Existence of Single Appearance Schedules

- Every acyclic SDF graph has a single appearance schedule.
- An arbitrary SDF graph has a single appearance schedule iff each strongly connected component has a single appearance schedule.
- A strongly connected SDF graph has a single appearance schedule only if the nodes can be partitioned into Z_{1} and Z_{2} such that for any arc α directed from Z_{1} to $\mathrm{Z}_{2}, \operatorname{delay}(\alpha) \mathbf{q}_{\operatorname{sink}(\alpha)} \times \operatorname{consumed}(\alpha)$.
- "Subindependent Partition"

Finding a Subindependent Partition

Remove each arc α for which
$\operatorname{delay}(\alpha) \geq \mathbf{q}_{\operatorname{sink}(\alpha)}$

Any "source" strongly connected component is subindependent of the rest of the graph.

$\{\mathrm{C}\}$ is subindependent of $\{\mathrm{A}, \mathrm{B}\}$

Components of the Scheduling Framework

- Subindependent Partitioning Algorithm.
- Acyclic Scheduling Algorithm.
- Tight Scheduling Algorithm.
- Consolidate each strongly connected component $\left\{\mathrm{C}_{\mathrm{i}}\right\} \rightarrow$ acyclic graph G^{\prime}.
- Apply acyclic scheduling algorithm to $\mathrm{G}^{\prime} \rightarrow$ single appearance schedule of strongly connected components S^{\prime}.
- For each strongly connected component C_{i}
- Apply the subindependence partitioning algorithm
- If a subindependent partition $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$ is found
—Determine looping factors: $\mathrm{r}_{\mathrm{i}}=\operatorname{gcd}\left(\left\{\mathbf{q}_{\mathrm{N}} \mid \mathrm{N} \in \mathrm{P}_{\mathrm{i}}\right\}\right), \quad$ for $i=1,2$
- Apply schedule-loops() to P_{1} and $P_{2} \rightarrow$ subschedules S_{1} and S_{2}
— Replace appearance of C_{i} in S^{\prime} with $\left(\mathrm{r}_{1} \mathrm{~S}_{1}\right)\left(\mathrm{r}_{2} \mathrm{~S}_{2}\right)$
- If no subindependent partition is found
- Apply the tight scheduling algorithm \rightarrow subschedule S_{T}
- Replace appearance of C_{i} in S^{\prime} with S_{T}
- We say that a strongly connected SDF graph is tightly interdependent if it does not have a subindependent partition.
- If Z_{1} and Z_{2} are subsets of nodes in an SDF graph such that $Z_{1} \cap Z_{2} \neq \varnothing$ and $\operatorname{subgraph}\left(\mathrm{Z}_{1}\right) \& \operatorname{subgraph}\left(\mathrm{Z}_{2}\right)$ are both tightly interdependent, then $\operatorname{subgraph}\left(\mathrm{Z}_{1} \cup \mathrm{Z}_{2}\right)$ is tightly interdependent.
- Tightly interdependent components.

Properties of the Scheduling Framework

- Constructs a single appearance schedules whenever one exists.
- Actors outside the tightly interdependent components are scheduled with only one appearance.
- For actors inside tightly interdependent components, the number of appearances is determined entirely by the tight scheduling algorithm.

