Existence of Single Appearance Schedules

- Every acyclic SDF graph has a single appearance schedule.
- An arbitrary SDF graph has a single appearance schedule iff each strongly connected component has a single appearance schedule.
- A strongly connected SDF graph has a single appearance schedule only if the nodes can be partitioned into Z₁ and Z₂ such that for any arc α directed from Z₁ to Z₂, *delay*(α) **q**_{sink(α)} × *consumed*(α).
- "Subindependent Partition"

Finding a Subindependent Partition

Remove each arc α for which $delay(\alpha) \ge \mathbf{q}_{sink(\alpha)}$

Any "source" strongly connected component is subindependent of the rest of the graph.

Components of the Scheduling Framework

- Subindependent Partitioning Algorithm.
- Acyclic Scheduling Algorithm.
- Tight Scheduling Algorithm.

algorithm schedule-loops

- Consolidate each strongly connected component $\{C_i\} \rightarrow acyclic graph G'$.
- Apply <u>acyclic scheduling algorithm</u> to G' → single appearance schedule of strongly connected components S'.
- For each strongly connected component C_i
 - Apply the <u>subindependence partitioning algorithm</u>
 - If a subindependent partition (P_1, P_2) is found
 - Determine looping factors: $r_i = gcd(\{\mathbf{q}_N \mid N \in P_i\}), \text{ for } i = 1, 2$
 - Apply schedule-loops() to P_1 and $P_2 \rightarrow$ subschedules S_1 and S_2
 - Replace appearance of C_i in S' with $(r_1 S_1) (r_2 S_2)$
 - If no subindependent partition is found
 - Apply the <u>tight scheduling algorithm</u> \rightarrow subschedule S_T
 - Replace appearance of C_i in S' with S_T

- We say that a strongly connected SDF graph is *tightly interdependent* if it does not have a subindependent partition.
- If Z₁ and Z₂ are subsets of nodes in an SDF graph such that Z₁ ∩ Z₂ ≠ Ø and subgraph(Z₁) & subgraph(Z₂) are both tightly interdependent, then subgraph(Z₁ ∪ Z₂) is tightly interdependent.
- Tightly interdependent components.

Properties of the Scheduling Framework

- Constructs a single appearance schedules whenever one exists.
- Actors outside the tightly interdependent components are scheduled with only one appearance.
- For actors inside tightly interdependent components, the number of appearances is determined entirely by the tight scheduling algorithm.