
FSM Introduction

History: Combinational Logic ! single FSM ! Hier-

archy of FSM's.

MISII

Facilities for managing
networks of FSMs

Sequential Circuit

Partitioning

Facilities for handling latches

SIS

Optimization
(single machine) Sequential Circuit

VIS (handles hierarchy)

Original Final

Sub ckt 1 Sub ckt N
Optimize

Verify

Partition Combine /
Flatten

Interface logic
(asynchronous?)

. . . .

partition
 for
 layout

1

What are Combinational Circuits?

De�nition: A circuit is combinational if it computes

a function which depends only on the inputs applied

to the circuit; for every input value, there is a unique

output value.

� Circuits with an acyclic underlying topology are

combinational.

� Cyclic circuits can be combinational, in fact, there

are combinational circuits whose minimal form must

have cycles [Kautz 1970].

� Recent work on checking if circuit combinational

[Malik'94, Shiple'95]. These are based on X-valued

simulation.

2

What are Sequential Circuits?

� Some sequential circuits have memory elements.

Synchronous circuits have clocked latches. Asyn-

chronous circuits may or may not have latches

(e.g. C-elements), but these are not clocked.

� Feedback (cyclic) is a necessary, but not su�cient

condition for a circuit to be sequential.

� Synthesis of sequential circuits is not as well devel-

oped as combinational. Sequential synthesis tech-

niques not really used in commercial software.

out 1

Latch
Present State Next State

in 1

in 2

in 3

in 4

P
rim

ar
y

O
ut

pu
t

P
rim

ar
y

In
pu

t

0

1

−
−

−
−

/1

−−−1/1

(−
−

00, 11−
0)/0

(1010, 0110)/1

Registers and Latches
 (Netlist)

State Transition Graph
 (STG)

The above circuit is sequential since output depends

on the state and input.

3

Example - Highway Light (Verilog)

module hwy_control(clk, car_present, enable_hwy,

short_timer, long_timer, hwy_light,

hwy_start_timer, enable_farm);

input clk,car_present,enable_hwy,short_timer,

long_timer;

output hwy_light,hwy_start_timer,enable_farm;

boolean wire car_present;

wire short_timer, long_timer, hwy_start_timer,

enable_farm, enable_hwy;

color reg hwy_light;

initial hwy_light = GREEN;

assign hwy_start_timer = (((hwy_light == GREEN)

&& ((car_present == YES) && long_timer))

||

(hwy_light == RED) && enable_hwy);

assign enable_farm=((hwy_light==YELLOW)&&short_timer);

always @(posedge clk) begin

case (hwy_light)

GREEN: if ((car_present == YES) &&

long_timer) hwy_light = YELLOW;

YELLOW: if (short_timer) hwy_light = RED;

RED: if (enable_hwy) hwy_light = GREEN;

endcase

end

endmodule

5

Finite State Machines

Finite State Machines in STG or transition relation

form are a behavioral view of sequential circuits. They

describe the transitional behavior of these circuits. They

can distinguish among a �nite number of classes of in-

put histories: these classes are the internal states of

the machine.

Moore Machine: is a quintuple

M = (S; I; O; �; �)

S : �nite non-empty set of states

I : �nite non-empty set of inputs

O : �nite non-empty set of outputs

� : S � I 7! S transition (or next state) function

� : S 7! O output function

Mealy Machine: M = (S; I;O; �; �) but

� : S � I 7! O

For digital circuits, typically I = f0; 1gm and O =

f0;1gn.

In addition certain states may be classi�ed as reset or

initial states.

Automata are similar to FSM's, however they do not

produce any outputs, they just accept input sequences

(accepting set of states is given).

6

Representing State Machines

State Transition Graphs and Tables

Example: Tra�c Light Controller - Mealy machine

HG

HY

FG

FY

State Transition Graph: Example

PS IN NS OUT

HG c and t1 HY hl = GREEN; fl = RED; st = 1

HG HG hl = GREEN; fl = RED; st = 0

HY not(ts) HY hl = YELLOW; fl = RED; st = 0

HY ts FG hl = YELLOW; fl = RED; st = 1

FG FG hl = RED; fl = GREEN; st = 0

FG
not(not(c) or t1)

FYnot(c) or t1 hl = RED; fl = GREEN; st = 1

FY not(ts) FY hl = RED; fl = YELLOW; st = 0
FY ts HG hl = RED; fl = YELLOW; st = 1

State Transition Table: Example

not(c and t1)/
hl = GREEN; fl = RED; st = 0

c and t1/
hl = GREEN; fl = RED; st = 1

not(ts)/
hl = YELLOW; fl = RED; st = 0

ts/
hl = YELLOW; fl = RED; st = 1

not(not(c) or t1)/
hl = RED; fl = GREEN; st = 0

not(c) or t1/
hl = RED; fl = GREEN, st = 1

not(ts)/
hl = RED; fl = YELLOW; st = 0

ts/
hl = RED; fl = YELLOW; st = 0

 not(c and t1)

7

Representing State Machines

� State Transition Graphs and State Transition Ta-

bles are similar; the �rst is graphical, the second

is tabular.

