in the graph.

• Repeat above steps to generate cuts obtained by letting
 be the set of nodes consisting of and itancestors,

and letting .

• Keep the cut with the lowest cost.

• Runs in time .

VR u() u
VL V \ VR u()=

VL
VR u()

u

VL u() u
VR V \ VL u()=

O V E V
2

V()log•+()

RPMC example

A

C

F

E1

10

10
10

10

1

D
10

B1

A

C

F

E1

10

10
10

10

1

D
10

B1

,C{ } desc C()∪
tcos 12=

,C{ } desc C() D{ }∪∪
tcos 11=

Acyclic pairwise grouping of adjacent nodes

Idea: Develop a loop hierarchy by clustering two adjacent
nodes at each step.

Definition: Clustering means combining two or more nodes
into one hierarchical node.
• The graph with the hierarchical node instead of the nodes

that were clustered is called the clustered graph.

Definition: A clusterizable pair of nodes is a pair of nodes
that, when clustered, does not cause deadlock.
• A sufficient condition for clusterizability: Two nodes are

clusterizable if clustering them does not introduce a cycle
in the clustered graph.

APGAN algorithm

• Cluster two nodes that maximize over all
clusterizable pairs .

• Continue until only one node is left in the clustered graph

• This is similar to theHuffman coding algorithm.

• After constructing cluster hierarchy, retrace steps to
determine the nested schedule.

• Post-process the schedule using dynamic programming to
generate an optimal nesting for the lexical ordering generated
by APGAN.

• Runs in time for sparse graphs.

gcd r A() r B(),{ }
A B,{ }

O V
3()

APGAN example

A

D E

1

3

5
4

BC

2

3
1 2

10

1
2

2 D E

6

5
4

Ω1C
3

1 2

10

1
2

2 D E

10

4

10

1

2

2

Ω2 10

2

1

20

Ω2

Ω3

Ω4

2 3A()B() 2C()() E 5D()()

2 Ω1 2C()()() E 5D()()

2Ω2() E 5D()()

2Ω2()Ω3

Ω4

Cyan nodes are clus-
tered at each step.

Optimality of APGAN

Definition: The buffer memory lower bound for a (delayless) arc
 is given by

— This represents the least amount of buffering needed on
this arc in any single appearance schedule.

Definition: A BMLB schedule for an acyclic SDF graph is a
single appearance schedule whose buffering cost is equal to
the sum of the BMLB costs for each arc.

Theorem: The APGAN algorithm will find a BMLB schedule
whenever one exists if delay(e) < τ(e) for each edge e.

e()

BMLB u v,() cons e() prod e()
gcd cons e() prod e(),{ }
--=

Example: mobile satellite receiver

This example is from [Ritz95]:

A

D E

B C

F K G

HL

MN

J I

P

S
UV

R

Q

W

T

4

4

11

11

10

10

11
11

10

11

11

10

240240

240 240

240240

BMLB = 1540

APGAN = 1540

RPMC = 2480

Ritz* = 2040

* Ritz gener-
ates a naive
single
appearance
schedule
and uses
the shared
buffer cost.

Nonuniform filter bank

3 1

3 2

3 2

3 1

3 2

3 1

2 3

2 3

1 3

2 3

1 3

1 3
a b

c

d

e

f

g

i

l

m

o

p

n

k

q

r

s
t

u

w
x

v

y z A

j

h

BMLB = 85

RPMC = 128

APGAN = 137

Performance on practical examples

Performance of the two heuristics on various acyclic graphs.

System BMUB BMLB APGAN RPMC Average
Random

Graph
size(nodes/

arcs)

Fractional decimation 61 47 47 52 52 26/30

Laplacian pyramid 115 95 99 99 102 12/13

Nonuniform filterbank
(1/3,2/3 splits, 4 channels)

466 85 137 128 172 27/29

Nonuniform filterbank
(1/3,2/3 splits, 6 channels)

4853 224 756 589 1025 43/47

QMF nonuniform-tree filterbank 284 154 160 171 177 42/45

QMF filterbank (one-sided tree) 162 102 108 110 112 20/22

QMF analysis only 248 35 35 35 43 26/25

QMF Tree filterbank (4 channels) 84 46 46 55 53 32/34

QMF Tree filterbank (8 channels) 152 78 78 87 93 44/50

QMF Tree filterbank (16 channels) 400 166 166 200 227 92/106

Performance on random graphs

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) < min(4 random) 87%

RPMC < APGAN by more than 10% 45%

RPMC < APGAN by more than 20% 35%

APGAN < RPMC by more than 10% 23%

APGAN < RPMC by more than 20% 14%

Conclusion

• Objective: minimizing buffer cost for a minimum code size
schedule

• Problem is NP-complete, even for acyclic, HSDF graphs.

• DPPO: generates an optimum parenthesization for a given
lexical ordering. For well-ordered graphs, where there is only
one topological sort, DPPO thus generates buffer-optimal
single appearance schedules.

• Two heuristics are used to generate lexical orderings for
arbitrary acyclic SDF graphs:
• RPMC: Does well on some practical examples with irregular topologies and on

random graphs

• APGAN: Does well on a lot of practical examples but not as well on random
graphs. It is optimal for a class of graphs.