� In this example the edges (transitions) are labeled

with general logic functions (predicates) of the in-

puts.

� Traditionally minterms or cubes have been used for

the transitions (e.g. KISS format), especially for

tables, since used as input to two-level minimizers.

Minterms need the most edges and arbitrary logic

functions (predicates) the least.

8

Non-Determinism and Incomplete Speci-
�cation

a/0

a/1

s0

s1

s2

� In automata theory, non-determinism is associ-

ated with many transitions; from a given current

state and under the same input conditions we may

go to di�erent states and have di�erent outputs.

Each behavior is considered valid. Nondetermin-

ism provides a compact way to describe a set of

valid behaviors.

� In classical sequential function theory, transition

functions and output functions can be incompletely

speci�ed (i.e. the functions can have don't cares),

i.e. de�ned only on a proper subset of their input

space. Where it is unde�ned, we consider it to

allow any behavior. This also describes a set of

valid behaviors.

10

Non-Determinism and Incomplete Speci-
�cation

Given an input and present state:

� Nondeterminism: some next states and outputs

are ruled out. Result is subset of next states and

outputs admissible for a transition.

� Don't cares: all next states and outputs are al-

lowed. These may be because the given state

can't be reached, so will never occur, or the state

is a binary code not used during state assignment.

� Incomplete transition structure: It may be that

no next state is allowed. If this is because that

input will never occur at that state we need to

"complete" the description by adding transitions

to all states and allowing all outputs. On the other

hand, we may want the machine to do nothing

(e.g. as an automaton). Sometimes we "com-

plete" the transition structure by adding a dummy

state and calling it a non-accepting state.

All describe a set of behaviors. These are used to de-

scribe exibility for the implementation during synthe-

sis, and to describe a subset of acceptable behaviors.

11

Non-Determinism and Incomplete Speci-
�cation

� Optimization tools for logic synthesis and veri�ca-

tion exploit in various fashions incomplete speci�-

cation to achieve optimization objectives.

More recently, methods to exploit exibility given

by non-determinism have been devised [Kim and

Newborn, Somenzi, Wang, Watanabe, Kam&Villa

]

� At the implementation level, only one of the pos-

sible next states and outputs is chosen (complete

speci�cation).

12

Initializing Sequences

Reference: [C. Pixley, TCAD Dec. 1992]

Q: How many states does a circuit (implementation)

with n memory elements have?

A: 2n, one for each possible vector of values of these

memory elements. Must assume on power up, that any

of the 2n states is allowed.
States visited in

normal operation

States visited only

at startup

No initialization sequence possible Initialization sequence is possible

M1: M2:

The set of states of normal operation forms a strongly

connected component.

Initializing Sequence: A sequence of input vectors that

gets the machine to an equivalence class of known reset

states.

May be implemented using a single reset signal.

Pixley: If an aligning sequence exists for each state

pair, then an initializing sequence exists.

14

FSM Extraction

Explicit/Semi-Implicit Extraction of all Transitions

Method 1:

Reference: [Devadas-Ma-Newton88]

Visit states starting from the reset states (in breadth-

�rst-order).

extract(C) { /* C is the given circuit */

st_table = { };

list = { };

foreach(s in reset_states)

add_list(list, s);

while((ps = next_unvisited(list)) != NIL) {

/* iterate till all states have been visited */

while([(in, ns, out) <= generate_ns(ps)] != NIL) {

/* generate transitions from ps one by one */

st_table = st_table + {(in, ps, ns, out)};

if(! in_list(list, ns)) add_list(list, ns);

}

mark_visited(list,ps);

}

return(st_table);

}

Of course, could do this in DFS order too, but see next

slide.

16

Interconnected FSMs - FSM Networks

� Natural way of describing complex systems (hier-

archy, decomposition). Naturally extracted from

HDL's with modules or sub-processes.

A B

C

PO

PO

PI
L2

L3

x

� Interconnected FSMs � Single product machine

(similar to attening in boolean circuits)

� Directed Graph - Each node an FSM. Arcs are

variables used for communication.
== FSM

Similar to Boolean network, possibly cyclic.

18

